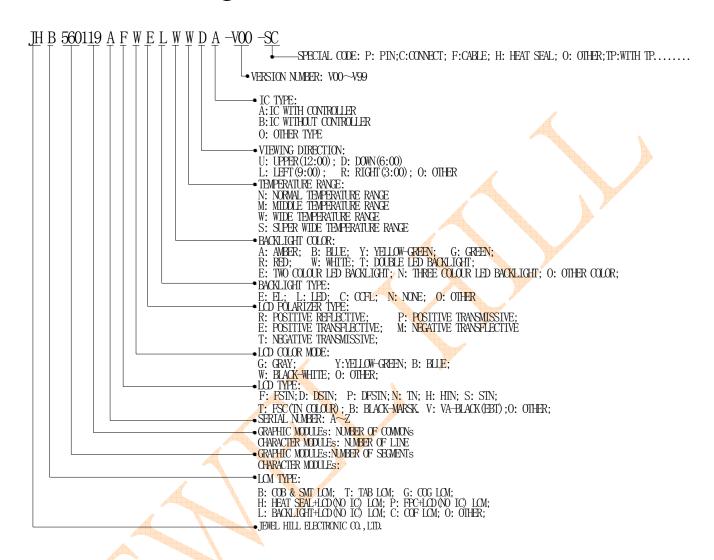


SPECIFICATIONS FOR LCD MODULE

Module No. JHB560119A


E-mail: sales@jhlcd.com Website: www.jhlcd.com

JHB560119A VER: 2.01 - 0 - Issue date: 2013/08/01

TABLE OF CONTENTS

LCI	M NUMBER SYSTEM	2
1.	GENERAL DESCRIPTION	3
2.	FEATURES	3
3.	MECHANICAL SPECIFICATION	3
4.	MECHANICAL DIMENSION	4
5.	MAXIMUM RATINGS	
6.	ELECTRICAL CHARACTERISTICS	
7.	MODULE FUNCTION DESCRIPTION	6
8.	ELECTRO-OPTICAL CHARACTERISTICS	
	RELIABILITY	
	PRECAUTIONS FOR USING LCD MODULES	
	USING LCD MODULES	
	REVISION HISTORY	
	MPLE APPROVED REPORT	
JAI	ALL ALL ALL VED KELUKI	. 43

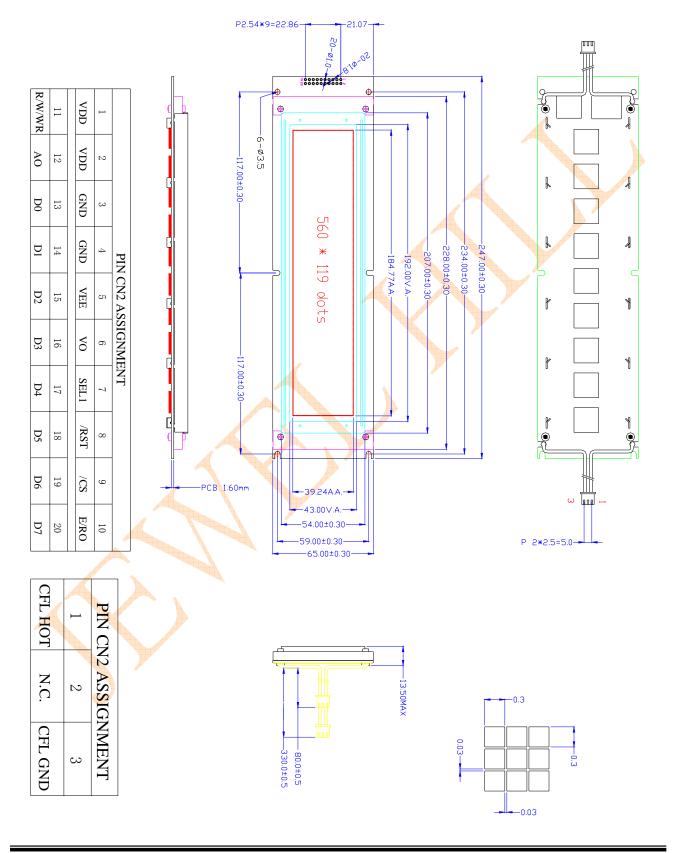
LCM Number System

1. GENERAL DESCRIPTION

The JHB560119A is a 560 x 119 Dots Graphics LCD module. It has a FSTN panel composed of 560 segments and 119 commons. The LCM can be easily accessed by micro-controller via parallel interface.

2. FEATURES

Diaglass Mada	Transflective and Positive
Display Mode	FSTN module
Display Format	Graphic 560 x 119 dots
Input Data	Parallel data input from MPU
Multiplexing Ratio	1/119Duty
Bias	1/12 Bias
Viewing Direction	6 O'clock
Controller	RA8835 or Equiv
Backlight	CCFL (White)


3. MECHANICAL SPECIFICATION

Item	Specifications	Unit
Dimensional outline	247.0(PCB) x 65.0 x 13.5 (max)	mm
Resolution	560segs x 119coms	dots
Viewing area	192.0(W) x 43.0(H)	mm
Active area	184.77(W) x 39.24(H)	mm
Dots pitch	0.33 (W)×0.33(H)	mm
Dots size	$0.3(W) \times 0.3(H)$	mm

JHB560119A VER: 2.01 - 3 - Issue date: 2013/08/01

4. MECHANICAL DIMENSION

5. MAXIMUM RATINGS

Item	Symbol	Min	Max	Unit	Note
G 1 1	$V_{\rm DD}$ - $V_{\rm SS}$	-0.3	7.0	V	
Supply voltage	V_{LCD}	-0.3	30.0	V	
Input Voltage	V_{IN}	-0.3	V _{DD} +0.3	V	
Operating temperature	T_{OPR}	-20	+70	$^{\circ}$ C	
Storage temperature	T_{STR}	-30	+80	$^{\circ}\!\mathbb{C}$	
Humidity			90	%RH	

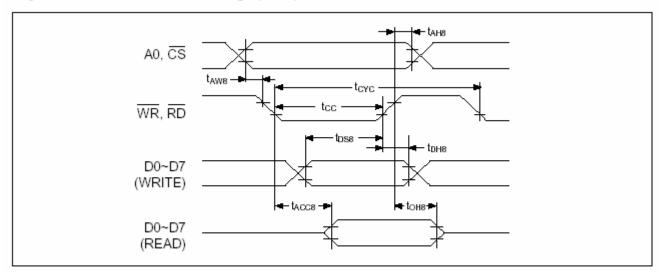
6. ELECTRICAL CHARACTERISTICS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	Logic	V_{DD}		_	5.0	5.5	V
Innut Valtage	H level	V_{IH}		$0.8V_{DD}$		$V_{\scriptscriptstyle DD}$	V
Input Voltage	L level	$V_{\scriptscriptstyle IL}$		V_{ss}		$0.2V_{\mathrm{DD}}$	V
Current Consumption (LCD DRIVER)		I_{DD}	V_{DD} =5.0V; V_{LCD} =15.0V, T_{amb} =25°C		8	75	mA
LCD Driving V	oltage	V_{LCD}	Bias=1/12 VLCD=VDD-V0	14.5	15.0	15.5	V
Supply Voltag CCFL Backl	4	Vf		-	276	-	V
Current Consumption (With CCFL BackLight)		If	Vf=276V		8		mA
Frequency with CCFL Backlight		Fosc	Vf=276V If=8mA		50		KHz

JHB560119A VER: 2.01 - 5 - Issue date: 2013/08/01

7. MODULE FUNCTION DESCRIPTION

7.1. PIN DESCRIPTION


Pin No.	Symbol	Description
1	VDD	Decrease Community from Decrision
2	VDD	Power Supply for Positive
3	GND	Downer Supply for Crown d
4	GND	Power Supply for Ground
5	VEE	Negative Voltage output for LCD Driving Voltage
6	VO	LCD Driving Voltage Regulation terminal
7	SEL1	Timing Selection for 6800 or 8080
8	/RST	Reset Signal input terminal
9	/CS	Chip Selection Action terminal
10	E_RD	Read/Write Enable for 6800 or Read Signal input for 8080
11	R/W_WR	Read/Write Control for 6800 or Write Signal input for 8080
12	A0	Instruction/Data Selection
13	D0	Data bit0 for Controller
14	D1	Data bit1 for Controller
15	D2	Data bit2 for Controller
16	D3	Data bit3 for Controller
17	D4	Data bit4 for Controller
18	D5	Data bit5 for Controller
19	D6	Data bit6 for Controller
20	D7	Data bit7 for Controller

JHB560119A VER: 2.01 - 6 - Issue date: 2013/08/01

7.2. TIMING CHARACTERISTICS

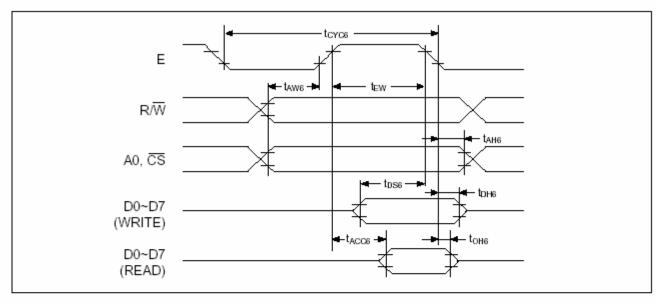
(1). SYSTEM BUS READ/WRITE CHARACTERISTIC.

System bus READ/WRITE timing I (8080)

System bus READ/WRITE timing I (8080)

 $Ta = -20 \text{ to } 75^{\circ}\text{C}$

Signal	Symbol Parameter		Rat	ing	Unit	Condition
Signal	Symbol	Parameter	min	max	Onit	Condition
A0. CS	tan8	Address hold time	10	_	ns	
A0, C3	tAW8	Address setup time	30	_	ns	
WR, RD	tcyc	System cycle time	(1)	_	ns	
WK, KD	tcc	Strobe pulsewidth	220	_	ns	CL = 100
	tDS8	Data setup time	120	_	ns	pF
D0 to D7	tDH8	Data hold time	10	_	ns	
D0 10 D7	tACC8	RD access time	_	120	ns	
	ton8	Output disable time	10	50	ns	


Note: tcyc = 2tc + tcc + tcea + 75 > tacv + 245:

memory control/movement control commands:

= 4t_C + t_{CC} + 30: all other commands:

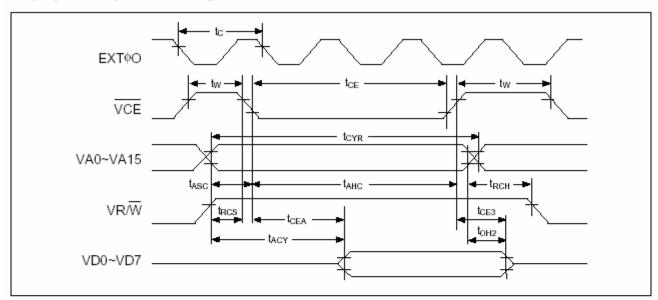
JHB560119A VER: 2.01 - 7 - Issue date: 2013/08/01

System bus READ/WRITE timing II (6800)

System bus READ/WRITE timing II (6800)

Ta = -20 to 75°C

Signal	Symbol Parameter	Rat	ting	Unit	Condition		
Signal	Symbol	Faranietei	min	max	Ollic	Condition	
A0, CS	tAH6	Address hold time	10	_	ns		
R/W	tAW6	Address setup time	30	_	ns		
1000	tCYC6	System cycle time	(1)	_	ns	CL=100pF+1TTL	
	tDS6	Data setup time	120	_	ns	pF	
D0 to D7	tDH6	Data hold time	10	_	ns	P'	
00 10 07	tACC6	Access time		120	ns		
	toH6	Output disable time	10	50	ns		
Е	tEW	Enable pulse width	220	_	ns		


Note: (1) t_{CYC6} = 2t_C + t_{EW} + t_{CEA} + 75 > t_{ACV} + 245: memory control/movement control commands: = 4t_C + t_{EW} + 30: all other commands:

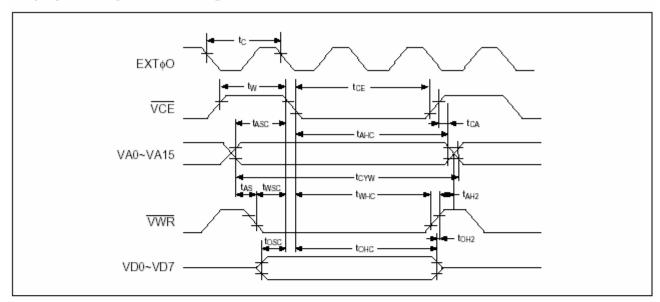
tCYC6 means a cycle of (CS.E) not E alone.

JHB560119A VER: 2.01 - 8 - Issue date: 2013/08/01

Display memory READ timing

Display memory READ timing

Ta = -20 to 75°C


Cianal	Cumbal	Davanastar	Rat	ting	11	Condition
Signal	Symbol	Parameter	min	max	Unit	Condition
EXT Ø0	tc	Clock cycle	100	_	ns	
VCE	tw	VCE high level pulse width	tc-40	_	ns	
VCE	tCE	VCE low level pulse width	2tc-40	_	ns	
VA0	tcyr	Read cycle time	(1)	_	ns	
to VA15	tasc	VCE address setup time (fall)	tc-45	_	ns	CL = 100PF
to VATS	tahc	VCE address hold time (fall)	2tc-40	_	ns	+1TTL
VR/W	trcs	VCE read cycle setup time (fall)	tc-45	_	ns	
V FV/VV	tRCH	VCE read cycle hold time (fall)	tc/2-35	_	ns	
	tACV	Address access time	_	(2)	ns	
VD0	tCEA	VCE access time	1	(3)	ns	
to VD7	toH2	Output data hold time	0	_	ns	
	tCE2	VCE data off time	0	_	ns	

Note: 1. t_{CYR} = 3t_C

2. t_{ACV} = 3t_C -120

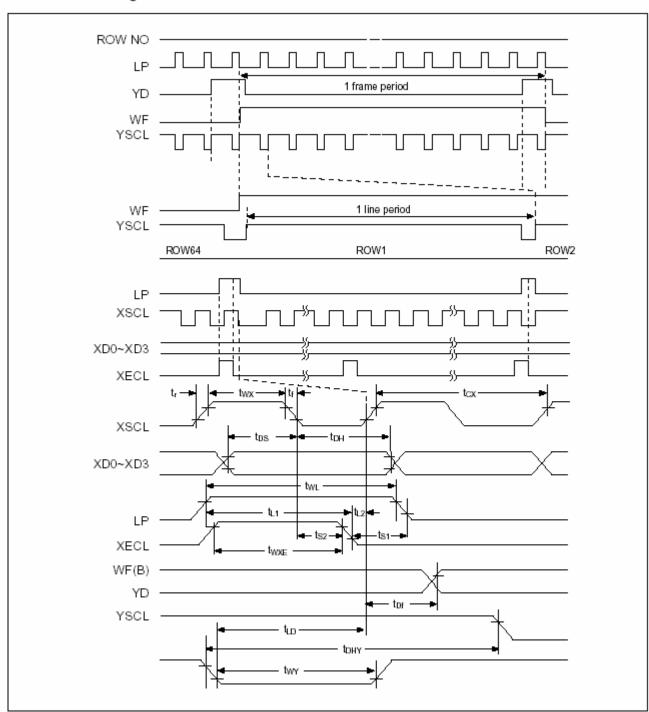
3. t_{CEA} = 2t_C -120

Display memory WRITE timing

Display memory WRITE timing

Ta = -20 to 75°C

Signal	Symbol Parameter	Rating		Unit	Condition		
Signai	Symbol	Parameter	min	max	Onit	Condition	
EXT Ø0	tc	Clock cycle	100	_	ns		
VCE	tw	VCE high level pulse width	tc-40	_	ns		
VCE	tce	VCE low level pulse width	2tc-40	_	ns		
	tcyw	Write cycle time	3tc	_	ns		
	tahc	VCE address hold time (fall)	2tc-40	_	ns		
VA0	tASC	VCE address setup time (fall)	tc-55	_	ns	CL = 100PF	
to VA15	tca	VCE address hold time (rise)	5	_	ns	+1TTL	
	tAS	VR/W address setup time (fall)	0	_	ns		
	tAH2	VR/₩ address hold time (rise)	15	_	ns		
VR/W	twsc	VCE write setup time (fall)	tc-55	_	ns		
VE/VV	twnc	VCE write hold time (fall)	tc2-40	-	ns		
V/D0	tDSC	∇CE data input setup time (fall)	twsc-10	_	ns		
VD0	tDHC	VCE data input hold time (fall)	2tc-30	_	ns		
to VD7	tDH2	VR/W data hold time (rise)	10*	50	ns		

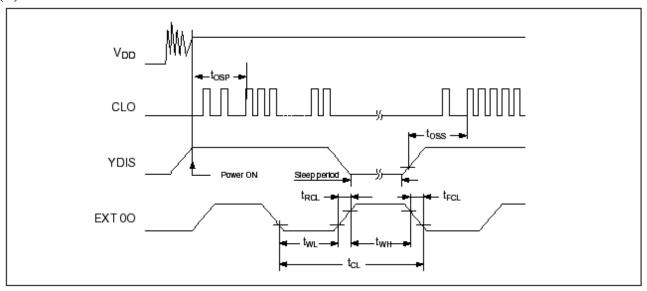

^{*} Lines VD0 to VD7 are latched.

JHB560119A VER: 2.01 - 10 - Issue date: 2013/08/01

(2.) DISPLAY CONTROL OUTPUT TIMING

LCD control timing

LCD control timing


JHB560119A VER: 2.01 - 11 - Issue date: 2013/08/01

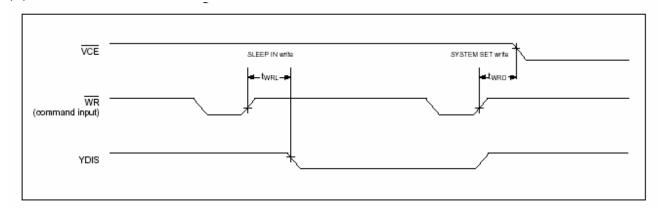
Ta = -20 to 75°C

Cian al	Sb.a.l	Danamatan	Rat	Rating		Condition
Signal	Symbol	Parameter	min	max	Unit	Condition
EXT Ø0	tc	Clock cycle	100	_	ns	
	tr	VCE high level pulse width	_	35	ns	
	tf	VCE low level pulse width	_	35	ns	
XSCL	tcx	Shift clock cycle time	4tc	_	ns	
ASCL	twx	XSCL clock pulse width	tCX2-80	_	ns	
XD0	tDH	X-data hold time	tCX2-100	_	ns	VDD = 5.0V
to XD3	tDS	X-data setup time	tcx2-100	_	ns	±10%
LP	tLS	Latch data setup time	tCX2-100	_	ns	CL=150F
	twL	LP signal pulse width	tcx4-80	_	ns	
	tL1	XECL setup time	tcx3-100	_	ns	
	tL2	XECL data hold time	tc-30	_	ns	
XECL	ts1	Enable setup time	tc-30	_	ns	
	ts1	Enable delay time	tc-30	_	ns	
	twxE	XECL clock pulse width	tcx3-80	_	ns	
WF	tDF	Time allowance of WF delay	_	100	ns	
YSCL	tLD	LP delay time against YSCL	tCX4-100	_	ns	
1002	twy	YSCL clock pulse width	tCX4-80	_	ns	
YD	tDHY	Y-data hold time	tcx6-100	_	ns	

(3). OSCILLATOR TIMING.

Oscillator timing

 $Ta = -20 \text{ to } 75^{\circ}\text{C}$


Signal	Symbol	Symbol Parameter	Rat	ing	Unit	Condition
Signal	Symbol	Falallietei	min	max		Condition
CLO	tosp	Time to stable CLO output after power ON	_	3	ms	RES = H
LCLO	toss	Time to stable CLO output after sleep OFF	_	1	ms	20 pF
	tRCL	External clock rise time	_	15	ns	
	tFCL	External clock fall time	_	15	ns	
EXTø0	twH	External clock high-pulse width	Note 1	Note 2	ns	
	twL	External clock low-pulse width	Note 1	Note 2	ns	
	tcL	External clock cycle	100	_	ns	

- 1. $(t_C t_{RCL} t_{FCL}) \times 475/1000 < t_{WH}, t_{WL}$
- 2. (t_C t_{RCL} t_{FCL}) X 525/1000 > t_{WH}, t_{WL}

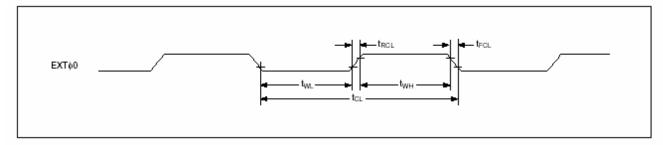
JHB560119A VER: 2.01 - 13 - Issue date: 2013/08/01

(4). SLEEP IN COMMAND TIMING.

SLEEP IN command timing

 $Ta = -20 \text{ to } 75^{\circ}\text{C}$

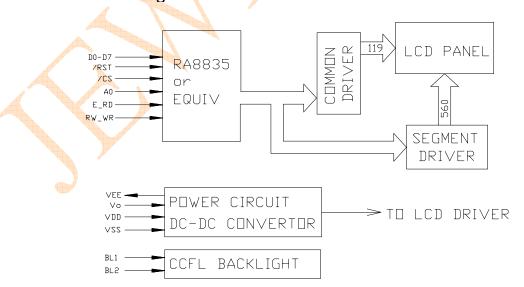
Signal	Symbol	Parameter	VDD = 4.5 to 5.5V		VDD = 2.7 to 4.5V		Unit	Condition
Signal			min	max	min	max	Onit	Condition
WR	twrp	VCE falling-edge delay time	See note 1	_	See note 1		ns	CL = 100
	twrL	YDIS falling-edge delay time	_	See note 2	_	See note 2	ns	pF


Notes:

- 1. tWRD = 18tC + tOSS + 40 (tOSS is the time delay from the sleep state until stable operation)
- 2. t_{WRL} = 36t_C × [TC/R] × [L/F] + 70

(5). EXTERNAL OSCILLATOR SIGNAL TIMING

External oscillator signal timing


 $Ta = -20 \text{ to } 75^{\circ}\text{C}$

Ciamal	Symbol	Parameter	VDD = 4.5 to 5.5V		VDD = 2.7 to 4.5V		I I mit	C
Signal			min	max	min	max	Unit	Condition
	tRCL	External clock rise time	_	15	_	15	ns	
	tFCL	External clock fall time	_	15	_	15	ns	
EXT $\phi 0$	twH	External clock HIGH-level pulsewidth	See note 1	See note 2	See note 1	See note 2	ns	
	twL	External clock LOW-level pulsewidth	See note 1	See note 2	See note 1	See note 2	ns	
	tc	External clock period	100	_	125	_	ns	

Notes:

7.3 APPLICATION OF LCM

■Circuit Block Diagram

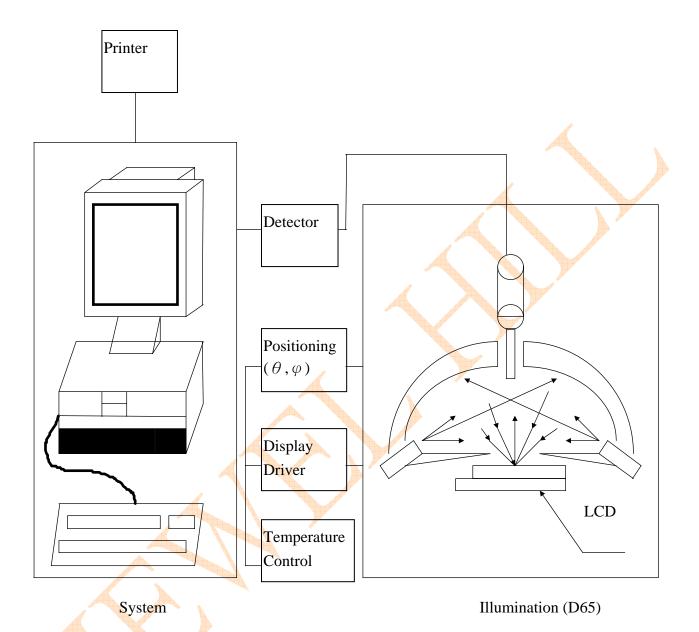
JHB560119A VER: 2.01 - 15 - Issue date: 2013/08/01

^{1.} $(tc - tRCL - tFCL) \times \frac{475}{1000} \le tWH$, tw.

^{2.} $(tc - trcc - trcc) \times \frac{525}{1000} > twH, twL$

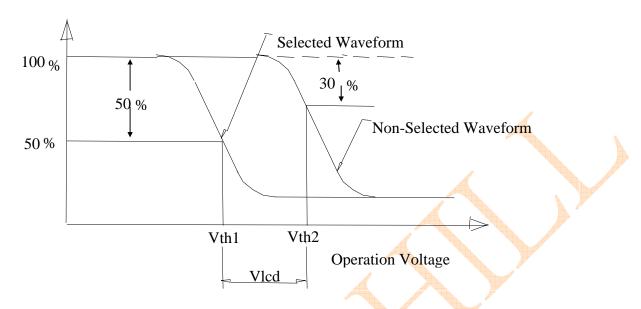
8. ELECTRO-OPTICAL CHARACTERISTICS

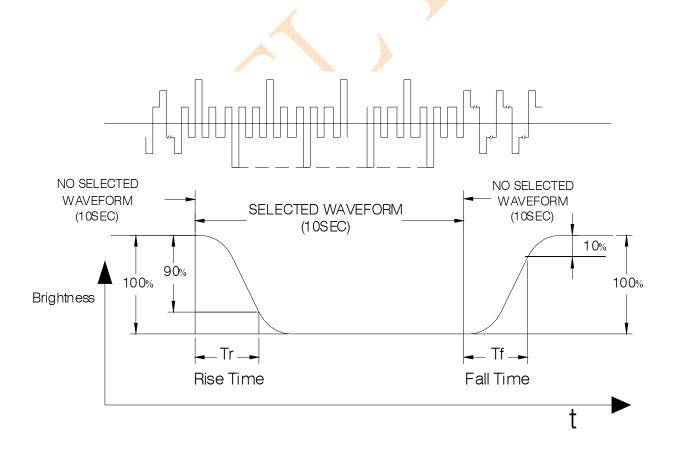
Item	Symbol	Condition	Temp	Min	Тур.	Max	Units	Note
			-20°C		15.5			
LCD driving	VLCD	$\theta = \phi = 0$	25℃	14.5	15.0	15.5	V	NOTE1
voltage			70°C		14.5	4		
	Rise Time (Tr)		0°C					
	Decay Time (Tf)	$\theta = \phi = 0$	0℃				msec	
	Rise Time (Tr)		25°C		225	340		
Response Time	Decay Time (Tf)		25°C		240	360		NOTE2
	Rise Time (Tr)		70 00					
	Decay Time (Tf)		50°C	/		-		
Contrast Ratio	Cr	$\theta = \phi = 0$	25℃	5	10			NOTE4


Viewing Angle	$\theta (\phi = 0^{\circ})$	ϕ = 90°	φ=180°	φ=270°	備註
Range	(6")	(3")	(12")	(9")	ν μι μ.τ.
θ (25°C)	40	35	25	35	Deg NOTE3
CR≥2					

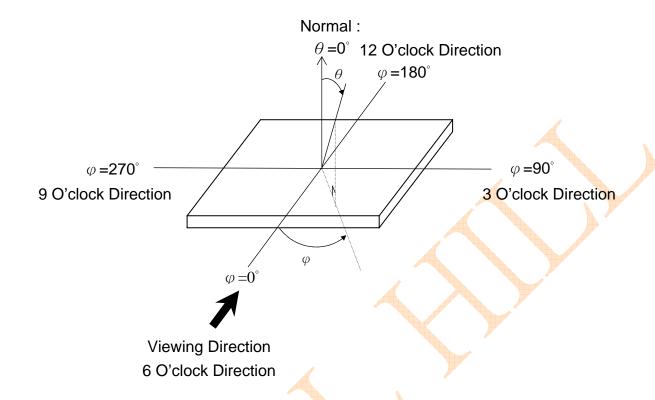
For panel only

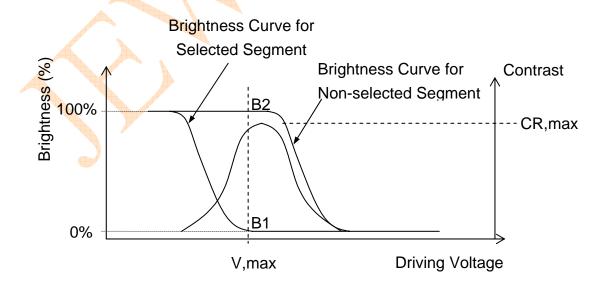
JHB560119A VER: 2.01 - 16 - Issue date: 2013/08/01


• Electro-Optical Characteristics Measuring Equipment(DMS501)


JHB560119A VER: 2.01 - 17 - Issue date: 2013/08/01

• Note 1. Definition of Driving Voltage(Vlcd):


• Note 2. Definition of Optical Response Time :


JHB560119A VER: 2.01 - 18 - Issue date: 2013/08/01

ullet Note 3. Definition of Viewing Angle $\, heta\,$ and $\,\phi\,$:

• Note 4. Definition of Contrast ratio(CR):

JHB560119A VER: 2.01 - 19 - Issue date: 2013/08/01

9. RELIABILITY

A) MTBF

The LCD module shall be designed to meet a minimum MTBF value of 30000 hours with normal. (25°C in the room without sunlight)

B) TESTS

NO.	ITEM	CONDITION	CRITERION
1	High Temperature Operating	70°C 120Hrs	 No Defect Of Operational Function In Room Temperature Are
2	Low Temperature Operating	-20°C 120Hrs	Allowable. • IDD of LCM in
3	High Temperature/ Humidity Non-Operating	60°C ,90%RH ,120 Hrs	Pre-and post-test should follow specification
4	High Temperature Non-Operating	80°C 120Hrs	
5	Low Temperature Non-Operating	-30°C 120Hrs	
6	Temperature Cycling Non-Operating	-20°C (30Min) ↔ 60°C (30Min) 10 CYCLES	

Notes: Judgments should be mode after exposure in room temperature for two hours.

10. PRECAUTIONS FOR USING LCD MODULES

a) HANDLING PRECAUTIONS

- (1) The display panel is made of glass. Do not subject it to a mechanical shock or impact by dropping it.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten a cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above mentioned may damage the polarizer.

Especially, do not use the following:

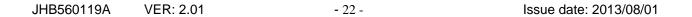
- Water
- Ketone
- Aromatic solvents
- (7) Extra care to minimize corrosion of the electrode. Water droplets, moisture condensation or a current flow in a high-humidity environment accelerates corrosion of the electrode.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD Module, make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD Module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling he LCD Module.
 - Tools required for assembling, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.

JHB560119A VER: 2.01 - 21 - Issue date: 2013/08/01

-The LCD Module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

B) STORAGE CONDITIONS

When storing, avoid the LCD module to be exposed to direct sunlight of fluorescent lamps. For stability, to keep it away form high temperature and high humidity environment (The best condition is : 23±5°C, 45±20%RH). ESD protection is necessary for long-term storage also.


C) OTHERS

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD Module have been operating for a long time showing the same display patterns the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be recovered by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD Module resulting from destruction caused by static electricity etc. exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

11. Using LCD modules

11.1 LIQUID CRYSTAL DISPLAY MODULES

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than a HB pencil lead (glass, tweezers, etc).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances, which will be damaged by chemicals such as acetone, toluene, toluene, ethanol and isopropyl alcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum ether. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degrade insulation between terminals (some cosmetics are determinate to the polarizers).
- (10)As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

11.2 INSTALLING LCD MODULE

Attend to the following items when installing the LCM.

- (1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.
- (2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

11.3 ELECTRO-STATIC DISCHARGE CONTROL

Since this module uses a CMOS LSI, the same careful attention should be paid for electrostatic discharge as for an ordinary CMOS IC.

JHB560119A VER: 2.01 - 23 - Issue date: 2013/08/01

- (1) Make certain that you are grounded when handing LCM.
- (2) Before removing LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible, make the electric potential of your work clothes and that of the workbenches to the ground potential.
- (6) To reduce the generation of electro-static discharge, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

11.4 PRECAUTIONS FOR OPERATION

- (1) Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.
- (2) Driving the LCD in the voltage above the limit will shorten its lifetime.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, this product must be used and stored within the specified condition of 23±5°C, 45±20%RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

11.5 SAFETY

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

JHB560119A VER: 2.01 - 24 - Issue date: 2013/08/01

12.REVISION HISTORY

Version	Revise record	Date
1.0	Original version	06-09-28
2.0	Change module "LCM Number System"	09-12-05
2.01	Perfect the VER2.0spec, Commany internal modify.	13-08-01
	√	
		Market State of the State of th

JHB560119A VER: 2.01 - 25 - Issue date: 2013/08/01

SAMPLE APPROVED REPORT

(样品确认单)

SAMPLE MODEL NO. (样品型号)	JHB560119A
SAMPLE SERIES NUMBER NO. (样品序号)	
SAMPLE QUANTITY (样品数量)	
TYPE /COLOR (类型/底色)	FSTN
VIEWING DIRECTION (视角)	6:00
DRIVING METHOD (驱动参数)	1/119Duty, 1/12Bias
LOGIC VOLTAGE (工作电压)	5.0V
LCD VOP (LCD 驱动电压)	15.0V
OPERATING TEMP. (操作温度)	-20 ~ +70℃
STORAGE TEMP. (储存温度)	-30 ~ +80℃
POLARIZER MODE (偏光片类型)	Transflective/Positive
CONTROLLER/DRIVER IC(控制/驱动 IC)	RA8835/EQUIV
BACKLIGHT COLOR/TYPE (背光源类型/颜色)	CCFL/White
DRAWING REV/NO./QUANTITY (图纸版本/数量)	
SPECIFICATION (规格书 份数)	
REMARKS:	
(备注)	
WRIT BY: DATE: APROV BY: _	DATE:
CUSTOMER'S APPROVAL (客户确认):	
1) FUNCTION (功能): □ OK □] N.G.
2) DRIVER CONDITION (驱动条件): □ OK	□ N.G.
3) DISPLAY MODE (显示模式): □ OK	□ N.G.
4) VIEWING ANGLE (视角): □ OK	□ N.G.
5) BACKLIGHT (背光源): □ OK	□ N.G.
6) DISPLAYING PATTERN (显示效果): □ (
CUSTOMER'S CONCLUSIONS (客户意见):	
CUSTOMER'S SIGNATURE(客户签名):	DATE (日期):