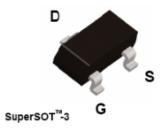
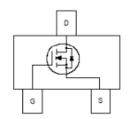


September 2008

FDN5632N_F085

N-Channel Logic Level PowerTrench $^{\circledR}$ MOSFET 60V, 1.6A, 98m Ω


Features


- \blacksquare R_{DS(on)} = 98m Ω at V_{GS} = 4.5V, I_D = 1.6A
- $R_{DS(on)} = 82m\Omega$ at $V_{GS} = 10V$, $I_D = 1.7A$
- Typ $Q_{g(TOT)} = 9.2nC$ at $V_{GS} = 10V$
- Low Miller Charge
- Qualified to AEC Q101
- RoHS Compliant

Applications

- DC/DC converter
- Motor Drives

Units

MOSFET Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	60	V
V_{GS}			V
	Drain Current Continuous (V _{GS} = 10V)	1.7	^
ID	Pulsed	10	A
P_{D}	Power Dissipation	1.1	W
T_J , T_{STG}	Operating and Storage Temperature	-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	75	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	111	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
5632	FDN5632N_F085	SSOT3	7"	8mm	3000 units

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Parameter

Off Cha	Off Characteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	V	60	-	-	V
1	Zero Gate Voltage Drain Current	$V_{DS} = 48V$,		•	-	1	μА
IDSS	Zelo Gale Vollage Dialii Current	$V_{GS} = 0V$	$T_A = 125^{\circ}C$	•	-	250	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

Test Conditions

Min

Тур

Max

On Characteristics

Symbol

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	2.0	3	V
		$I_D = 1.7A, V_{GS} = 10V$	-	57	82	
		$I_D = 1.6A, V_{GS} = 6V$	-	62	88	
r _{DS(on)}	Drain to Source On Resistance	$I_D = 1.6A, V_{GS} = 4.5V$		70	98	mΩ
		$I_D = 1.7A, V_{GS} = 10V,$ $T_A = 150^{\circ}C$	-	107	135	

Dynamic Characteristics

C _{iss}	Input Capacitance	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	01/	-	475	-	pF
Coss	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		-	60	-	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/12		-	30	-	pF
R_G	Gate Resistance	f = 1MHz		-	1.4	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0 to 10V	1/ 001/	-	9.2	12	nC
Q _{gs}	Gate to Source Gate Charge		$V_{DD} = 20V$ $I_{D} = 1.7A$	-	1.5	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		ID = 1.77	=	1.4	-	nC

Units

ns

ns

ns

Max

12.9

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Parameter

Switc	Switching Characteristics					
t _{on}	Turn-On Time		-	-	30	ns
t _{d(on)}	Turn-On Delay Time		-	15	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_D = 1.0A$	-	1.7	-	ns
t	Turn Off Dolay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		5.2		nc

Test Conditions

Min

Тур

5.2

1.3

Drain-Source Diode Characteristics

Turn-Off Delay Time

Fall Time

Turn-Off Time

Symbol

t_{d(off)}

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 1.7A	-	0.8	1.25	V
	Source to Drain blode voltage	$I_{SD} = 0.85A$	-	0.8	1.0	
t _{rr}	Reverse Recovery Time	- 1.70 dl /dt - 1004/up	-	16.0	21	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 1.7A$, $dI_{SD}/dt = 100A/\mu s$	-	7.9	10.3	nC

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

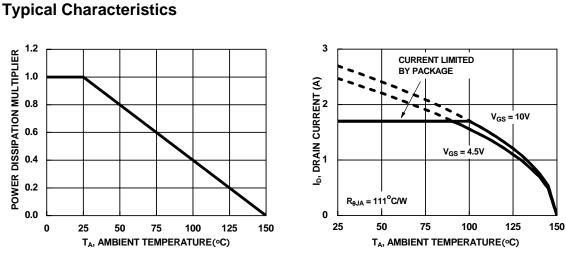


Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs
Ambient Temperature

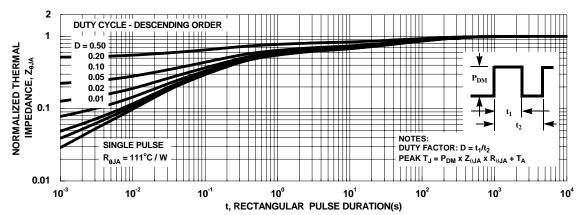


Figure 3. Normalized Maximum Transient Thermal Impedance

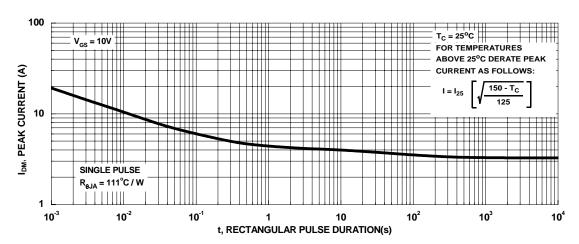


Figure 4. Peak Current Capability

Typical Characteristics

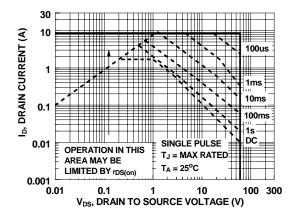


Figure 5. Forward Bias Safe Operating Area

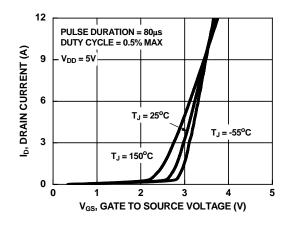


Figure 6. Transfer Characteristics

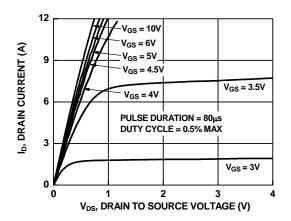


Figure 7. Saturation Characteristics

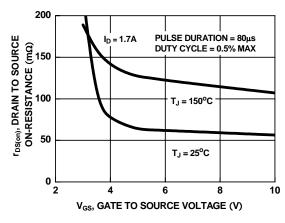


Figure 8. Drain to Source On-Resistance Variation vs Gate to Source Voltage

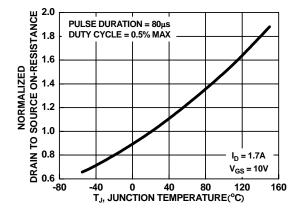


Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature

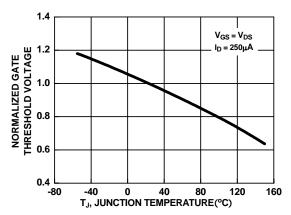


Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature

Typical Characteristics

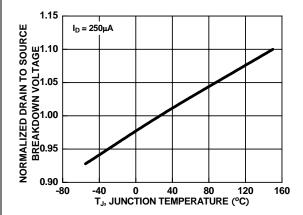


Figure 11. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

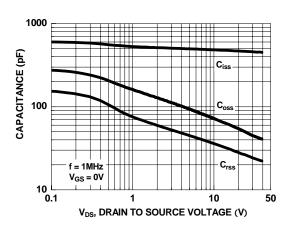


Figure 12. Capacitance vs Drain to Source Voltage

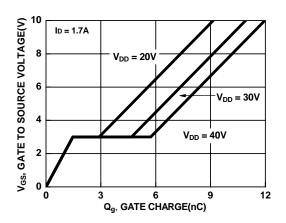


Figure 13. Gate Charge vs Gate to Source Voltage

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLTTM

Current Transfer Logic™ EcoSPARK®

EfficentMax™ EZSWITCH™ '

airchild®

CTL™

Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST® FastvCore™ FlashWriter® * $\mathsf{FRFET}^{\mathbb{R}}$

Global Power ResourceSM Green FPS™

Green FPS™ e-Series™

GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ $\mathsf{PowerTrench}^{\mathbb{R}}$ Programmable Active Droop™ **QFĔT**

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™

SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

SYSTEM ®

The Power Franchise®

bwerُّ franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC® Ultra FRFET™ UniFET™ **VCX**TM VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EIFE SUPPORT FOLICE FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.