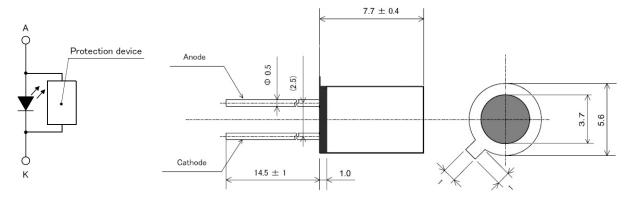


WIEDNER HAUPTSTRASSE 76 1040 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM



## **RLT365-10E**




#### **TECHNICAL DATA**

### **UV LED 5 mm**

RLT365-10E is a 365nm UV LED that utilizes an UG11 filter, blocking visible wavelenght above 400nm. It emits pure UV light.

#### **Outline Dimensions**



### Absolute Maximum Ratings (T<sub>a</sub>=25°C)

| Item                          | Symbol          | Value    | Unit |
|-------------------------------|-----------------|----------|------|
| DC Forward Current            | I <sub>F</sub>  | 25       | mA   |
| Peak Pulse Forward Current *1 | I <sub>FP</sub> | 80       | mA   |
| Allowable Reverse Current     | $I_{R}$         | 85       | mA   |
| Power Dissipation             | $P_{D}$         | 100      | mW   |
| Operating Temperature         | $T_OP$          | -30 +85  | °C   |
| Storage Temperature           | $T_{STG}$       | -40 +100 | °C   |
| Soldering Temperature *2      | $T_{SOL}$       | 265      | °C   |

<sup>\*1</sup> pulse width ≤ 10 msec. and duty ratio ≤ 1/10 \*2 for 10 sec.

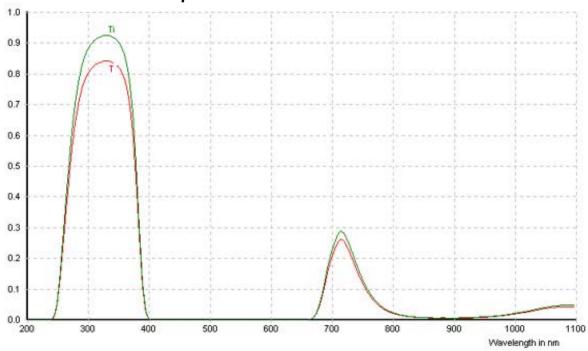
#### Specifications (25°C)

| Item                     |        | Symbol         | Min.  | Тур. | Max. | Unit |
|--------------------------|--------|----------------|-------|------|------|------|
| Electrical Specification |        |                |       |      |      |      |
| Forward Current          |        | I <sub>F</sub> | -     | 20   | -    | mA   |
| Forward Voltage *1       |        | $V_{F}$        | -     | 3.6  | 4.0  | V    |
| Optical Specification    |        |                |       |      |      |      |
|                          | Rank 3 | Po             | 1.335 | -    | 1.89 | mW   |
| CW Output Power *2       | Rank 4 | Po             | 1.89  | -    | 2.67 | mW   |
|                          | Rank 5 | Po             | 2.67  | -    | 3.78 | mW   |
| Peak Wavelength *3       |        | $\lambda_{P}$  | 360   | 365  | 370  | nm   |
| Spectrum Half Width      |        | λ              |       | 15   |      | nm   |
| Viewing Angle            |        | φ              |       | 10   |      | deg. |

- 1. measurement tolerance is ± 0.2 V
- 2. measurement tolerance is ± 10%
- 3. measurement tolerance is  $\pm 3$  nm



WIEDNER HAUPTSTRASSE 76


1040 VIENNA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM



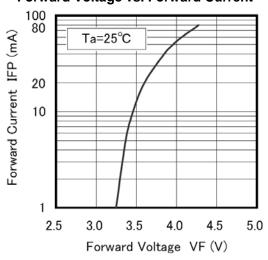
#### **Device Materials**

| Item  | Material              |
|-------|-----------------------|
| Glass | Hard Glass            |
| Сар   | Ni Plating Iron Alloy |
| Lead  | Au Plating Iron Alloy |

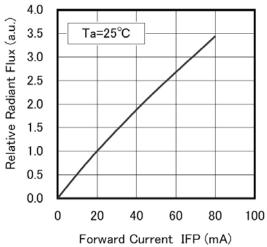
### **UG11 Filter transmission spectrum**



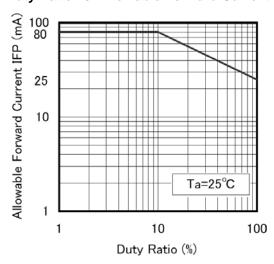




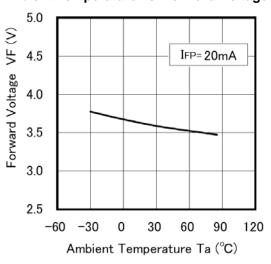




#### Typical Performance Curves

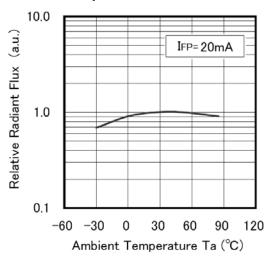
#### Forward Voltage vs. Forward Current


WIEDNER HAUPTSTRASSE 76

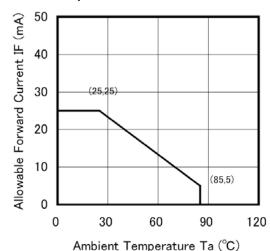



## Forward Voltage vs. Relative Radiant Flux




#### **Duty Ratio vs. Allowable Forward Current**



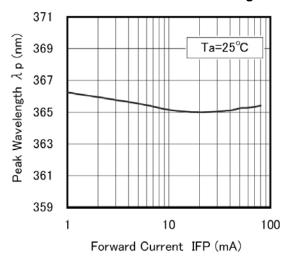

**Ambient Temperature vs. Forward Voltage** 



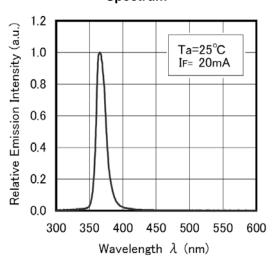
#### Ambient Temp. vs. Relative Radiant Flux



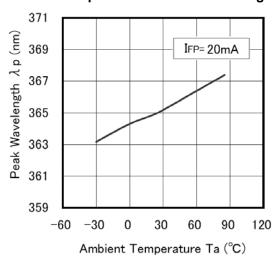
#### **Ambient Temp. vs. Allowable Forward Current**



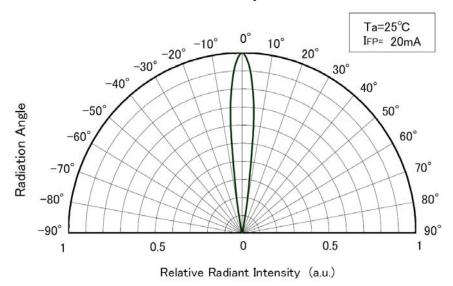




MIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRI TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM




#### Forward Current vs. Peak Wavelenght




#### Spectrum



#### **Ambient Temperature vs. Peak Wavelenght**



#### **Directivity**





**WIEDNER HAUPTSTRASSE 76** 





### Reliability

#### 1. Test items and result

| Test Item                                               | Standard Test<br>Methode  | Test Conditions                                                         | Note                       | Number of Damaged |
|---------------------------------------------------------|---------------------------|-------------------------------------------------------------------------|----------------------------|-------------------|
| Resostance to Soldering<br>Heat                         | JEITA ED-4701<br>300 302  | Tsld=260 ± 5°C, 10sec<br>3mm from the base of the lead                  | 1 time                     | 0/50              |
| Solderability                                           | JEITA ED-4701<br>303 303A | Tsld=245 ± 5°C, 5sec<br>using flux<br>Lead-free Solder (Sn-3.0Ag-0.5CU) | 1 time<br>over 95%         | 0/50              |
| Temperature Cycle                                       | JEITA ED-4701<br>100 105  | -40°C ~ 25°C ~ 100°C ~ 25°C<br>30min. 5min. 30min. 5min.                | 100 cycles                 | 0/50              |
| Moisture Resistance<br>Cyclic                           | JEITA ED-4701<br>200 203  | 25°C ~ 65°C ~ -10°C<br>90%RH 24hrs./1 cycle                             | 10 cycles                  | 0/50              |
| Terminal Strength (bending test)                        | JEITA ED-4701<br>400 401  | Load 5N (0.5kgf)<br>0°C ~ 90°C ~ 0°C bend 2 times                       | No<br>noticeable<br>damage | 0/50              |
| Terminal Strength (pull test)                           | JEITA ED-4701<br>400 401  | Load 10N (1kgf)<br>10 ± 1 sec.                                          | No<br>noticeable<br>damage | 0/50              |
| High Temperature<br>Storage                             | JEITA ED-4701<br>200 201  | Ta=100°C                                                                | 1000 hrs.                  | 0/50              |
| Temperature Humidity<br>Storage                         | JEITA ED-4701<br>100 103  | Ta=60°C, RH=90%                                                         | 1000 hrs.                  | 0/50              |
| Low Temperature<br>Storage                              | JEITA ED-4701<br>200 202  | Ta=-40°C                                                                | 1000 hrs.                  | 0/50              |
| Steady State Operating<br>Life                          |                           | I <sub>F</sub> =25mA, Ta=25°C                                           | 500 hrs.                   | 0/50              |
| Steady State Operating<br>Life of High Humidity<br>Heat |                           | I <sub>F</sub> =15mA, 60°C, RH=90%                                      | 500 hrs.                   | 0/50              |
| Steady State Operating Life of Low Temperature          |                           | I <sub>F</sub> =20mA, Ta=-30°C                                          | 1000 hrs.                  | 0/50              |

#### 2. Criteria for judging the damage

| Item                | Symbol   | Test Conditions      | Criteria for Judgment |             |
|---------------------|----------|----------------------|-----------------------|-------------|
| item                | Syllibol | Test Conditions      | Min.                  | Max.        |
| Forward Voltage     | $V_{F}$  | I <sub>F</sub> =20mA | -                     | U.S.L x 1.1 |
| Optical Power Ouput | Po       | I <sub>E</sub> =20mA | L.S.L x 0.7           | -           |

<sup>\*</sup> Note:

1. U.S.L: Upper Standard Level

2. L.S.L: Lower Standard Level



#### Precaution for Use

#### 1. Cautions

- This device is a UV LED, which radiates intense UV light during operation.
- DO NOT look directly into the UV light or look through the optical system. To prevent inadequate exposure of UV radiation, wearing UV protective glasses is recommended

#### 2. Lead Forming

- When forming leads, the leads should be bent at a point at least 3 mm from the base of the lead. DO NOT use the base of the leadframe as a fulcrum during lead forming.
- Lead forming should be done before soldering.
- DO NOT apply any bending stress to the base of the lead. The stress to the base may damage the LED's characteristics or it may break the LEDs.
- When mounted the LEDs onto the printed circuit board, the holes on the circuit board should be exactly aligned with the leads of LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the lead and it will degrade the LEDs.

#### 3. Soldering Conditions

- Solder the LEDs no closer than 3 mm from the base of the lead.
- Recommended soldering conditions:

| Dip Soldering           |                            | Hand Soldering                 |                            |  |
|-------------------------|----------------------------|--------------------------------|----------------------------|--|
| Pre-Heat                | 120 °C Max.                | Temperature                    | 350 °C Max.                |  |
| Pre-Heat Time           | 60 Seconds Max.            | 50 Seconds Max. Soldering Time |                            |  |
| Solder Bath Temperature | 260 °C Max.                |                                |                            |  |
| Dipping Time            | 5 Seconds Max.             | Position                       | Not closer than 3 mm from  |  |
| Dipping Position        | No lower than 3 mm from    | FUSITION                       | the base of the epoxy bulb |  |
|                         | the base of the epoxy bulb |                                |                            |  |

- Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the LEDs.
- A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.
- Dip soldering and hand soldering should not be done more than one time.
- Do not apply any stress to the lead particularly when heated.
- The LEDs must not be repositioned after soldering.
- After soldering the LEDs, the lead should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused from warping of the PC board or from the clinching and cutting of the lead frames. When it is absolutely necessary, the LEDs may be mounted in this fashion but the customer will assume responsibility for any problems. Direct soldering should only be done adter testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. Those LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- Cut the LED leads at room temperature. Cutting the leads at high temperature may cause the failure of the LEDs.



WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM



#### 4. Static Electricity

- The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- All devices, equipment and machinery must be grounded properly. It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.



#### 5. Heat Generation

- Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in the specification.
- The operating current should be desided after sonsidering the ambient maximum temperature of LEDs.

#### 6. Storage

- The LEDs should be stored at 30°C or less and 70%RH or less after being shippedand the sorage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with nitrogen atmosphere and moisture absorbent material.
- LED leads are gold okated Iron alloy. The gold surface may be affected by environments
  which contain corrosive substances. Please avoid conditions which may cause the LED to
  corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during
  soldering operations. It is recommended that the LEDs be used as soon as possible.
- Please avoid rapid transistions in ambient temperature, especially in high humidity environments where condensation can occur.