

Enpirion Power Datasheet EY1603 40V, Low Quiescent Current, 150mA Linear Regulator

DS-1047 Datasheet

The Altera® Enpirion® EY1603 is a wide input voltage range, low quiescent current linear regulator ideally suited for "always-on" and "keep alive" applications. The EY1603 operates from an input voltage of +6V to +40V under normal operating conditions and consumes only $18\mu A$ of quiescent current at no load.

The EY1603 has an adjustable output voltage range from 2.5 to 12 V. The EY1603 features an \overline{EN} pin that can be used to put the device into a low-quiescent current shutdown mode where it draws only $2\mu A$ of supply current. The device features automatic thermal shutdown and current limit protection.

The EY1603 is rated over the -40°C to +125°C temperature range and is available in a 14 lead HTSSOP with an exposed pad package.

TABLE 1. KEY DIFFERENCES IN FAMILY OF 40V LDO PARTS

PART NUMBER	MINIMUM I _{out}	ADJ OR FIXED V _{OUT}
EY1602SI-ADJ	50mA	ADJ
EY1603TI-ADJ	150mA	ADJ

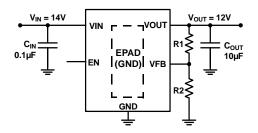


FIGURE 1. TYPICAL APPLICATION

Features

- Wide V_{IN} Range of 6V to 40V
- Adjustable Output Voltage from 2.5V to 12V
- Guaranteed 150mA Output Current
- Ultra Low 18µA Typical Quiescent Current
- Low 2µA of Typical Shutdown Current
- ±1% Accurate Voltage Reference
- Low Dropout Voltage of 295mV at 150mA
- 40V Tolerant Logic Level (TTL/CMOS) Enable Input
- Stable Operation with 10µF Output Capacitor
- 5kV ESD HBM Rated
- Thermal Shutdown and Current Limit Protection
- Thermally Enhanced 14 Ld Exposed Pad HTSSOP Package

Applications

- Industrial
- Telecommunications

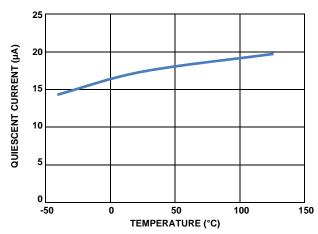
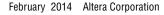


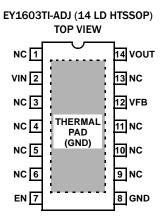
FIGURE 2. QUIESCENT CURRENT VS TEMPERATURE (AT UNITY GAIN). $V_{\rm IN} = 14V$



www.altera.com

09619

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.


Ordering Information

PART NUMBER (Notes 1, 2)	PART Marking	TEMP. RANGE (°C)	ENABLE PIN	OUTPUT Voltage (V)	PACKAGE (Pb-Free)	PKG. DWG. #
EY1603TI-ADJ	1603AT	-40 to +125	Yes	Adjustable	14 Ld HTSSOP	M14.173B
EVB-EY1603TI-ADJ	Evaluation Platform					

NOTES:

- 1. Add "-T*" suffix for tape and reel.
- 2. These Altera Enpirion Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Altera Enpirion Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Pin Configuration

Pin Descriptions

PIN NUMBER	PIN NAME	DESCRIPTION
1, 3, 4, 5, 6, 9, 10, 11, 13	NC	Pins have internal termination and can be left unconnected. Connection to ground is optional.
2	VIN	Input voltage pin. A minimum 0.1µF ceramic capacitor is required for proper operation. Range 6V to 40V.
7	EN	Enable pin. High on this pin enables the device. Range OV to $\operatorname{V}_{\operatorname{IN}}$.
8	GND	Ground pin.
12	VFB	This pin is connected to the external feedback resistor divider which sets the LDO output voltage. Range 0V to 3V.
14	VOUT	Regulated output voltage. A 10µF ceramic capacitor is required for stability. Range 0V to 12V.
-	EPAD	It is recommended to solder the EPAD to the ground plane.

Absolute Maximum Ratings

VIN Pin to GND VoltageGND - 0.3V to +45V
VOUT Pin to GND VoltageGND - 0.3V to 16V
VFB Pin to GND VoltageGND - 0.3V to 3V
EN Pin to GND VoltageGND - 0.3V to VIN
Output Short-circuit Duration Indefinite
ESD Rating
Human Body Model (Tested per JESD22-A114E) 5kV
Machine Model (Tested per JESD-A115-A) 200V
Charge Device Model (Tested per JESD22-C101C) 2.2kV
Latch Up (Tested per JESD78B; Class II, Level A) 100mA

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
14 Ld HTSSOP Package (Notes 3,	. 4)	37	5
Maximum Junction Temperature			+150°C
Maximum Storage Temperature Ra	nge	6	65°C to +175°C
Pb-Free Reflow Profile			

Recommended Operating Conditions

Ambient Temperature Range	40°C to +125°C
VIN pin to GND Voltage	+6V to +40V
VOUT pin to GND Voltage	+2.5V to +12V
EN pin to GND Voltage	0V to +40V

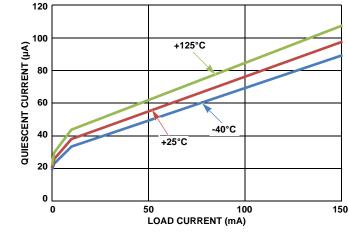
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 3. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.
- 4. For θ_{IC} , the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications Recommended Operating Conditions, unless otherwise noted. $V_{IN} = 14V$, $I_{OUT} = 1mA$, $C_{IN} = 0.1 \mu F$, $C_{OUT} = 10 \mu F$, $C_{AUT} = 10 \mu F$, C_{AU

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 7)	ТҮР	MAX (Note 7)	UNIT
Input Voltage Range	V _{IN}		6		40	V
Guaranteed Output Current	I _{OUT}	$V_{IN} = V_{OUT} + VDO$	150			mA
VFB Reference Voltage	V _{OUT}	$\overline{\text{EN}}$ = High, V_{IN} = 14V, I_{OUT} = 0.1mA to 150mA	1.211	1.223	1.235	V
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$3V \le V_{IN} \le 40V$, $I_{OUT} = 1$ mA		0.04	0.15	%
Load Regulation	$\Delta V_{OUT}/\Delta I_{OUT}$	$V_{IN} = V_{OUT} + V_{DO}$, $I_{OUT} = 100 \mu A$ to 150mA		0.3	0.6	%
Dropout Voltage	ΔV_{D0}	I _{OUT} = 1mA, V _{OUT} = 3.3V		7	33	mV
(Note 5)		I _{OUT} = 150mA, V _{OUT} = 3.3V		380	525	mV
		I _{OUT} = 1mA, V _{OUT} = 5V		7	33	mV
		I _{OUT} = 150mA, V _{OUT} = 5V		295	460	mV
Shutdown Current	I _{SHDN}	EN = LOW		2	3.64	μА
Quiescent Current	IQ	EN = HIGH, I _{OUT} = 0mA		18	24	μА
		EN = HIGH, I _{OUT} = 1mA		22	42	μА
		EN = HIGH, I _{OUT} = 10mA		34	60	μА
		EN = HIGH, I _{OUT} = 150mA		90	125	μА
Power Supply Rejection Ratio	PSRR	f = 100Hz; V _{IN_RIPPLE} = 500mV _{P-P} ; Load = 150mA		66		dB
EN FUNCTION	l					
EN Threshold Voltage	V _{EN_H}	V _{OUT} = Off to On			1.485	V
	V _{EN_L}	V _{OUT} = On to Off	0.975			V
EN Pin Current	I _{EN}	V _{OUT} = 0V		0.026		μA
EN to Regulation Time (Note 6)	t _{EN}			1.65	1.93	ms


Electrical Specifications Recommended Operating Conditions, unless otherwise noted. $V_{IN} = 14V$, $I_{OUT} = 1mA$, $C_{IN} = 0.1 \mu F$, $C_{OUT} = 10 \mu F$, $C_{AUT} = 10 \mu F$, C_{AU

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 7)	ТҮР	MAX (Note 7)	UNIT
PROTECTION FEATURES						
Output Current Limit	I _{LIMIT}	V _{OUT} = 0V	175	410		mA
Thermal Shutdown	T _{SHDN}	Junction Temperature Rising		+165		°C
Thermal Shutdown Hysteresis	T _{HYST}			+20		°C

NOTES:

- 5. Dropout voltage is defined as $(V_{IN}$ $V_{OUT})$ when V_{OUT} is 2% below the value of V_{OUT} when V_{IN} = V_{OUT} + 3V.
- 6. Enable to Regulation is the time the output takes to reach 95% of its final value with V_{IN} = 14V and \overline{EN} is taken from V_{IL} to V_{IH} in 5ns. For the adjustable versions, the output voltage is set at 5V.
- 7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Typical Performance Curves $V_{IN} = 14V$, $I_{OUT} = 1mA$, $V_{OUT} = 5V$, $T_J = +25^{\circ}C$, unless otherwise specified.

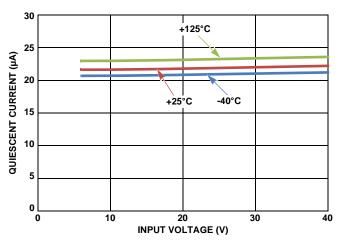


FIGURE 4. QUIESCENT CURRENT vs INPUT VOLTAGE (NO LOAD)

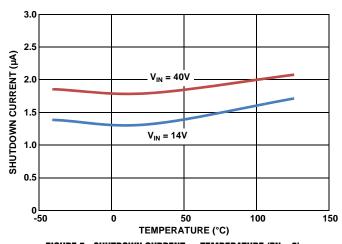


FIGURE 5. SHUTDOWN CURRENT vs TEMPERATURE (EN = 0)

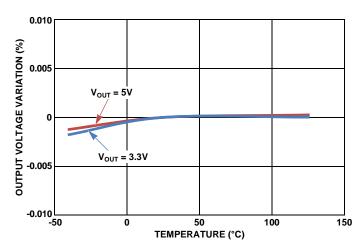



FIGURE 6. OUTPUT VOLTAGE vs TEMPERATURE (LOAD = 50mA)

Rev A

Typical Performance Curves $V_{IN} = 14V$, $I_{OUT} = 1mA$, $V_{OUT} = 5V$, $T_J = +25$ °C, unless otherwise specified. (Continued)

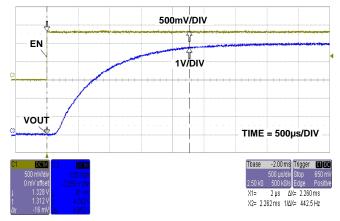
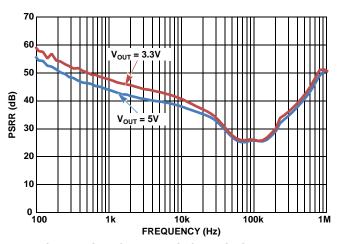



FIGURE 7. OUTPUT VOLTAGE vs LOAD CURRENT

FIGURE 8. START-UP WAVEFORM

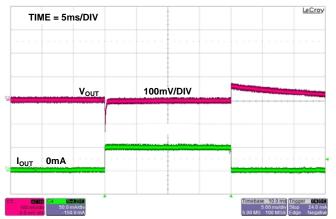
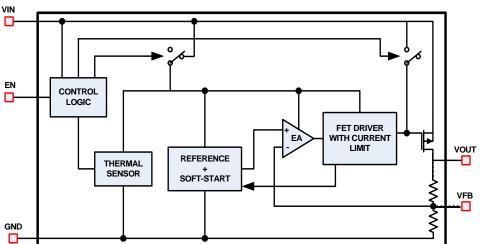



FIGURE 9. POWER SUPPLY REJECTION RATIO (LOAD = 150mA)

FIGURE 10. LOAD TRANSIENT RESPONSE

Rev A

Block Diagram

Functional Description

Functional Overview

The EY1603 is a high performance, high voltage, low-dropout regulator (LDO) with 150mA sourcing capability. The part is rated to operate over the -40°C to +125°C temperature range. Featuring ultra-low quiescent current, it is an ideal choice for "always-on" applications. It works well under a "load dump condition" where the input voltage could rise up to 40V. This LDO device also features current limit and thermal shutdown protection.

Enable Control

The EY1603 has an enable pin, which turns the device on when pulled high. When EN is low, the IC goes into shutdown mode and draws less than 2μ A. In "always-on" applications, EN can be tied to IN.

Current Limit Protection

The EY1603 has internal current limiting functionality to protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current largely independent of the output voltage. If the short or overload is removed from V_{OUT}, the output returns to normal voltage regulation mode.

Thermal Fault Protection

In the event that the die temperature exceeds a typical value of $+165^{\circ}$ C, the output of the LDO will shut down until the die temperature cools down to a typical $+145^{\circ}$ C. The level of power dissipated, combined with the ambient temperature and the thermal impedance of the package, determines if the junction temperature exceeds the thermal shutdown temperature. See the "Power Dissipation" section on page 8 for more details.

Application Information

Input and Output Capacitors

A minimum $0.1\mu F$ ceramic capacitor is recommended at the input for proper operation. For the output, a ceramic capacitor with a capacitance of $10\mu F$ is recommended for the EY1603 to maintain stability. The ground connection of the output capacitor should be routed directly to the GND pin of the device and also placed close to the IC.

Output Voltage Setting

The EY1603TI-ADJ output voltage is programmed using an external resistor divider as shown in Figure 11.

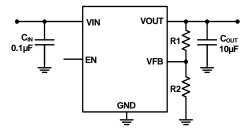


FIGURE 11. OUTPUT VOLTAGE SETTING

The output voltage is calculated using Equation 1:

$$V_{OUT} = 1.223 V \times \left(\frac{R_1}{R_2} + 1\right)$$
 (EQ. 1)

Power Dissipation

The junction temperature must not exceed the range specified in "Recommended Operating Conditions" on page 3. The power dissipation can be calculated using Equation 2:

The maximum allowable junction temperature, $T_{J(MAX)}$ and the maximum expected ambient temperature, $T_{A(MAX)}$ will determine the maximum allowable junction temperature rise (ΔT_{J}), as shown in Equation 2:

$$\Delta T_{J} = T_{J(MAX)} - T_{A(MAX)}$$
 (EQ. 2)

To calculate the maximum ambient operating temperature, use the junction-to-ambient thermal resistance (θ_{JA}) as shown in Equation 3:

$$T_{J(MAX)} = P_{D(MAX)} \times \theta_{JA} + T_{A}$$
 (EQ. 3)

Board Layout Recommendations

A good PCB layout is important to achieve expected performance. Consideration should be taken when placing the components and routing the trace to minimize the ground impedance and keep the parasitic inductance low. The input and output capacitors should have a good ground connection and be placed as close to the IC as possible. The feedback trace in the adjustable version should be away from other noisy traces.

The 14 Ld HTSSOP package uses the copper area on the PCB as a heat-sink. The EPAD of this package must be soldered to the copper plane (GND plane) for effective heat dissipation. Figure 12 shows a curve for θ_{JA} of the package for different copper area sizes.

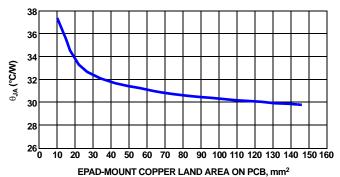
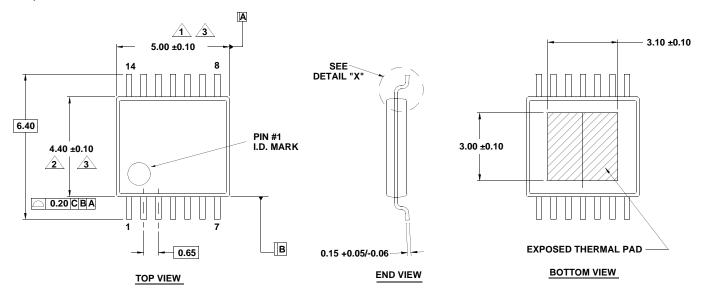
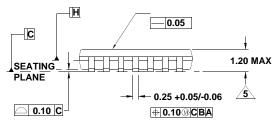


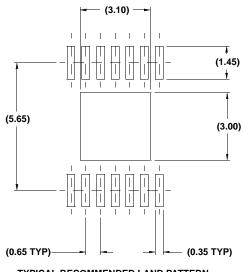
FIGURE 12. $\,\theta_{\text{JA}}$ vs epad-mount copper land area on PCB

Document Revision History

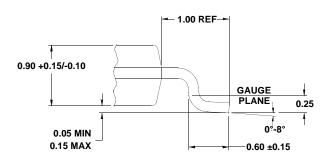

The table lists the revision history for this document.


Date	Version	Changes
February 2014	1.0	Initial release.

Package Outline Drawing


M14.173B

14 LEAD HEAT-SINK THIN SHRINK SMALL OUTLINE PACKAGE (HTSSOP) Rev 1, 1/10



SIDE VIEW

TYPICAL RECOMMENDED LAND PATTERN

DETAIL "X"

NOTES:

March 14, 2014

- 1. Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
- 2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side.
- 3. Dimensions are measured at datum plane H.
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 5. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.80mm total in excess of dimension at maximum material condition.
 - Minimum space between protrusion and adjacent lead is 0.07mm.
- 6. Dimension in () are for reference only.
- 7. Conforms to JEDEC MO-153, variation ABT-1.

Rev A