r AN1426
YL) APPLICATION NOTE

Design Guide
PSDsoft Express and PSD4135

CONTENTS
= (See next page)

January 2002 1/3

Contents

1 a1 0T U3 4o o I PR 2

2 L 01V o= T I @] o T=Tox 1o o U UPUURR 5

3 First Design Example—ISP Capable SYSIemoiiiiiiii e 5.

3.1 PSDsOft EXPress DeSIGN ENLIYoooiiiiiiiiiiiiiiie ettt s |

3.1.1 Invoke PSDsoft Express and Open a NEeW ProOjECT.........cuuuiiiiiiiiiiiiiie ittt
3.1.2 MCU aNd PSD SEIECHON.....ccceiiiiiiiiieee ittt srmme e e e
3.1.3 PN DEfiNItIONS ..oeiiiiiiiiiiiiie ittt
3.1.4 Chip SeleCt EQUALIONSuvuiiiiiie i e e e e e e e e e e e e
315 DESIGN FIOW ... et e e e e e e — i ————————aaaaaaoe
3.1.6 AdditioNal PSD SEHINGS ..vvvttuiiiiiiii ettt e e e e e e e e e e e e e eee s e s——
3.1.7 PSD-Specific C Code Generation
3.1.8 Merge MCU Firmware With PSDccoiiiiiiiiiiiiaiiiiiiee ettt e e e s smnes
3.1.9 Programming the PSD........uueeiiiiiiiiiieeiee ettt e e e e e e e e e e e e s e e s e s s s e b e e s e ————

4 ENhanced DesSigN EXAMPIE ..ottt e e e e e e e ae e e e e e e s e e s e e e mmm e n————e s

5 L@ Lo 11T o PRSP

6 = (=] (=] 1= SRR

Pagel

1 Introduction

FLASH PSD4X35 devices are members of a family of flash-based peripherals for use with
embedded microcontrollers (MCUs). These programmable system devices (PSDs) consist of
memory, logic, and /0. When coupled with a low-cost 16-bit MCU/MPU, the PSD forms a
complete embedded flash system that is 100% In-System Programmable (ISP) and In-
Application Programmable (IAP). There are many features in the PSD silicon and in the
PSDsoft development software that make using the PSD easy, regardless of how much
embedded design experience you have.

This document offers two designs using a PSD4135G2 and a Infineon C167CR

MCU. Note that a variety of 16-bit MCU/MPUs can be used in place of the Infineon part.
Although the specifics of this document are based on the C167CR, this document can be used as
a guide for other MCU/MPU applications. The first design is a simple system to get up and
running quickly for basic applications, or to check out your prototype C167CR hardware. The
second design illustrates the use of enhanced features of PSD In-System Programming (ISP) as
applied to the C167CR. You can start with the first design and migrate to the second as your
functional requirements grow. There are other members of the PSD4X35 family, including the
PSD4235G2. The PSD4235G2 has an on-chip Complex PLD (CPLD) that replaces the GPLD of
the PSD4135G2. See the PSD4X35 data sheets for details. This application note is applicable to
all PSD4X35 family members.

In-System Programming and In-Application re-Programming

Our industry uses the term In-System Programming (ISP) in a general sense. ISP is applicable to
programmable logic, as well as programmable Non-Volatile Memory (NVM). However, an
additional term will be used in this document: In-Application Programming (IAP). There are
subtle yet significant differences between ISP and IAP when microcontrollers are involved. ISP of
memory means that the MCU is off-line and not involved while memory is being programmed.
For IAP, the MCU participates in programming the memory, which is important for systems that
must be online while updating firmware. Often, ISP is well suited for manufacturing, while 1AP is
appropriate for field updates. PSD4X35 devices are capable of both ISP and IAP. Keep in mind
that IAP can only program the memory sections of the PSD and not the configuration and
programmable logic portions. With ISP, the entire PSD can be erased or programmed.

The IAP Problem

Typically, a host computer downloads firmware into an embedded flash system through a
communication channel that is controlled by the MCU. This channel is usually a UART, but any
communication channel that the C167CR supports will do. The C167CR must execute the code
that controls the IAP process from an independent memory array that is not being erased or
programmed. Otherwise, boot code and flash programming algorithms (IAP loader code) will be
unavailable to the C167CR. It is absolutely necessary to use an alternate memory array (an
independent memory that is not being programmed) to store the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM,
SRAM, FLASH, or EEPROM); each type has advantages and disadvantages. This alternate

Page 2

memory may reside external to the MCU or on-chip. A top-level view of an embedded IAP flash
system with external memory is shown in Figure 1.

Main Flash Memory
Host Communication 512 KBytes

Computer Channel 7l 16-bit

MCU/MPU

: PLD

A 4

Alternate Memory
for IAP Loader Code

System SRAM |
8 KBytes

System
/O

A 4

[

A
Y

>

Embedded System

Figure 1—Embedded flash system capable of IAP (5 devices)

A Common Solution

Without a PSD device, implementing IAP with the C167CR and most other 16-bit MCUs can be
difficult and time consuming. For IAP, some C167CR designers will use the fixed boot-loader
feature of the C167CR UART to download executable code into SRAM. Then C167CR
execution jumps to the SRAM to execute the remainder of the download process for
programming the main flash memory. This can be a cumbersome and error prone exercise using
re-locatable code in volatile memory, which is difficult to debug, vulnerable to power outages,
and not supported by all emulators. Additionally, this method restricts the designer to using a
UART to implement IAP.

A Better, Integrated Solution

Previously, IAP required MCU participation to exercise a communication channel to implement
a download to the main flash memory. However, the PSD4X35 offers an alternative to 1AP.
This method—ISP—uses a built-in IEEE-1149.1 JTAG interface, which requires no MCU
participation. This means that a completely blank PSD can be soldered into place, and the entire
chip can be programmed in-system usBif'sFlashLINK™ JTAG cable ($59 US) and

PSDsoft Express™ development software, available for free at shgam/psm

Figure 2 (next page) shows a two-chip solution usifgLASH PSD. This system has

ample main flash memory, a secondary flash memory, and SRAM. All three of these memories
can operate independently and concurrently; meaning the MCU can operate from one memory
while erasing/writing the other. The system has programmable logic, expanded I/O, and design
security. Since the PSD4X35 family is 100% ISP, a blank PSD4X35 can be connected to a
ROM-less MCU/MPU and initially programmed through the JTAG port. Therefore, no IAP
firmware needs to be written up front. Just plug in the FlashLIN&able and begin
programming memory, logic, and configuration. This powerful new feature of the PSD4X35
allows immediate development of application code in your lab, smart manufacturing techniques,
and easy field updates.

Page 3

Communication PSD4X35

Channel
Host > *512 KByte Main Flash [~JTAG
Computer 16-bit
< * 32 Kbyte Secondary
MCU/MPU Flash Svstem
: * 8 KByte SRAM 4

=1|[¢ . 110

* Programmable Logic

*1/0
Embedded System

Figure 2 — Embedded flash system capable of IAP (2 devices)

Let’s take a quick look inside the FLASRASD4X35, as shown in Figure 3. You can see

the three independent memory arrays, which are selected on a segment basis when the proper
MCU address is decoded in the Decode PLD. The page register participates in memory
decoding, which greatly simplifies paging. The MCU address, data, and control signals are
routed throughout the chip and can be used within the general-purpose PLD. The GPLD has 24
combinatorial logic outputs for external device chip-selects or general logic. There are 52 1/0
pins that can be individually configured for many different functions. A power management
scheme can selectively shut down parts of the chip and tailor special power saving mechanisms
on-the-fly. The security feature can block access to all areas of the chip from a device
programmer/reader. Finally, the self-contained JTAG-ISP controller allows programming of all
areas of the chip.

PSDA4135G2 MCU Address/Data/Control Bus
= 1 — <
© | Page 512 Kbyte <3 P N
) Re : @ a |[¢ »
= 9. Primary Flash [= 0
¢ > Z — 8 Segments Q
8 32 Kbyte , R
= " Decode b Second Flash (==~ | 2
PLD 4 Segments S e)
a (@]
g 8 Kbyte SRAM -
— -~
8 g © | Power . o o
S 5 Mgmt. GPI__D——24_ N 12
o ,| Combinatorial je=— S le)
Outputs o
iy JTAG = R
g £ Controller T | S
3 3 S [
(a) N x= 7 2 g
1/0 Port G 1/0 Port F 1/0 Port E

Figure 3—Top Level Block Diagram of PSD4X35

Page 4

2 Physical Connection

Connect your C167CR to the PSD4X35 as shown in Figure 4. An 80-pin package is shown in

the example. The same connections can be used for all of the members of the PSD4X35 family.
The JTAG programming channel, LCD module, latched address output, and MCU I/O signals

are all optional.

This example design is similar t8Ts DK4000-C167 Development kit, available for

purchase ($149 US) on the web: wvstcom/psm There are 11 unused PSD /O pins in

this example. Unused pins should be pulled to Vcc with a 100K resistor or tied to GND. See
Application Note 54 for more information on the JTAG port.

AD7-ADO
DATA BUS
U1 vz PSD4135G2-15U (80 pin TQFP) 2X16 LCD
MODULE
ADO_ 3 61 LCD_E
. s L s A
AD2 5 63
xx MHz AD2 AD3 6 | ADIO2 PB2 fe,
XTAL1 AD3 AD4 7 | ADIO3 PB3 65 T
AD4 ADS 10 | ADIO4 PB4 g5
— AD5 AD6 11 | ADIOS PB5 o7
AD6 AD7 5| ADIO6 PB6 g3
l—-—é——— XTAL2 AD7 ADIO?7 PB7 0
A8 AD8 13 1 ADIO8 PFO [or - RS
AD9 14 3 AL\ |
A9 ADI0 15 | ADIO9 pr1 |32 >
A10 ADI1 16 | ADIO10 PF2 I3, A3
All ADL> 17 | ADIO11 PF3 3 AL
Al12 ADI3 18 | ADIO12 PF4 I3 A5
A13 AD14 19 | ADIO13 PF5 37 A6
Al4 £ ADIO14 PF6 5
UART RXD A15 ADLS 20 3 pio1s pr7 |38 AL LA_OulS- 0]
PORT TXD >
A6 4 A8
A16 AT7 4% PCO PGO | g; A9
A17 ATE a3] PCL PG |53 A0
Al8 PC2 PG2 54
AI9 44 24 ALL
A19 Ao0 45 | PC3 PG3 5z A
A20 Aol a6 | PC4 PG4 56 AL3
A21 o> a7 | PC5 PG5 [57— Al4"
A22 A>3 g | PC6 PG6 [55 A5
A23 PC7 PG7 [
ALE
ALE 7980 pao 151 MCUIO0
80 52 MCUIOL
E—Po1 PAL 1753 MCUIO2
O——5|Pp2 PA2 154 MCUIO3
o—2 D3 PA3 |2 MCU 1/0
55 MCUIO4
Pad I's6 MCUIO5 SIGNALS
[WR' MCUI
WR/WRL P— _47 CNTLO PA6 27 CUI06
= RD\ 50 58 MCUIO7
_RD BAEL 49 | CNTLL PA7
WRH/BHE CNTL2
71 ™S
EE;’ 72 TCK
PE2 ;4 %‘O JTAG-ISP
- PPy PE3 =& TSTAT Connector
p—————e—¢ =
RSTIN RESET EEg 76 TERR\
xX e nime
PSD4X5 PE7
> RESET\ RESET\

Figure 4 — Physical Connections, C167CR and PSD4X35

3 First Design Example—ISP Capable System

The first design example is only capable of ISP and not IAP. It outlines the steps required to get
a flash C167CR system up and running quickly. Basically, the PSD’s secondary flash will be

Page 5

programmed with the JTAG-ISP channel with code that will execute basic system tests and
display some messages on the LCD. The second design example takes advantage of concurrent
memory operation and IAP, using the main flash in addition to the secondary flash. You should
become familiar with this first design before using the second.

A PSD4135G2 was used for this example. However, other members of the Fiak&iky
may be used instead, with minor changes to the sample design. See the PSD4X35 series data
sheets for a comparison of family members.

For this simple design, we used a PSD4135G2 with the following memories:
« 512 Kbytes main flash memory, broken into eight 64 Kbyte segments dengted.fs
+ 32 Kbytes secondary flash, broken into four 8 Kbyte segments denoted jgshogpt
* 8 Kbyte SRAM (rs0)
» 256-byte PSD4135 configuration register (csiop).
Note: the PSD memory segments are defined using PSDsoft Express™.

We’'ll use the PSD’s secondary flash memory to hold the boot code, C167 interrupt vectors, and
common firmware functions. For this example, we’ll execute from the PSD’s secondary flash
memory only and not use the PSD’s main flash memory.

Let’'s examine the sample memory map in Figure 5, below.

OxFFFF — OXFFFF

C167 registers

0xF000

0xC000 Unmapped
OXE800

XRAM
0xE000
0xDF00
O0xDEOO

PSD Control reg (csiop)
LCD Chip Sel. (Icd_e)

0x8000 Unmapped

Unmapped
0xDO000

PSD SRAM

(rsO)
0x4000 4K x 16
PSD Secondary 0xC000
flash for boot
code Notes:
(csboot0-1) 1. Only C167 page 0 is used for this
8K x 16 demonstration(no segmentation, 64k max)
0x0 2. Syscon and buscon0 used for memory

access except for csiop and Ice_e,
which use buscon1.

Boot Configuration

Figure 5—Memory Map: Simple C167CR/PSD4X35 Design

Page 6

Note the following about the sample memory map shown in Figure 5:
» This simple example only requires 16 address bits
* Only half (16 Kbytes) of the secondary flash is used
* The middle 32 Kbytes of the memory map is unused
* The upper 16 Kbytes is allocated for the PSD SRAM (rs0), the PSD control register
(csiop), the LCD module, and the C167CR registers and RAM.

The boot memory holds the following information:
* C167CR reset vector and initialization routines
* C167CR interrupt vectors and service routines
* /O management.

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply edit the
chip select equations for the desired segments using the Design Assistant.

3.1 PSDsoft Express Design Entry

Highlights of design entry will be given here. This section is meant to show you just the
essentials to get you going. Here are the steps:

3.1.1 Invoke PSDsoft Express and Open a New Project

e Start PSDsoft Express.

» Create a new project.

» Select your project folder and name the project (in this example, name the project
“EasyC167” in the folder PSDexpress\my_project).

» Selectan MCU. In this example, we’re using an Infineon C167CR.

» Select/WR, /RD, /BHE for the control signals.

» Select the PSD4000 series for the PSD Family.

» Select a PSD4135G2 and use the 80-pin TQFP package (U package).

» Based on the above selections, the Bus Width will be set to 16-bits automatically.

» Select the Bus Mode to be multiplexed and the ALE/AS level will automatically be set to
high.

Now you have your project established, based on a PSD4135G2 and a C167CR. However, there
are many other MCU/MPUs you could have chosen in place of the C167CR and still have use of
this document. The main reason for selecting the C167CR is that it is used in our DK4000
development kit.

Page 7

3.1.2 MCU and PSD Selection
This is what the screen should look like after you’ve made the selections:

MCU and PSD Selection %]
Step 17 Seled Micmcsstnller [BOL1) Siep I Spodly the PSD device
'hlanv-HI?l::hm-:-!::ﬂl Ilila:lll'ﬂ'l.--ll“;ll:Ili Lss pachict paisoion wawd
ool i oy et 1 L sl i ikl P |
[y -l —

FAO Fasty [CERTECOR - |
N — I""" j Pl Mk [pcpoun w500 =
T —t g -
b JOETIRER LT e
Dol Sogmaic [AD, BHE S - A5Gy

Seep T MCU Parmmctein
S pinri m pricule conbgursion bor Hhe W OLLTS] miscnonnechon

[l ‘=i e =
Bus ke {bhudiipdessd Bust =
ALE 425 Bommimett [Hioh |
[iaza i ia srw 1mschon sbrss
- A BHE :
-I'l'.l.ln'.i-H:'nh _I
=
[o] cowe |

Click OK. Now you will be asked if you want to use the Design Assistant or a pre-defined
template. Choose Design Assistant. This exercise in the Design Assistant will help you become
familiar with the design flow. In the future, you may choose to use a template, which will make
many of the choices for you, based on your selection of MCU and PSD.

3.1.3 Pin Definitions

You are immediately taken to the “Pin Definitions” screen, which allows you to define each PSD

pin function on a point and click basis. Notice that some of the PSD pins that connect to the
C167CR are already defined for you because their function is set. You need only define the
remaining pins. We want to define the remaining pins based on the functional requirements
presented in the schematic. Define the pins as follows:

Set all the pins of Port A to MCU I/O mode and label them “MCUIOQ” to
“MCUIO7.”

Define pb0 and pbl as external active-high chip selects. Name pb0 “Ilcd_e” and pbl
“rd_wr.”

Set all the pins on Port C to Address Input and give them the label “al6” to “a23.”

The Port E pins pe0 to pe5 should be assigned to dedicated JTAG signals.

Define the Port F and Port G pins to be Latched Address Out and give them the labels
“LA_out0” to “LA_outl5”, where LA _outO is assigned to pfO and LA_out15 to pg7.

Page 8

Your Pin Definition screen should now look like the screen capture below:

Pin Definitions =] S
Define each pin by repeating the following steps: — Step 2: Pin Function —
(standard pins already defined) Define the pin function, then click the
— Step 1: Select a pin on the chip diagram below. — Add/Update button. Return to step 1
repeat for next pin.
| al [~ =diod pcl | a6 | Mame:
| al [adio pel | al? |
ac i adio? pc2 ald — Fin Function
ald i~ adiol pe3 ald Other
| a4 || adiod ped || a20 | ¢ MCU /O mode
55 (" adiod pes € o ¢ |Latched address out
afk " adich pch a2?
| a7 | adio? pe? | a?3 |
| af || adicd pd0 | ale | Update | Delste
| a4 [adicd pal || |
alld adiall pd2 — Step 3 (Final Step) —
all " adioll pd3 Click Next>> after all pins are defined.
| al? | adinot2 pel || f— | Click iew at anytime to check progress.
=17 ~ adioll pel ok Click Daone to sawve the update and close.
ald adiald peé i N | Iext>> | Cancel | Done |
alh		adicis ped tdo		
it [cntin ped	tstat			
_hhe		cntl2 peb		_terr
_rd i~ cnill peb				
_reset " _reset pel				
MCUIOD		pao pill ¢		LA _outd
RCUION " pal pfl © LA_out]				
RCUIO2 " paZ pfe LA_out2				
MCUIO3		« pas pid	LA_out3	
MICUI04 ~ pad ptd LA_outd				
RSO " pah pfh LA_outh				
MCUIOR		pat pi6 ¢		LA outh
MCUIO?		pa? pi?	LA_out?	
lcd_e (Eali=lsl! pgl	LA_outd			
rol_wit " phl pgl L4, outd				
" ph2 pge LA _ouill				
	~ b3 pad		LA _outl]	
" phkd pgd LA _outl?				
i~ phh pogh LA _Dutl3				
	phé pob	LA_outl4		
	pb? po? &	LA_outl5		

You can view a summary of your pin definitions by clicking theew button. When you are
satisfied that you have defined all the pins correctly, click Mext>> button to be taken to the
“Page Register Definition” screen. Since we are not using paging in this example, you can
immediately click on the “Chip Select Equations” tab. It is on this screen that you define your
memory map for internal and external chip-select equations.

Page 9

3.1.4 Chip Select Equations
Your screen should be similar to the capture below:

Design Assistant = B
Pange Register Definiion Chip Select Equations I

Far each chip select, select a page number if memary paging iz used, the active address range, and any Dauble click any of the signal names
additional zignal gualifiers. Ensure PSD page register bits have been defined if uzed here, below to append the signal name to

Signal qualifiers are listed in bow onright. Logically AMD qualifiers within zame line using "% zpmbol, Create tchjsg:gi’:?olfa?:ghers saguize iz
logic OR by uzing nest ine below, Use 1" symbol for logical HOT. .

Lizt of chip selectz — Enter spstem memory information Eligible zignal qualifiers
e | o= Hex Start Hex End Logical AMD of Signal Qualifiers — | la0 _bhe Grd J
csiop MHumber Address Address [rnore than one O] al _d

f=0 az _reset

fz1 |_:| & | & | & | a3 led_e

fz2 : . ad rd_wr

f=3 Logical OR with nest statement: a5 alg

fsd ah al?

fs5 = | s | 5 | a7 al8

fs6 ad a19

fs? Logical OR with nexst statement: ad 520

cshoatd all azl

czhoot] =i | | | all a2z

czhoot? =ik & & alz a23

czhootd z — | |13 ale

led & Rezultant equation 214 s

1d_wr /¢ Internal chip select for 8K, byte SRAk J alh pdn

/¢ [1FFF hex locations, max] i Yoo

T A r

L F'rev| Hesemll‘ Wi | Done | Cancel‘ Shnqu|

Let’s start by defining the chip-select for the internal SRAM (rs0). Looking at the memory map

of Figure 5, we see that 4 Kwords (8 Kbytes) of address space needs to be allocated to the PSD’s
internal SRAM. So, we enter the Hex Start Address of CO00 and the Hex End Address of CFFF.
Here is a snapshot of what your screen should look like after you have entered the equations:

Lizt of chip zelects — Enter syztemn memany information Eligible zignal qualifiers
Page Hex Start Hex End Logical AND of Signal Qualifiers — | lan bhe Gnd J
cHOp Mumber Addrezs Addrezs [more than one OF] al :rd
f=0 a2 _reset
o1 =R Y S T
5] A o

Now, click on csiop and enter the equations according to Figure 5. Note: the csiop is X 8 access.

Lizt of chip zelects — Enter system memory information Eligible signal qualifiers

rll Page Hex Start Hex End Logical &MD of Signal Qualifiers J all bhe Gnd J
Mumber &ddress Address [mare than ane OF) al i

fz0 a2 _reset

fz1 |_:| & |DFDD % |OFFF & | a3 led e

fa ad rel war

Page 10

The boot code is stored in the secondary flash in the lower 8 Kwords of address space from Oh to
3FFFh in csboot0 and csbootl. The equation for csbootO should be entered as follows:

Lizt of chip zelects — Enter system memary information — Eligible zignal qualifiers
rz0 Page Hes Skart Hex End Logical ARD aof Signal Qualifiers — | [aD bhe Gnd ;I
Ciop MHurmber Address Address [miare than one OF] al i
fz0 = aZ :reset
fs1 |_j g |° s [FFF g | a3 Ied e
fs2 : : ad rel_wir
f23 Logical OR with next statement: a5 alE
f=d ak al?
fsa j | s | | ar a18
f=f af al9
f=7 Logical OR with nest statement: as &20

[a0 aZl

Enter the information for csbootl in a similar fashion where csbootl1 will be valid from 2000h to
3FFFh.

Enter the external chip-select equation for the LCD module (X 8 access):

Lizt of chip zelects — Enter system memony information r— Eligible signal qualifiers
rzll Page Hex Start Hex End Logical AMD of Signal Qualifiers ﬂ all bhe Gnd ;I
cHop Mumber Addrezs Addreszs [more than one OK) al “id
fz0 = az iesel
fo7 I_ZI " IDEIZID s [DEFF g [= i
fz2 _ _ ad d_wr
fa3 Logical OR with nest statement: A alg
fzd - ak aly
fs5 =4 [pEmn g oEFF [7 e
fzf : af ald
fe7 Lagical OF with next statement: ad a20
czhootD all a2l
czhoot] =i I I I all az?
csboot2 & & & .| | |a12 ad3d
cshootd — 2 = | [al13 ale
! Fiezultant equation 214 i e
£/ External chip zelect or general PLD combinatorial logic output j al5 pdn
led_e = [[address »= "hDEQD) & [address <= "hDEFF) & [1_wr)) T Yoo
[[address »= "hDEOQ] & [address <= "hDEFF) & [1_rd]]: _ILI ¥
| N 5 , kX H

<4 Prevl Fleset.-’-'l.lll Wiew | Done I I:anc:ell Shnqul

Note that since the LCD is external, we must now include the _wr and _rd control signals in the

chip select equation, where this was taken care of automatically for internal chip-selects. Since
the _wr and _rd signals are active-low, the ! symbol is required. Also notice how, after you have

finished typing in the equation for the chip select, the end result appears at the bottom of the
screen if you select that signal again.

Lastly, click on the rd_wr signal and type “Gnd” in the last column to keep the signal low at all
times. If the desire was to keep the signal high at all times, you would have typed Vcc instead.

You can click theView button at any time to see a Design Assistant summary. Once you are
satisfied with the results, click thBone button. ClickingDone starts a preliminary resource
check of the information you have entered to ensure that there are no overlapping memory
segments, among other tests. Any errors encountered will be indicated.

Page 11

3.1.5 Design Flow

Once you have clicked obone, you are taken to the “Design Flow” window. Use this window

as your main navigational tool for PSDsoft Express™. Clicking on individual boxes within the
flow diagram will invoke a process. A box shadowed in red identifies the next process that
needs to be completed. The first three steps have been completed to this point. If you invoke a
process that invalidates other processes downstream, the gray boxes indicate which processes
must be invoked again and the red shadow indicates which process to invoke first.

The design flow should be in the following state:

Design Flow

Specify
Project

Define PSD
and MCU

Define PSD

Fin Functions = Mext Action

Additional Generate C© Code
PSD Settings Specific ta PSD
! o

hferge MCU & Ediitar, Compiler o our Application
Firmware with PSD Linket, Debugyer C Code or Azzembly

Device Programming

Waterscale
mﬂgﬁ;};& Conwertional 3rd Party
Programmers Programmers

3.1.6 Additional PSD Settings

Click on the “Additional PSD Settings” box. This is where you may choose to set the security
bit to prevent a device programmer from examining or copying the contents of the PSD. You
can also click through the other sheets on this screen to set the JTAG USERCODE value and set
sector protection on PSD Non-Volatile memory segments as desired.

MCU Firrrware

3.1.7 PSD-Specific C Code Generation

You can take advantage of the provided low-level C code drivers for accessing memory elements
within the PSD by clicking on the “Generate C Code Specific to PSD” box in the design flow
window. ANSI C code functions and headers are generated for you to paste into your C
compiler environment. Simply tailor the code to meet your system needs and compile. C code
generation can be performed anytime after a project is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the
header files and the C source file to be written, and name the C source file. Select the categories

Page 12

of functions that you would like to include, then cli€kenerate Three files will be written to
your specified folder(s):
» <your_specified_name>.cANSI-C source for all of the selected functions

* psd4135g2.00 ANSI-C header file to define particular PSD registers
 map4135g2.0 ANSI-C header file to define locations of system memory

elements (Main/Secondary Flash and PSD registers).

Notice that you do not have a choice to rename the two generated header files. This is because
those header files are specified by name within the generated C function source file. If you edit
the names of the generated header files, be sure to edit the generated C function source file to
match the new header file names.

The three generated files may now be tailored and integrated into your compiler environment.
The file psd4135g2.h contains a #define statement for each individual C function within the
<your_specified_name>.c file. Edit psd4135g2.h and simply remove the comment delimiters (//)
from the #define statement for each generated C function that you would like to be compiled
with the rest of your C source code.

There are also coded examples available. Click on the “Coded Examples” tab at the top of the C
Code Generation screen. This sheet contains several examples that you may use as a basis for
building your own C code application. These are complete projects (main, functions, and
headers) targeted toward various MCUs. You may copy these files to some folder to browse
them for ideas, or cut and paste sections from the examples into your own MCU cross-compiler
environment.

3.1.8 Merge MCU Firmware with PSD

Now that all PSD pins and internal configuration settings have been defined, PSDsoft Express™ will
create a single object file (.obj) that is a composite of your firmware and the PSD configuration.
FlashLINK™, PSDpro, and third party programmers can use this object file to program a PSD
device. PSDsoft Express will create a file called “EasyC167.0bj” for this design example.

During this merging process, PSDsoft Express will input firmware files from your
compiler/linker in S-record or Intel HEX format. It will map the content of these files into the
physical memory segments of the PSD according to the choices you made in the “Chip Select
Equations” screen. This mapping process translates the absolute system addresses inside
firmware files into physical internal PSD addresses that are used by a programmer to program
the PSD. This address translation process is transparent. All you need to do is type (or browse)
the file names that were generated from your linker into the appropriate boxes and PSDsoft
Express does the rest. You can specify a single file name for more than one PSD chip-select, or
a different file name for each PSD chip-select. It depends on how your linker has created your
firmware file(s). For each PSD chip-select in which you have specified a firmware file name,
PSDsoft Express will extract firmware from that file only between the specified start and stop
addresses, and ignore firmware outside of the start and stop addresses.

Page 13

Click on “Merge MCU Firmware” in the main flow diagram. First you will notice that PSDsoft
Express™ will “Fit” your PSD configuration to the silicon architecture of the PSD. After the
fitting process is complete, the “Merging of MCU Firmware with PSD” screen appears.

In the left column are individual PSD memory segment chip-selects (FSO, FS1, and so on). The
next column shows the logic equations for selection of each internal PSD memory segment.
These equations reflect the choices that you made while defining PSD internal chip-select
equations in an earlier step. In the middle of the screen are hexadecimal start and stop addresses
that PSDsoft Express has filled in for you based on your chip-select equations. On the right are
fields to enter (browse) the MCU firmware files.

Select “Intel Hex Record” for “Record Type” as shown. Scroll all the way down to the bottom to
get to the secondary flash memory. Now, click on the Browse... button for csbootO and csbootl
and select the firmware file, PSDexpress\examples\Tim.h86. Once you have filled in the file
names, your screen should look like the one below:

Merging of MCU Firmware with PSD |

—Step 1: MCU firmware placement
Specify name of MCU fimware file far each memary select. Edit/Add file start and file stop addresses 0 nfo |
as needed.

M ermnomn . File File:

Select temony Select Equations Address Address File Mame

M ame Start Stop Scroll to the
Ipdn & la15 & lald & lal3 I tom tt

CSBOOTO | 41223 & 1222 & 1a21 &1a20 | [0 [1FFF [D-\psdexpress\ EXAMPL | Browse.. | bottom to get to
%1a19&1a1B & 1517 & the secondary
Ipdn % 1a15 & 1314 & a13 & flash.

CSBOOTT |1a23 & la22 & 1a21 & 1220 (|2000 IFFF D:psdexprassiEXAMPL Browse...
1319 & lal8 & 1a17 & lal6: I I I —I

CSBOOT2 | | | Browse. . |
CSEOOT3 | | | Brows=.. { |
o
Recaord Type
& |ntel Hex Fecord Matorola 5-Record

—Step 2: Merge PSD configuration and MCU firmware
Click OF. to merge bMCU firmware with PSD

ik

Lancel

This specification places firmware in PSD secondary flash memory segments csboot0 and
csbootl. PSDsoft Express will extract any firmware that lies inside the file Tim.h86 between
MCU addresses 0000 and 3FFF and place it in PSD memory segment csboot0-10ICItok
generate the composite object file, EasyC167.0bj.

Note: the file Tim.h86 will run on the DK4000-C167 development board f®mand

display some messages on the LCD screen to indicate a successful ISP session. For your own
prototype project, create a simple firmware file that configures your system hardware and
performs rudimentary tasks to check out your new hardware. After your new hardware is proven,
you can add more code for advanced tasks, including IAP of the PSD flash memories.

Page 14

3.1.9 Programming the PSD

The EasyC167.0bj file can be programmed into the PSD by one of three ways:
e TheST FlashLINK™ JTAG cable, which connects to the PC parallel port.
 TheSTPSDpro device programmer, which also uses the PC parallel port.
» Third-party programmers, from Stag, Needhams, and others. See our website at

www.stcom for compatible third-party programmers.

3.1.9.1 Programming with FlashLINK™

Connect the FlashLINK' JTAG-ISP cable to your PC parallel port. Click the “JTAG-ISP” box
in the design flow window. You will be asked how many devices are in your JTAG chain. For

this example, select “Only One.” You would only select “More than

One” if you had more than

one ISP device in your JTAG chain. After you make your selection and cli€kegdyou should

see the following screen:

JTAG-ISP Operations - Single Device ||
~Step 1: Select Programming file and PSD
Select folder and programming file: Select device:
ID:\psdexpress\my_proiecl\Easy[l'l B7.obj Browse... | |P5D41 IRG2 j
—Step 2: Specify JTAG-ISP operation and conditions
Select operation: Select PSD region: Select # of JTAG pins to use: Other conditions:
IF'rogram j I."-‘l.ll j E pins LI F'rnperties...l
Click. here to perform specified JTAG-ISP operation: Erecute |
~Step 3: Save or retrieve JTAG-ISP setup
Specify folder and filename to save the setup of this JTAG-ISP session or retrieve a previous session. Save |
Select folder and file: Browsze... |
™ Log Mode - Click box ta record zession infamation in the log fil = plg.
Hw Setup | Reset Targetl Cloze |

This window enables you to perform JTAG-ISP operations and also offers a loop back test for
your FlashLINK™ cable. If this is your first use, test your FlashLINKcable and PC parallel
port by clicking theHW Setup button, then click.oopTestbutton and follow the directions.

Now let’s define our JTAG-ISP environment. PSDsoft Express should have filled in the folder
and filename of the object file to program, the PSD device, and the JTAG-ISP operation, as
shown in the screen above. For this design example, we have chosen to use all six JTAG-ISP
pins (instead of four). Be sure to indicate “6 pins” as shown above to achieve minimum JTAG-
ISP programming times. (Refer to Application Note 54 for details on six pins versus four.)

To begin programming, connect the JTAG cable to the target system, power-up the target
system, and clickExecute on the JTAG screen. The Log window at the bottom of the JTAG

screen shows the progress.

Page 15

There are optional choices available when #rperties... button is clicked. One choice
includes setting the state of all non-JTAG PSD I/O pins during JTAG-ISP operations (make them
inputs or outputs). The default state of all non-JTAG PSD 1/O pins is “input”, which is fine for
this design example. The other choice allows you to specify a USERCODE value to compare
before any JTAG-ISP operation starts. This is typically used in a manufacturing environment.
(See the on-screen description for details.)

After JTAG-ISP operations have completed, you can save the JTAG setup for this programming
session to a file for later use. To do so, click on B&vebutton in “Step 3”. To restore the
setup of a previous session, click tAeowse... button in “Step 3.

3.1.9.2 Programming with PSDpro

Connect the PSDpro device programmer to your PC parallel port per the installation instructions.
Click on the ‘ST Conventional Programmers” box in the design flow window. You will
see this:

Conventional Programming a1l ﬁthE.Obj - No Hardware
=|E| #|o|5 % ofe | Elwlw] @l 0 (<o)]
PSD4135G2 | Displayed region: Flash Boot [30000 - 87FFF] | C5B0OOTO: 80000 alb6xbhe.obj

Direct Address Hexadecimal display of programming data file ASCIl Representation
80000 02| (09 |37 |7F |cs |7E oo |12 o8 [8F |22 o2 |os |68 |20 Jeo =] -.v..-...iviB
go010 20 |20 |57 |53 |49 |20 |49 |6E |63 |2E |20 |20 (20 |20 (0D |20 [— W3I Ine.
80020 44 |4B [39 |30 |30 |20 |45 |76 |61 |6C |20 |42 |64 |20 [20 |0O DES00 Eval Bd
80030 4E |6F |20 |6E |65 |65 |64 |20 |74 |6F |20 |66 |65 |61 [72 |20 No need to fear
80040 00 |20 |20 |20 |45 |61 |#3 |79 |46 |AC |41 |53 [48 |20 [20 |20 . EssyFLASH
80050 20 (00 |20 |20 |69 |73 |20 |68 |65 |72 |65 |20 [21 |21 [21 |21 - is here !!!!
80060 20 |20 |00 |20 |20 |20 |20 |55 |61 |72 |74 |20 |64 |65 |6D |6F . Tart dewmo
80070 20 |31 |20 |00 |20 |20 |20 |20 |20 |20 |20 |20 [20 |20 [20 |20 1.
80080 20 |20 |20 |20 |0D |43 |6F |6GE |67 |72 |61 |74 [75 |6C |61 |74 .Congratulat
80030 69 |6F |6E |73 |21 |0D |20 |20 |49 |53 |50 |20 |44 |6F |77 |GE ions!. ISP Down
80040 6C |6F |61 |64 |20 |20 |00 |20 |77 |61 |73 |20 |73 |75 |63 |63 | . loasd . was succ

If this is the first use of the PSDpro, you'll need to designate the PSDpro as the device connected to
your parallel port. To do this, click th&ET H icon button at the top of the “Conventional
Programming” screen and choose the PSDpro. Then click oH fREST icon to perform a test of

the PSDpro and the PC parallel port. After testing, place a PSD4135G2 into the socket of the
PSDpro and click on th€rogram icon. (The EasyC167.0bj file is automatically loaded when this
process is invoked.) The messaging of PSDsoft will inform you when programming is complete.

Note: this window is also helpful even if you do not have a PSDpro device programmer. Use this
window to see where the “Merge MCU Firmware” utility has placed C167CR firmware within
physical memory of the PSD. For this design example, click on the secondary PSD flash memory
icon “Fb” in the tool bar to see the C167CR vector at absolute MCU addresses 0001h and 0002h,
which translates to direct physical PSD addresses 80001h and 80002h, respectively. To see how

Page 16

all of your C167CR absolute addresses translated into direct physical PSD memory addresses,
view the report that PSDsoft generates under “Reports” from the main toolbar, then select
“Address Translation Report.” Within the report, the Start and Stop addresses are the absolute
MCU system addresses that you have specified. The addresses shown in square brackets are the
direct physical addresses used by a device programmer to access the memory elements of the
PSD in a linear fashion (a special device programming mode that the MCU cannot access).

4 Enhanced Design Example

This section should be available in June, 2000. It will detail how to use the PSDs memories
concurrently to perform IAP. If you have any questions on this in the mean time, contact an
applications engineer aps.psdastcom

5 Conclusion

These examples are just two of an endless number of ways to configure the R2{SIor

your system. Concurrent memories with a built-in programmable decoder at the segment level offer
excellent flexibility. The ability to expand your system does not require any physical connection
changes, as everything is configured internal to the PSD. And finally, the JTAG channel can be used
for ISP anytime, and anywhere, with no participation from the MCU. All of these features are
crosschecked under the PSDsoft Express™ development environment to minimize your effort to
design a flash-based system capable of ISP and IAP.

6 References
1) PSD4000 Family Data Sheet

2) Application Note 54— JTAG Information—PSD8XMF detailed use of the JTAG channel
3) DK4000 User Manual-~or information on the C167CR/PSD4135G2 development kit.

Page 17

AN1426 - APPLICATION NOTE

Table 1. Document Revision History

Date Revw. Description of Revision
Apr-2000 1.0 | Document written (AN069) in the WSI format
03-Jan-2002 | 1.1 |Front page, and back two pages, in ST format, added to the PDF file

2/3

4

AN1426 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:
apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
www.st.com

1573 313

