	cription	
	ures	
	Configuration	
	Description	
	cial Function Register (SFR)	
Tunc	ction Description	
1.	1.1. Embedded Flash	
	1.2. IO Pads	
	1.3. Instruction timing Selection	
	1.4. RESET	
	1.4.1. Hardware RESET function	
	1.4.2. Software RESET function	
	1.4.3. Time Access Key register (TAKEY)	
	1.4.4. Software Reset register (SWRES)	
	1.4.5. Example of software reset	
	1.5. Clocks	12
2.	Instruction Set	13
3.	Memory Structure	17
	3.1. Program Memory	
	3.2. Data Memory	
	3.2.1. Data memory - lower 128 byte (00h to 7Fh)	
	3.2.2. Data memory - higher 128 byte (80h to FFh)	
4.	CPU Engine	
	4.1. Accumulator	
	4.2. B Register	
	4.3. Program Status Word	
	4.5. Data Pointer	
	4.6. Data Pointer 1	
	4.7. Interface control register	
5.	GPIO	
6.	Timer 0 and Timer 1	
-	6.1. Timer/counter mode control register (TMOD)	
	6.2. Timer/counter control register (TCON)	
	6.3. T0 · T1 signal swapping:	
7.	Serial interface 0	25
	7.1. Mode 0	26
	7.2. Mode 1	26
	7.3. Mode 2	27
	7.4. Mode 3	
	7.5. Multiprocessor communication of Serial Interface 0	
	7.6. Baud rate generator	
	7.6.1. Serial interface 0 modes 1 and 3	
^	7.7. Clock source for baud rate	
8.	Watchdog timer	
9.	Interrupt	
10.	Power Management Unit	
10.	10.1. Idle mode	
	10.2. Stop mode	
11.	IIC function	
12.	LVI – Low Voltage Interrupt	
13.	In-System Programming (Internal ISP)	
	13.1. ISP service program	
	13.2. Lock Bit (N)	
	13.3. Program the ISP Service Program	
_		

13.4.	Initiate ISP Service Program	43
	ISP register – TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC	
	litions	
	tics	

Product List

SM39R04G1W14NP, SM39R04G1W14OP, SM39R04G1W10MP

Description

The original 8052 had 12-clock architecture. A machine cycle needed 12 clocks and most instructions were either one or two machine cycles. Thus except for the MUL and DIV instructions, the 8052 used either 12 or 24 clocks for each instruction. Furthermore, each cycle in the 8052 used two memory fetches. In many cases the second fetch was dummy, and extra clocks were wasted. The SM39R04G1 is a core of a fast single-chip 8-bit microcontroller. It is a fully functional 8-bit embedded controller that executes all ASM51 instructions and has the same instruction set as the MCS-51.

Ordering Information

SM39R04G1ihhkL yymmv

i: process identifier {W = 2.7V ~ 5.5V}

hh: pin count

k: package type postfix {as table below }

L:PB Free identifier

{No text is Non-PB free, "P" is PB free}

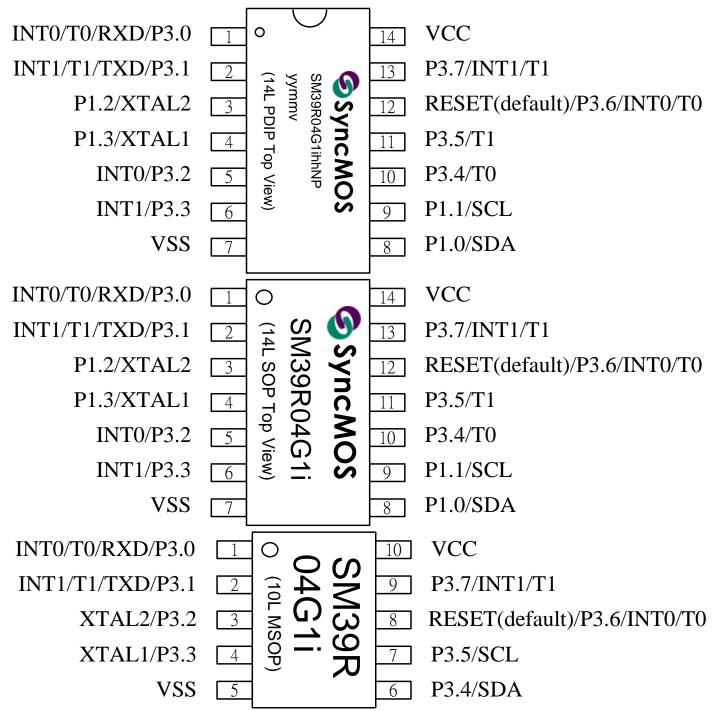
yy: year mm: month

v: version identifier{ A, B,...}

Postfix	Package	Pin / Pad Configuration	
N	PDIP (300 mil)	Page 4	
0	SOP (150 mil)	Page 4	
М	MSOP (118 mil)	Page 4	

Contact SyncMOS: www.syncmos.com.tw

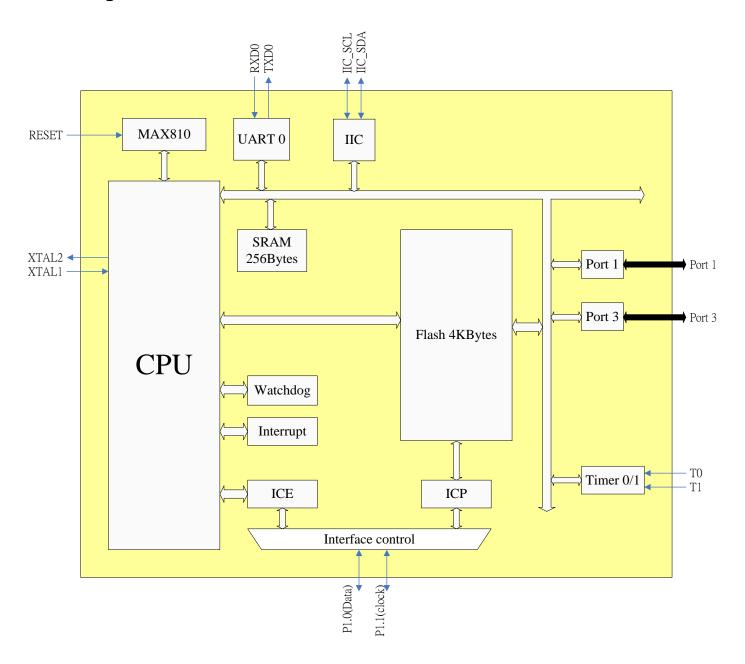
6F, No.10-2 Li- Hsin 1st Road , SBIP, Hsinchu, Taiwan


TEL: 886-3-567-1820 FAX: 886-3-567-1891

Features

- Operating Voltage: 2.7V ~ 5.5V
- High speed architecture of 1 clock/machine cycle runs up to 25MHz.
- 1~8T modes are software programmable.
- Instruction-set compatible with MCS-51.
- Internal OSC with range 1MHz~24MHz
- 4K Bytes on-chip flash program memory.
- 256 bytes RAM as standard 8052,
- One serial peripheral interfaces in full duplex mode.
 - Synchronous mode, fixed baud rate,
 - 8-bit UART mode, variable baud rate.
 - 9-bit UART mode, fixed baud rate,
 - 9-bit UART mode, variable baud rate.
- Additional Baud Rate Generator
- Two 16-bit Timer/Counters. (Timer 0, 1)
- 12 GPIOs(14L PDIP/SOP)
- Programmable watchdog timer.
- One IIC interface. (Master/Slave mode)
- On-chip flash memories support ISP/IAP/ICP and EEPROM functions.
- ISP service program space configurable in N*256 byte (N=0 to 4) size.
- On-Chip in-circuit emulator (ICE) functions with On-Chip Debugger (OCD).
- EMI reduction mode (ALE output inhibited).
- LVI/LVR.
- IO PAD ESD over 4KV.
- Enhance user code protection.
- External interrupt 0, 1 with four priority levels.
- Power management unit for IDLE and power down modes.

Pin Configuration



Notes:

- 1. The pin Reset/P3.6 factory default is Reset, user must keep this pin at low during power-up. User can configure it to GPIO (P3.6) by a flash programmer.
- 2. To avoid accidentally entering ISP-Mode(refer to section 13.4), care must be taken not asserting pulse signal at P3.0 during power-up while "ISP active pin" (14L at P3.7, 10L at P3.3) are set to high.
- 3. To apply ICP function, SDA and SCL must be set to Bi-direction mode if they are configured as GPIO in system.

Block Diagram

ISSFD-M053 5 Ver.H SM39R04G1 08/2013

Pin Description

14L PDIP/SOP	Symbol	I/O	Description
1	P3.0/RXD/#INT0/T0	I/O	Bit 0 of port 3 & Serial interface channel 0 receive/transmit data & (External interrupt 0 or Timer 0 external input)
2	P3.1/TXD/#INT1/T1	I/O	Bit 1 of port 3 & Serial interface channel 0 transmit data or receive clock in mode 0 & (External interrupt 1 or Timer 1 external input)
3	XTAL2/P1.2	I/O	Crystal output & Bit 2 of port 1
4	XTAL1/P1.3	I/O	Crystal input & Bit 3 of port 1
5	P3.2/#INT0	I/O	Bit 2 of port 3 & External interrupt 0
6	P3.3/#INT1	I/O	Bit 3 of port 3 & External interrupt 1
7	VSS	I	Power supply
8	P1.0/SDA	I/O	Bit 0 of port 1 & On-Chip Instrumentation Command and data I/O pin synchronous to OCI_SCL in ICE and ICP functions
9	P1.1/SCL	I/O	Bit 1 of port 1 & On-Chip Instrumentation Clock I/O pin of ICE and ICP functions
10	P3.4/T0	I/O	Bit 4 of port 3 & Timer 0 external input
11	P3.5/T1	I/O	Bit 5 of port 3 & Timer 1 external input
12	RESET(default)/P3.6/#I NT0/T0	I/O	Reset pin(default) & (Bit 6 of port 3 or External interrupt 0 or Timer 0 external input)
13	P3.7/#INT1/T1	I/O	Bit 7 of port 3 & (External interrupt 1 or Timer 1 external input)
14	VDD	Ī	Power supply

The Special Function Pin Can configured as below Table (Can be Select By SFR):

Signal	Default	Option1	Option2
#INT0	5(P3.2)	1(P3.0)	12(P3.6)
#INT1	6(P3.3)	2(P3.1)	13(P3.7)
T0	10(P3.4)	12(P3.6)	1(P3.0)
T1	11(P3.5)	13(P3.7)	2(P3.1)

The RESET Pin Can Be configured as I/O port P3.6, when user use on-chip hardware RESET mechanism •

The XTAL2 can be configured as I/O port P1.2 by ICP or in ISP mode. , when user use Oscillator (XTAL1 as clock input) or on-chip RC Oscillator is set to main system clock source 。

The XTAL1 can be configured as I/O port P1.3 by ICP or in ISP mode , when user use on-chip RC Oscillator is set to main system clock source $^{\circ}$

10L MSOP	Symbol	I/O	Description
1	P3.0/RXD/#INT0/T0	I/O	Bit 0 of port 3 & Serial interface channel 0 receive/transmit data & (External interrupt 0 or Timer 0 external input)
2	P3.1/TXD/#INT1/T1	I/O	Bit 1 of port 3 & Serial interface channel 0 transmit data or receive clock in mode 0 & (External interrupt 1 or Timer 1 external input)
3	XTAL2/P3.2	I/O	Crystal output & pin Bit 2 of port 3
4	XTAL1/P3.3	I/O	Crystal input & Bit 3 of port 3
5	VSS	ı	Power supply
6	P3.4/SDA	I/O	Bit 4 of port 3 & On-Chip Instrumentation Command and data I/O pin synchronous to OCI_SCL in ICE and ICP functions
7	P3.5/SCL	I/O	Bit 5 of port 3 & & On-Chip Instrumentation Clock I/O pin of ICE and ICP functions
8	RESET(default)/P3.6/# INT0/T0	I/O	Reset(default) & (Bit 6 of port 3 & External interrupt 0 or Timer 0 external input)
9	P3.7/#INT1/T1	1/0	Bit 7 of port 3 & External interrupt 1 or Timer 1 external input
10	VDD		Power supply

The Special Function Pin Can configured as below Table (Can be Select By SFR):

Signal	Default	Option1	Option2
#INT0	8(P3.6)	1(P3.0)	8(P3.6)
#INT1	9(P3.7)	2(P3.1)	9(P3.7)
T0	8(P3.6)	8(P3.6)	1(P3.0)
T1	9(P3.7)	9(P3.7)	2(P3.1)

The RESET Pin Can Be configured as I/O port P3.6, when user use on-chip hardware RESET mechanism.

The XTAL2 can be configured as I/O port P3.2 by ICP or in ISP mode. , when user use Oscillator (XTAL1 as clock input) or on-chip RC Oscillator is set to main system clock source 。

The XTAL1 can be configured as I/O port P3.3 by ICP or in ISP mode , when user use on-chip RC Oscillator is set to main system clock source ,

ISSFD-M053 7 Ver.H SM39R04G1 08/2013

Special Function Register (SFR)

A map of the Special Function Registers is shown as below:

Hex\Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/Hex
F8	IICS	IICCTL	IICA1	IICA2	IICRWD	IICEBT			FF
F0	В							TAKEY	F7
E8									EF
E0	ACC	ISPFAH	ISPFAL	ISPFD	ISPFC		LVC	SWRES	E7
D8			P3M0	P3M1					DF
D0	PSW				P1M0	P1M1			D7
C8									CF
C0	IRCON								C7
B8	IEN1	IP1	SORELH						BF
В0	P3						WDTC	WDTK	B7
A8	IEN0	IP0	S0RELL						AF
A0				P1WE	P3WE				A7
98	SOCON	S0BUF							9F
90	P1	AUX							97
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	IFCON	8F
80		SP	DPL	DPH	DPL1	DPH1		PCON	87
Hex\Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/Hex

Note: Special Function Registers reset values and description for SM39R04G1

Register	Location	Reset value	Description
SP	81h	07h	Stack Pointer
DPL	82h	00h	Data Pointer 0 low byte
DPH	83h	00h	Data Pointer 0 high byte
DPL1	84h	00h	Data Pointer 1 low byte
DPH1	85h	00h	Data Pointer 1 high byte
PCON	87h	40h	Power Control
TCON	88h	00h	Timer/Counter Control
TMOD	89h	00h	Timer Mode Control
TL0	8Ah	00h	Timer 0, low byte
TL1	8Bh	00h	Timer 1, low byte
TH0	8Ch	00h	Timer 0, high byte
TH1	8Dh	00h	Timer 1, high byte
CKCON	8Eh	10h	Clock control register
IFCON	8Fh	40h	Interface control register
P1	90h	FFh	Port 1
AUX	91h	00h	Auxiliary register

Register	Location	Reset value	Description
S0CON	98h	00h	Serial Port 0, Control Register
S0BUF	99h	00h	Serial Port 0, Data Buffer
P1WE	A3h	FFh	Port 1 output enable
P3WE	A4h	FFh	Port 3 output enable
IEN0	A8h	00h	Interrupt Enable Register 0
IP0	A9h	00h	Interrupt Priority Register 0
S0RELL	AAh	00h	Serial Port 0, Reload Register, low byte
P3	B0h	FFh	Port 3
WDTC	B6h	04h	Watchdog timer control register
WDTK	B7h	00h	Watchdog timer refresh key.
IEN1	B8h	00h	Interrupt Enable Register 1
IP1	B9h	00h	Interrupt Priority Register 1
S0RELH	BAh	00h	Serial Port 0, Reload Register, high byte
IRCON	C0h	00h	Interrupt Request Control Register
PSW	D0h	00h	Program Status Word
P1M0	D4h	00h	Port 1 output mode 0
P1M1	D5h	00h	Port 1 output mode 1
P3M0	DAh	00h	Port 3 output mode 0
P3M1	DBh	00h	Port 3 output mode 1
ACC	E0h	00h	Accumulator
ISPFAH	E1h	FFh	ISP Flash Address-High register
ISPFAL	E2h	FFh	ISP Flash Address-Low register
ISPFD	E3h	FFh	ISP Flash Data register
ISPFC	E4h	00h	ISP Flash control register
LVC	E6h	20h	Low voltage control register
SWRES	E7h	00h	Software Reset register
В	F0h	00h	B Register
TAKEY	F7h	00h	Time Access Key register
IICS	F8h	00h	IIC status register
IICCTL	F9h	04h	IIC control register
IICA1	FAh	A0h	IIC channel 1 Address 1 register
IICA2	FBh	60h	IIC channel 1 Address 2 register
IICRWD	FCh	00h	IIC channel 1 Read / Write Data buffer
IICS2	FDh	00h	IIC status2 register

ISSFD-M053 9 Ver.H SM39R04G1 08/2013

Function Description

1. General Features

SM39R04G1 is an 8-bit micro-controller · All of its functions and the detailed meanings of SFR will be given in the following sections ·

1.1. Embedded Flash

The program can be loaded into the embedded 4KB Flash memory via its writer or In-System Programming (ISP) • The high-quality Flash has a 100K-write cycle life , suitable for re-programming and data recording as EEPROM •

1.2. IO Pads

The SM39R04G1 has two I/O ports: Port 1 and Port 3. Ports 3 are 8-bit ports and Port 1 is a 4-bit port (The 10L MSOP only have 8-bit Port 3). These are: quasi-bidirectional (standard 8051 port outputs), push-pull, open drain, and input-only. As description in section 5 $^{\circ}$

At 14L Package (DIP/SOP), the Int0 \ Int1 \ T0 \ T1 signal can be configured to other I/O as below:

Signal	Default	Option1	Option2
#INT0	5(P3.2)	1(P3.0)	12(P3.6)
#INT1	6(P3.3)	2(P3.1)	13(P3.7)
T0	10(P3.4)	12(P3.6)	1(P3.0)
T1	11(P3.5)	13(P3.7)	2(P3.1)

At 10L Package (MSOP), the Int0 \ Int1 \ T0 \ T1 signal can be configured to other I/O as below:

Signal	Default	Option1	Option2
#INT0	8(P3.6)	1(P3.0)	8(P3.6)
#INT1	9(P3.7)	2(P3.1)	9(P3.7)
T0	8(P3.6)	8(P3.6)	1(P3.0)
T1	9(P3.7)	9(P3.7)	2(P3.1)

The RESET Pin Can Be configured as I/O port P3.6, when user use on-chip hardware RESET mechanism.

The XTAL2 and XTAL1 can be configured as I/O port by ICP or in ISP mode, when user use external OSC or on-chip RC Oscillator is set to main system clock source, show as below:

		External OSC	Internal OSC
14L Dookogo	Xtal1	Xtal1	P1.3
14L Package	Xtal2	P1.2	P1.2
10L Dookogo	Xtal1	Xtal1	P3.3
10L Package	Xtal2	P3.2	P3.2

All the pins on P1 and P3 are with slew rate adjustment to reduce EMI. The other way to reduce EMI is to disable the ALE output if unused. This is selected by its SFR. The IO pads can withstand 4KV ESD in human body mode guaranteeing the SM39R04G1's quality in high electro-static environments.

1.3. Instruction timing Selection

The conventional 52-series MCUs are 12T, i.e., 12 oscillator clocks per machine cycle. SM39R04G1 is a 1T to 8T MCU, i.e., its machine cycle is one-clock to eight-clock. In the other words, it can execute one instruction within one clock to only eight clocks.

ISSFD-M053 10 Ver.H SM39R04G1 08/2013

Mnemonic: CKCON Address: 8								ss: 8Eh
7	6	5	4	3	2	1	0	Reset
-		ITS		-	-	-	-	10H

ITS: Instruction timing select.

ITS [6:4]	Instruction timing
000	1T mode
001	2T mode (default)
010	3T mode
011	4T mode
100	5T mode
101	6T mode
110	7T mode
111	8T mode

The default is in 2T mode, and it can be changed to another Instruction timing mode if CKCON [6:4] (at address 8Eh) is change any time. Not every instruction can be executed with one machine cycle. The exact machine cycle number for all the instructions are given in the next section.

1.4. RESET

1.4.1. Hardware RESET function

SM39R04G1 provides on-chip hardware RESET mechanism, , the reset duration is programmable by writer or ISP .

on-chip hardware RESET duration
25ms (default)
200ms
100ms
50ms
16ms
8ms
4ms

1.4.2. Software RESET function

SM39R04G1 provides one software reset mechanism to reset whole chip. To perform a software reset, the firmware must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the Software Reset register (SWRES) write attribute. After SWRES register obtain the write authority, the firmware can write FFh to the SWRES register. The hardware will decode a reset signal that "OR" with the other hardware reset. The SWRES register is self-reset at the end of the software reset procedure.

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
Software Reset function											
TAKEY	Time Access Key register	F7h				TAKE'	Y [7:0]				00H
SWRES	Software Reset register	E7h				SWRE	S [7:0]				00H

1.4.3. Time Access Key register (TAKEY)

	Mnemor	nic: TAKE	Υ					Addre	ess: F7H
	7	6	5	4	3	2	1	0	Reset
ſ				TAKE	Y [7:0]				00H

Software reset register (SWRES) is read-only by default; software must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the SWRES register write attribute. That is:

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah

1.4.4. Software Reset register (SWRES)

Mnemoi	nic: SWR	ES					Addr	ess: E7H	
7	6	5	4	3	2	1	0	Reset	
			SWRE	S [7:0]				00H	

SWRES [7:0]: Software reset register bit. These 8-bit is self-reset at the end of the reset procedure. SWRES [7:0] = FFh, software reset. SWRES [7:0] = 00h ~ FEh, MCU no action.

1.4.5. Example of software reset

MOV TAKEY, #55h MOV TAKEY, #0AAh

MOV TAKEY, #5Ah ; enable SWRES write attribute

MOV SWRES, #0FFh; software reset MCU

1.5. Clocks

The default clock is the 12MHz on-chip RC-Oscillator. This clock is used during the initialization stage. The major work of the initialization stage is to determine the clock source used in normal operation.

The internal clock sources are from the on-chip RC-Oscillator with programmable frequency outputs as table 1-1, the clock source can set by writer or ICP.

Table 1-1: Selection of clock source

Clock source					
external crystal (use XTAL1 and XTAL2 pins)					
external crystal (only use XTAL1, the XTAL2 define as I/O)					
20MHz from on-chip RC-Oscillator					
16MHz from on-chip RC-Oscillator					
12MHz from on-chip RC-Oscillator(default)					
8MHz from on-chip RC-Oscillator					
4MHz from on-chip RC-Oscillator					
2MHz from on-chip RC-Oscillator					
1MHz from on-chip RC-Oscillator					

ISSFD-M053 12 Ver.H SM39R04G1 08/2013

2. Instruction Set

All SM39R04G1 instructions are binary code compatible and perform the same functions as they do with the industry standard 8051. The following tables give a summary of the instruction set cycles of the SM39R04G1 Microcontroller core.

Table 2-1: Arithmetic operations

Mnemonic	Description	Code	Bytes	Cycles
ADD A,Rn	Add register to accumulator	28-2F	1	1
ADD A, direct	Add direct byte to accumulator	25	2	2
ADD A,@Ri	Add indirect RAM to accumulator	26-27	1	2
ADD A,#data	Add immediate data to accumulator	24	2	2
ADDC A,Rn	Add register to accumulator with carry flag	38-3F	1	1
ADDC A,direct	Add direct byte to A with carry flag	35	2	2
ADDC A,@Ri	Add indirect RAM to A with carry flag	36-37	1	2
ADDC A,#data	Add immediate data to A with carry flag	34	2	2
SUBB A,Rn	Subtract register from A with borrow	98-9F	1	1
SUBB A,direct	Subtract direct byte from A with borrow	95	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	96-97	1	2
SUBB A,#data	Subtract immediate data from A with borrow	94	2	2
INC A	Increment accumulator	04	1	1
INC Rn	Increment register	08-0F	1	2
INC direct	Increment direct byte	05	2	3
INC @Ri	Increment indirect RAM	06-07	1	3
INC DPTR	Increment data pointer	A3	1	1
DEC A	Decrement accumulator	14	1	1
DEC Rn	Decrement register	18-1F	1	2
DEC direct	Decrement direct byte	15	2	3
DEC @Ri	Decrement indirect RAM	16-17	1	3
MUL AB	Multiply A and B	A4	1	5
DIV	Divide A by B	84	1	5
DA A	Decimal adjust accumulator	D4	1	1

Table 2-2: Logic operations

Mnemonic	Description	Code	Bytes	Cycles
ANL A,Rn	AND register to accumulator	58-5F	1	1
ANL A, direct	AND direct byte to accumulator	55	2	2
ANL A,@Ri	AND indirect RAM to accumulator	56-57	1	2
ANL A,#data	AND immediate data to accumulator	54	2	2
ANL direct,A	AND accumulator to direct byte	52	2	3
ANL direct,#data	AND immediate data to direct byte	53	3	4
ORL A,Rn	OR register to accumulator	48-4F	1	1
ORL A,direct	OR direct byte to accumulator	45	2	2
ORL A,@Ri	OR indirect RAM to accumulator	46-47	1	2
ORL A,#data	OR immediate data to accumulator	44	2	2
ORL direct,A	OR accumulator to direct byte	42	2	3
ORL direct,#data	OR immediate data to direct byte	43	3	4
XRL A,Rn	Exclusive OR register to accumulator	68-6F	1	1
XRL A,direct	Exclusive OR direct byte to accumulator	65	2	2
XRL A,@Ri	Exclusive OR indirect RAM to accumulator	66-67	1	2
XRL A,#data	Exclusive OR immediate data to accumulator	64	2	2
XRL direct,A	Exclusive OR accumulator to direct byte	62	2	3
XRL direct,#data	Exclusive OR immediate data to direct byte	63	3	4
CLR A	Clear accumulator	E4	1	1
CPL A	Complement accumulator	F4	1	1
RL A	Rotate accumulator left	23	1	1
RLC A	Rotate accumulator left through carry	33	1	1
RR A	Rotate accumulator right	03	1	1
RRC A	Rotate accumulator right through carry	13	1	1
SWAP A	Swap nibbles within the accumulator	C4	1	1

Table 2-3: Data transfer

Mnemonic	Description	Code	Bytes	Cycles
MOV A,Rn	Move register to accumulator	E8-EF	1	1
MOV A,direct	Move direct byte to accumulator	E5	2	2
MOV A,@Ri	Move indirect RAM to accumulator	E6-E7	1	2
MOV A,#data	Move immediate data to accumulator	74	2	2
MOV Rn,A	Move accumulator to register	F8-FF	1	2
MOV Rn,direct	Move direct byte to register	A8-AF	2	4
MOV Rn,#data	Move immediate data to register	78-7F	2	2
MOV direct,A	Move accumulator to direct byte	F5	2	3
MOV direct,Rn	Move register to direct byte	88-8F	2	3
MOV direct1, direct2	Move direct byte to direct byte	85	3	4
MOV direct,@Ri	Move indirect RAM to direct byte	86-87	2	4
MOV direct,#data	Move immediate data to direct byte	75	3	3
MOV @Ri,A	Move accumulator to indirect RAM	F6-F7	1	3
MOV @Ri,direct	Move direct byte to indirect RAM	A6-A7	2	5
MOV @Ri,#data	Move immediate data to indirect RAM	76-77	2	3
MOV DPTR,#data16	Load data pointer with a 16-bit constant	90	3	3
MOVC A,@A+DPTR	Move code byte relative to DPTR to accumulator	93	1	3
MOVC A,@A+PC	Move code byte relative to PC to accumulator	83	1	3
PUSH direct	Push direct byte onto stack	C0	2	4
POP direct	Pop direct byte from stack	D0	2	3
XCH A,Rn	Exchange register with accumulator	C8-CF	1	2
XCH A,direct	Exchange direct byte with accumulator	C5	2	3
XCH A,@Ri	Exchange indirect RAM with accumulator	C6-C7	1	3
XCHD A,@Ri	Exchange low-order nibble indir. RAM with A	D6-D7	1	3

Table 2-4: Program branches

Mnemonic	Description	Code	Bytes	Cycles
ACALL addr11	Absolute subroutine call	xxx11	2	6
LCALL addr16	Long subroutine call	12	3	6
RET	from subroutine	22	1	4
RETI	from interrupt	32	1	4
AJMP addr11	Absolute jump	xxx01	2	3
LJMP addr16	Long iump	02	3	4
SJMP rel	Short jump (relative addr.)	80	2	3
JMP @A+DPTR	Jump indirect relative to the DPTR	73	1	2
JZ rel	Jump if accumulator is zero	60	2	3
JNZ rel	Jump if accumulator is not zero	70	2	3
JC rel	Jump if carry flag is set	40	2	3
JNC	Jump if carry flag is not set	50	2	3
JB bit,rel	Jump if direct bit is set	20	3	4
JNB bit,rel	Jump if direct bit is not set	30	3	4
JBC bit,direct rel	Jump if direct bit is set and clear bit	10	3	4
CJNE A,direct rel	Compare direct byte to A and jump if not equal	B5	3	4
CJNE A,#data rel	Compare immediate to A and jump if not equal	B4	3	4
CJNE Rn,#data rel	Compare immed. to reg. and jump if not equal	B8-BF	3	4
CJNE @Ri,#data rel	Compare immed. to ind. and jump if not equal	B6-B7	3	4
DJNZ Rn,rel	Decrement register and jump if not zero	D8-DF	2	3
DJNZ direct,rel	Decrement direct byte and jump if not zero	D5	3	4
NOP	No operation	00	1	1

Table 2-5: Boolean manipulation

Mnemonic	Description	Code	Bytes	Cycles
CLR C	Clear carry flag	C3	1	1
CLR bit	Clear direct bit	C2	2	3
SETB C	Set carry flag	D3	1	1
SETB bit	Set direct bit	D2	2	3
CPL C	Complement carry flag	B3	1	1
CPL bit	Complement direct bit	B2	2	3
ANL C,bit	AND direct bit to carry flag	82	2	2
ANL C,/bit	AND complement of direct bit to carry	B0	2	2
ORL C,bit	OR direct bit to carry flag	72	2	2
ORL C,/bit	OR complement of direct bit to carry	A0	2	2
MOV C,bit	Move direct bit to carry flag	A2	2	2
MOV bit,C	Move carry flag to direct bit	92	2	3

3. Memory Structure

The SM39R04G1 memory structure follows general 8052 structure. It is 4KB program memory.

3.1. Program Memory

The SM39R04G1 has 4KB on-chip flash memory which can be used as general program memory or EEPROM, on which include up to 1K byte specific ISP service program memory space. The address range for the 4K byte is \$000 to \$FFF. The address range for the ISP service program is \$C00 to \$FFF. The ISP service program size can be partitioned as N blocks of 256 byte (N=0 to 4). When N=0 means no ISP service program space available, total 4K byte memory used as program memory. When N=1 means address \$F00 to \$FFF reserved for ISP service program. When N=2 means memory address \$E00 to \$FFF reserved for ISP service program...etc. Value N can be set and programmed into SM39R04G1 by the writer or ICP. It can be used to record any data as EEPROM. The procedure of this EEPROM application function is described in the section 13 on internal ISP.

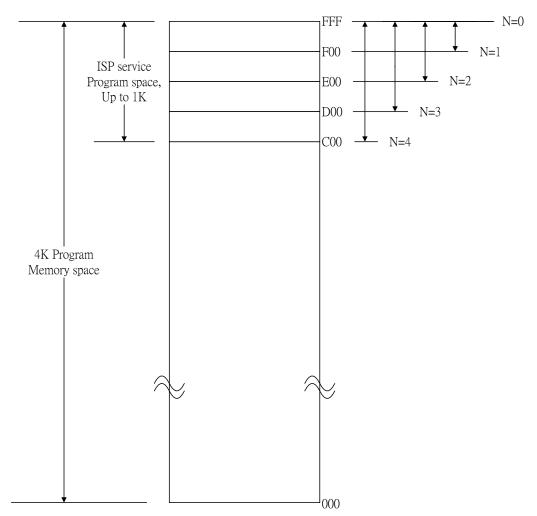


Fig. 3-1: SM39R04G1 programmable Flash

3.2. Data Memory

The SM39R04G1 has 256Bytes on-chip SRAM; 256 Bytes of it are the same as general 8052 internal memory structure

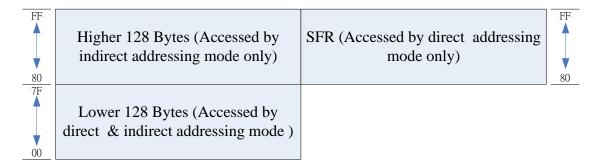


Fig. 3-3: RAM architecture

3.2.1. Data memory - lower 128 byte (00h to 7Fh)

Data memory 00h to FFh is the same as 8052.
The address 00h to 7Fh can be accessed by direct and indirect addressing modes.
Address 00h to 1Fh is register area.
Address 20h to 2Fh is memory bit area.
Address 30h to 7Fh is for general memory area.

3.2.2. Data memory - higher 128 byte (80h to FFh)

The address 80h to FFh can be accessed by indirect addressing mode. Address 80h to FFh is data area.

4. CPU Engine

The SM39R04G1 engine is composed of four components:

- a. Control unit
- b. Arithmetic logic unit
- c. Memory control unit
- d. RAM and SFR control unit

The SM39R04G1 engine allows to fetch instruction from program memory and to execute using RAM or SFR. The following chapter describes the main engine register.

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
				805	1 Core						
ACC	Accumulator	E0h	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00H
В	B register	F0h	B.7	B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0					00H		
PSW	Program status word	D0h	CY	CY AC F0 RS[1:0] OV PSW.1 P						00H	
SP	Stack Pointer	81h		SP[7:0]						07H	
DPL	Data pointer low 0	82h				DPL	[7:0]				00H
DPH	Data pointer high 0	83h				DPH	I[7:0]				00H
DPL1	Data pointer low 0	84h				DPL′	1[7:0]				00H
DPH1	Data pointer high 0	85h		DPH1[7:0]						00H	
AUX	Auxiliary register	91h	BRGS PTS[1:0] PINTS[1:0] DPS					00H			
IFCON	Interface control register	8Fh	-	CDPR	-	-	-	-	-	ISPE	00H

4.1. Accumulator

ACC is the Accumulator register. Most instructions use the accumulator to store the operand.

Mnemor	Addre	ess: E0h						
7	6	5	4	3	2	1	0	Reset
ACC.7	ACC.6	ACC05	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00h

ACC[7:0]: The A (or ACC) register is the standard 8052 accumulator.

4.2. B Register

The B register is used during multiply and divide instructions. It can also be used as a scratch pad register to store temporary data.

Mnemo	Add	ress: F0h						
7	6	5	4	3	2	1	0	Reset
B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00h

B[7:0]: The B register is the standard 8052 register that serves as a second accumulator.

4.3. Program Status Word

Mnemo	nic: PSW						Add	ress: D0h
7	6	5	4	3	2	1	0	Reset
CY	AC	F0	RS	[1:0]	OV	F1	Р	00h

CY: Carry flag.

AC: Auxiliary Carry flag for BCD operations.

F0: General purpose Flag 0 available for user.

RS[1:0]: Register bank select, used to select working register bank.

RS[1:0]	Bank Selected	Location
00	Bank 0	00h – 07h
01	Bank 1	08h – 0Fh
10	Bank 2	10h – 17h
11	Bank 3	18h – 1Fh

OV: Overflow flag.

F1: General purpose Flag 1 available for user.

P: Parity flag, affected by hardware to indicate odd/even number of "one" bits in the Accumulator, i.e. even parity.

4.4. Stack Pointer

The stack pointer is a 1-byte register initialized to 07h after reset. This register is incremented before PUSH and CALL instructions, causing the stack to start from location 08h.

Mnemo	Mnemonic: SP Address:										
7	6	5	4	3	2	1	0	Reset			
SP [7:0]											

SP[7:0]: The Stack Pointer stores the scratchpad RAM address where the stack begins. In other words, it always points to the top of the stack.

4.5. Data Pointer

The data pointer (DPTR) is 2-bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded as a 2-byte register (e.g. MOV DPTR, #data16) or as two separate registers (e.g. MOV DPL,#data8). It is generally used to access the external code or data space (e.g. MOVC A, @A+DPTR, @DPTR respectively).

Mnemo	nic: DPL						Addre	ss: 82h
7	6	5	4	3	2	1	0	Reset
			DPL	_ [7:0]				00h

DPL[7:0]: Data pointer Low 0

Mnemo	Mnemonic: DPH Addres									
7	6	5	4	3	2	1	0	Reset		
	DPH [7:0]									

DPH [7:0]: Data pointer High 0

00h

4.6. Data Pointer 1

The Dual Data Pointer accelerates the moves of data block. The standard DPTR is a 16-bit register that is used to address external memory or peripherals. In the SM39R04G1 core the standard data pointer is called DPTR; the second data pointer is called DPTR1. The data pointer select bit chooses the active pointer. The data pointer select bit is located in LSB of AUX register (DPS).

The user switches between pointers by toggling the LSB of AUX register. All DPTR-related instructions use the currently selected DPTR for any activity.

	Mnemor	nic: DPL1						Addre	ess: 84h
	7	6	5	4	3	2	1	0	Reset
				DPL	1 [7:0]				00h
DPL	_1[7:0]: Da	ata pointer	Low 1						_
	Mnemor	nic: DPH1						Addre	ess: 85h
	7	6	5	4	3	2	1	0	Reset

DPH1 [7:0]

DPH1[7:0]: Data pointer High 1

Mnemo	Mnemonic: AUX											
7	6	5	4	3	2	1	0	Reset				
BRGS	-	-	PTS[1:0]		PINT:	S[1:0]	DPS	00H				

DPS: Data Pointer selects register. DPS = 1 is selected DPTR1.

4.7. Interface control register

Mnemo	Addre	ss: 8Fh						
7	6	5	4	3	2	1	0	Reset
-	CDPR	-	-	-	-	-	ISPE	00H

CDPR: code protect (Read Only) ISPE: ISP function enable bit

ISPE = 1, enable ISP function ISPE = 0, disable ISP function

5. GPIO

The SM39R04G1 has three I/O ports: Port 1 and Port 3. Ports 3 are 8-bit ports and Port 1 is a 4-bit port (The 10L MSOP only have 8-bit Port 3). These are: quasi-bidirectional (standard 8051 port outputs), push-pull, open drain, and input-only. Two configuration registers for each port select the output type for each port pin. All I/O port pins on the SM39R04G1 may be configured by software to one of four types on a pin-by-pin basis, shown as below:

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
			I/O port	function	register	r					
P1M0	Port 1 output mode 0	D4h						P1M	0[3:0]		00H
P1M1	Port 1 output mode 1	D5h						P1M	1[3:0]		00H
P3M0	Port 3 output mode 0	DAh				P3M0	0[7:0]				00H
P3M1	Port 3 output mode 1	DBh				P3M	1[7:0]				00H
P1WE	Port 3 output enable	A3h						P1W	E[3:0]		FFH
P3WE	Port 1 output enable	A4h				P3WI	E[7:0]				FFH

PxM1.y	PxM0.y	Port output mode
0	0	Quasi-bidirectional (standard 8051 port outputs) (pull-up)
0	1	Push-pull
1	0	Input only (high-impedance)
1	1	Open drain

The RESET Pin Can Be configured as I/O port P3.6, when user use on-chip hardware RESET mechanism •

The XTAL2 and XTAL1 can be configured as I/O port by ICP or in ISP mode , when user use external OSC or on-chip RC Oscillator is set to main system clock source .

Mnemo	nic: P1W	E					Addre	ss: A3h
7	6	5	4	3	2	1	0	Reset
				P1.3	P1.2	P1.1	P1.0	FFH
Mnemonic: P3WE								
Mnemo	nic: P3W	E					Addre	ss: A4h
Mnemo 7	nic: P3W l	E 5	4	3	2	1	Addre 0	ess: A4h Reset

For general-purpose applications, every pin can be assigned to either high or low independently as given below:

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
					Ports						
Port 3	Port 3	B0h	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	FFh
Port 1	Port 1	90h					P1.3	P1.2	P1.1	P1.0	FFh

Mnemo	nic: P1						Addre	ss: 90h
7	6	5	4	3	2	1	0	Reset
				P1.3	P1.2	P1.1	P1.0	FFh

P1.3~ 0: Port1 [3] ~ Port1 [0]

Mnemo	nic: P3						Addres	s: B0h
7	6	5	4	3	2	1	0	Reset
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	FFh

P3.7~ 0: Port3 [7] ~ Port3 [0]

6. Timer 0 and Timer 1

The SM39R04G1 has two 16-bit timer/counter registers: Timer 0 and Timer 1. All can be configured for counter or timer operations.

In timer mode, the Timer 0 register or Timer 1 register is incremented every 12 machine cycles, which means that it counts up after every 12 periods of the clock signal.

In counter mode, the register is incremented when the falling edge is observed at the corresponding input pin T0or T1. Since it takes 2 machine cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 machine cycle.

Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function registers (TMOD and TCON) are used to select the appropriate mode.

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
				Timer	0 and 1						
TL0	Timer 0 , low byte	8Ah				TL0[7:0]				00h
TH0	Timer 0 , high byte	8Ch				THO	[7:0]				00h
TL1	Timer 1, low byte	8Bh				TL1[7:0]				00h
TH1	Timer 1 , high byte	8Dh				TH1	[7:0]				00h
TMOD	Timer Mode Control	89h	GATE	C/T	M1	MO	GATE	C/T	M1	MO	00h
TCON	Timer/Counter Control	88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h
AUX	Auxiliary register	91h	BRGS	-	-	PTS	[1:0]	PINT	S[1:0]	DPS	00H

6.1. Timer/counter mode control register (TMOD)

Mnemor	nic: TMO	D					Addres	ss: 89h
7	6	5	4	3	2	1	0	Reset
GATE	C/T	M1	MO	GATE	C/T	M1	MO	00h
	Tim	er 1			Time	er O		

GATE: If set, enables external gate control (pin INT0 or INT1 for Counter 0 or 1, respectively). When INT0 or INT1 is high, and TRx bit is set (see TCON register), a counter is incremented every falling edge on T0 or T1 input pin

C/T: Selects Timer or Counter operation. When set to 1, a counter operation is performed, when cleared to 0, the corresponding register will function as a timer.

M[1:0]: Selects mode for Timer/Counter 0 or Timer/Counter 1.

M1	MO	Mode	Function
0	0	Mode0	13-bit counter/timer, with 5 lower bits in TL0 or TL1
			register and 8 bits in TH0 or TH1 register (for Timer 0
			and Timer 1, respectively). The 3 high order bits of
			TL0 and TL1 are hold at zero.
0	1	Mode1	16-bit counter/timer.
1	0	Mode2	8 -bit auto-reload counter/timer. The reload value is kept in TH0 or TH1, while TL0 or TL1 is incremented every machine cycle. When TLx overflows, a value from THx is copied to TLx.
1	1	Mode3	If Timer 1 M1 and M0 bits are set to 1, Timer 1 stops. If Timer 0 M1 and M0 bits are set to 1, Timer 0 acts as two independent 8 bit timers / counters.

6.2. Timer/counter control register (TCON)

Mnemo	nic: TCOI	N					Addre	ss: 88h
7	6	5	4	3	2	1	0	Reset
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h

- TF1: Timer 1 overflow flag set by hardware when Timer 1 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
- TR1: Timer 1 Run control bit. If cleared, Timer 1 stops.
- TF0: Timer 0 overflow flag set by hardware when Timer 0 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
- TR0: Timer 0 Run control bit. If cleared, Timer 0 stops.
- IE1: Interrupt 1 edge flag. Set by hardware, when falling edge on external pin INT1 is observed. Cleared when interrupt is processed.
- IT1: Interrupt 1 type control bit. Selects falling edge or low level on input pin to cause interrupt.
- IEO: Interrupt 0 edge flag. Set by hardware, when falling edge on external pin INT0 is observed. Cleared when interrupt is processed.
- ITO: Interrupt 0 type control bit. Selects falling edge or low level on input pin to cause interrupt.

6.3. T0 · T1 signal swapping:

The T0 · T1 signal can be configured to other I/O ·

Mnemor	nic: AUX						Addre	ss: 91h
7	6	5	4	3	2	1	0	Reset
BRGS	-	-	PTS	G [1:0]	PINT	S[1:0]	DPS	00H

	Package = 14 Pin							
PTS [1:0]	T0	T1						
0x00	P3.4	P3.5						
0x01	P3.0	P3.1						
0x10	P3.6	P3.7						
0x11	P3.4	P3.5						
	Package = 10 Pin							
PTS[1:0]	T0	T1						
0x00	P3.6	P3.7						
0x01	P3.0	P3.1						
0x10	P3.6	P3.7						
0x11	P3.6	P3.7						

7. Serial interface 0

The serial buffer consists of two separate registers, a transmit buffer and a receive buffer.

Writing data to the Special Function Register S0BUF sets this data in serial output buffer and starts the transmission. Reading from the S0BUF reads data from the serial receive buffer. The serial port can simultaneously transmit and receive data. It can also buffer 1 byte at receive, which prevents the receive data from being lost if the CPU reads the first byte before transmission of the second byte is completed.

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
				Serial	interface ()					
PCON	Power control	87H	SMOD	•	•	•	-	•	STOP	IDLE	40H
AUX	Auxiliary register	91h	BRGS	-	-	PTS	[1:0]	PINT:	S[1:0]	DPS	00H
SOCON	Serial Port 0 control register	98H	SM0	SM1	SM20	REN0	TB80	RB80	TI0	RI0	00H
S0BUF	Serial Port 0 data buffer	99H		S0BUF[7:0]						00H	
S0RELL	Serial Port 0 reload register low byte	AAH	S0REL .7	SOREL .6	SOREL .5	SOREL .4	SOREL .3	S0REL .2	S0REL .1	SOREL .0	00H
S0RELH	Serial Port 0 reload register high byte	ВАН				-			SOREL .9	SOREL .8	00H

Mnemo	nic: AUX						Addre	ss: 91h
7	6	5	4	3	2	1	0	Reset
BRGS	-	-	PTS	S[1:0]	PINT	S[1:0]	DPS	00H

BRGS: BRGS = 0 -Baud rate generator use Timer 1 TH1 SFR.

BRGS = 1 -Baud rate generator use S0REL SFR.

Mnemo	nic: S0C0		Addre	ss: 98h				
7	6	5	4	3	2	1	0	Reset
SM0	SM1	SM20	REN0	TB80	RB80	TI0	RI0	00h

SM0,SM1: Serial Port 0 mode selection.

SM0	SM1	Mode
0	0	0
0	1	1
1	0	2
1	1	3

The 4 modes in UARTO, Mode 0 ~ 3, are explained later.

SM20: Enables multiprocessor communication feature

REN0: If set, enables serial reception. Cleared by software to disable reception.

TB80: The 9th transmitted data bit in modes 2 and 3. Set or cleared by the CPU depending on the function it performs such as parity check, multiprocessor communication etc.

RB80: In modes 2 and 3, it is the 9th data bit received. In mode 1, if SM20 is 0, RB80 is the stop bit. In mode 0, this bit is not used. Must be cleared by software.

TI0: Transmit interrupt flag, set by hardware after completion of a serial transfer. Must be cleared by software.

RIO: Receive interrupt flag, set by hardware after completion of a serial reception.

Must be cleared by software.

The Serial Interface 0 can operate in the following 4 modes:

SM0	SM1	Mode	Description	Board Rate
0	0	0	Shift register	Fosc/12

0	1	1	8-bit UART	Variable
1	0	2	9-bit UART	Fosc/32 or Fosc/64
1	1	3	9-bit UART	Variable

Here Fosc is the crystal or oscillator frequency.

7.1. Mode 0

Pin RXD0 serves as input and output. TXD0 outputs the shift clock. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the crystal frequency. Reception is initialized in Mode 0 by setting the flags in S0CON as follows: RI0 = 0 and REN0 = 1. In other modes, a start bit when REN0 = 1 starts receiving serial data.

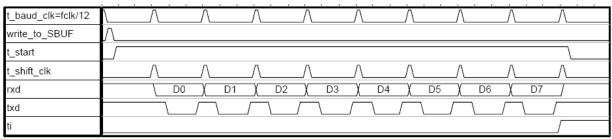


Fig. 7-1: Transmit mode 0 for Serial 0

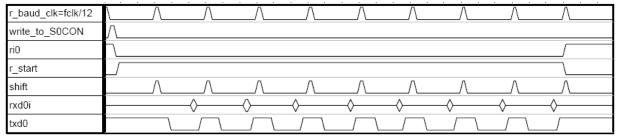


Fig. 7-2: Receive mode 0 for Serial 0

7.2. Mode 1

Pin RXD0 serves as input, and TXD0 serves as serial output. No external shift clock is used, 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading S0BUF, and stop bit sets the flag RB80 in the Special Function Register S0CON. In mode 1 either internal baud rate generator or timer 1 can be use to specify baud rate.

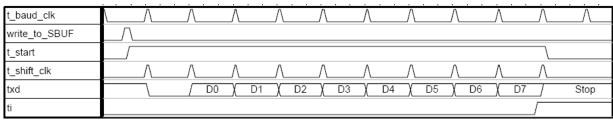


Fig. 7-3: Transmit mode 1 for Serial 0

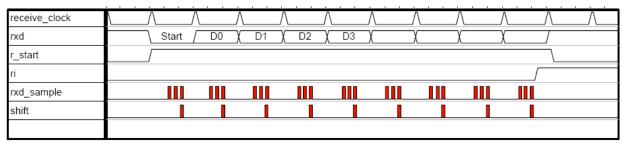


Fig. 7-4: Receive mode 1 for Serial 0

7.3. Mode 2

This mode is similar to Mode 1, with two differences. The baud rate is fixed at 1/32 (SMOD=1) or 1/64(SMOD=0) of oscillator frequency and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be used to control the parity of the serial interface: at transmission, bit TB80 in SOCON is output as the 9th bit, and at receive, the 9th bit affects RB80 in Special Function Register SOCON.

7.4. Mode 3

The only difference between Mode 2 and Mode 3 is that in Mode 3 either internal baud rate generator or timer 1 can be use to specify baud rate.

Fig. 7-5: Transmit modes 2 and 3 for Serial 0

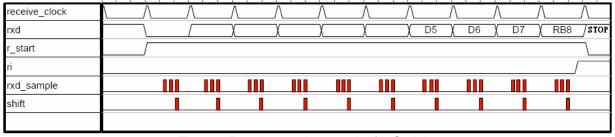


Fig. 7-6: Receive modes 2 and 3 for Serial 0

7.5. Multiprocessor communication of Serial Interface 0

The feature of receiving 9 bits in Modes 2 and 3 of Serial Interface 0 can be used for multiprocessor communication. In this case, the slave processors have bit SM20 in S0CON. When the master processor outputs slave's address, it sets the 9th bit to 1, causing a serial port receive interrupt in all the slaves. The slave processors compare the received byte with their network address. If there is a match, the addressed slave will clear SM20 and receive the rest of the message, while other slaves will leave SM20 bit unaffected and ignore this message. After addressing the slave, the host will output the rest of the message with the 9th bit set to 0, so no serial port receive interrupt will be generated in unselected slaves.

7.6. Baud rate generator

7.6.1. Serial interface 0 modes 1 and 3

(a) When BRGS = 0 (in SFR AUX):

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{OSC}}{32 \times 12 \times (256 - \text{TH1})}$$

(b) When BRGS = 1 (in SFR AUX):

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{OSC}}}{64 \times \left(2^{10} - \text{SOREL}\right)}$$

7.7. Clock source for baud rate

The on-chip RC-Oscillator frequency varies within $\pm 3\%$ after factory calibration. In case of application with higher clock precision requirement, external Crystal is usually recommended clock source.

8. Watchdog timer

The Watch Dog Timer (WDT) is an 8-bit free-running counter that generate reset signal if the counter overflows. The WDT is useful for systems which are susceptible to noise, power glitches, or electronics discharge which causing software dead loop or runaway. The WDT function can help user software recover from abnormal software condition. The WDT is different from Timer0, Timer1 of general 8052. To prevent a WDT reset can be done by software periodically clearing the WDT counter. User should check WDTF bit of WDTC register whenever un-predicted reset happened. After an external reset the watchdog timer is disabled and all registers are set to zeros.

The watchdog timer has a free running on-chip RC oscillator (250 KHz ±20%). The WDT will keep on running even after the system clock has been turned off (for example, in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the MCU to reset. The WDT can be enabled or disabled any time during the normal mode. Please refer the WDTE bit of WDTC register. The default WDT time-out period is approximately 16.38ms (WDTM [3:0] = 0100b).

The WDT has selectable divider input for the time base source clock. To select the divider input, the setting of bit3 ~ bit0 (WDTM [3:0]) of Watch Dog Timer Control Register (WDTC) should be set accordingly.

$$WDTCLK = \frac{250\text{KHz}}{2^{\text{WDTM}}}$$
Watchdog reset time =
$$\frac{256}{\text{WDTCLK}}$$

Table 8.1 WDT time-out period

WDTM [3:0]	Divider (250 KHz RC oscillator in)	Time period @ 250KHz
0000	1	1.02ms
0001	2	2.05ms
0010	4	4.10ms
0011	8	8.19ms
0100	16	16.38ms (default)
0101	32	32.77ms
0110	64	65.54ms
0111	128	131.07ms
1000	256	262.14ms
1001	512	524.29ms
1010	1024	1.05s
1011	2048	2.10s
1100	4096	4.19s
1101	8192	8.39s
1110	16384	16.78s
1111	32768	33.55s

When MCU is reset, the MCU will be read WDTEN control bit status. When WDTEN bit is set to 1, the watchdog function will be disabled no matter what the WDTE bit status is. When WDTEN bit is clear to 0, the watchdog function will be enabled if WDTE bit is set to 1 by program. User can to set WDTEN on the writer or ISP.

The program can enable the WDT function by programming 1 to the WDTE bit premise that WDTEN control bit is clear to 0. After WDTE set to 1, the 8 bit-counter starts to count with the selected time base source clock which set by WDTM [3:0]. It will generate a reset signal when overflows. The WDTE bit will be cleared to 0 automatically when MCU been reset, either hardware reset or WDT reset.

Once the watchdog is started it cannot be stopped. User can refreshed the watchdog timer to zero by writing 0x55 to Watch Dog Timer refresh Key (WDTK) register. This will clear the content of the 8-bit counter and let the counter re-start

to count from the beginning. The watchdog timer must be refreshed regularly to prevent reset request signal from becoming active.

When Watchdog timer is overflow, the WDTF flag will set to one and automatically reset MCU. The WDTF flag can be clear by software or external reset or power on reset.

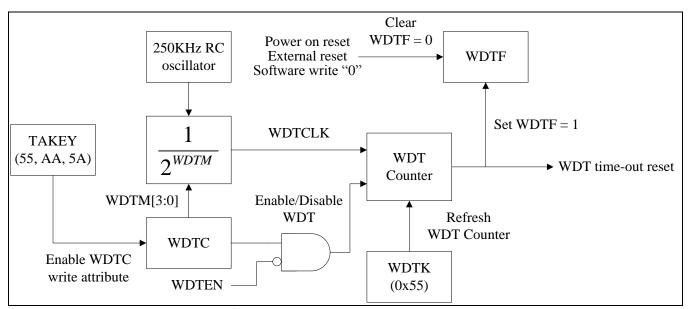


Fig. 8-1: Watchdog timer block diagram

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
Watchdog Timer											
TAKEY	Time Access Key register	F7h				TAKE'	Y [7:0]				00H
WDTC	Watchdog timer control register	B6h	WDTF	-	WDTE	-		WDTN	Л [3:0]		04H
WDTK	Watchdog timer refresh key	B7h				WDTI	K[7:0]				00H

Mnemo	Mnemonic: TAKEY							Address: F7h	
7	6	5	4	3	2	1	0	Reset	
			TAKE	Y [7:0]				00H	

Watchdog timer control register (WDTC) is read-only by default; software must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the WDTC write attribute. That is:

MOV TAKEY, #55h MOV TAKEY, #AAh MOV TAKEY, #5Ah

Mnemoi	nic: WD⊺	ГС					Addre	ess: B6h
7	6	5	4	3	2	1	0	Reset
WDTF	-	WDTE	-		WDTI	И [3:0]		04H

WDTF: Watchdog timer reset flag.

When MCU is reset by watchdog, WDTF flag will be set to one by hardware. This flag clear by software or external reset or power on reset.

WDTE: Control bit used to enable Watchdog timer.

The WDTE bit can be used only if WDTEN is "0". If the WDTEN bit is "0", then WDT

can be disabled / enabled by the WDTE bit.

0: Disable WDT.

1: Enable WDT.

The WDTE bit is not used if WDTEN is "1". That is, if the WDTEN bit is "1", WDT is always disabled no matter what the WDTE bit status is. The WDTE bit can be read and written.

WDTM [3:0]: WDT clock source divider bit. Please see table 8.1 to reference the WDT time-out period.

Mnemoi	nic: WDT	K					Addre	ss: B7h
7	6	5	4	3	2	1	0	Reset
	•		WDT	K[7:0]			•	00h

WDTK: Watchdog timer refresh key.

A programmer must write 0x55 into WDTK register, and then the watchdog timer will be cleared to zero.

For example, if enable WDT and select time-out reset period is 262.14ms.

First, programming the information block OP3 bit7 WDTEN to "0".

Secondly,

MOV TAKEY, #55h MOV TAKEY, #AAh

MOV TAKEY, #5Ah ; enable WDTC write attribute.

MOV WDTC, #28h ; Set WDTM [3:0] = 1000b. Set WDTE =1 to enable WDT

; function.

.

MOV WDTK, #55h ; Clear WDT timer to 0.

9. Interrupt

The SM39R04G1 provides 7 interrupt sources with four priority levels. Each source has its own request flag(s) located in a special function register. Each interrupt requested by the corresponding flag could individually be enabled or disabled by the enable bits in SFR's IEN0, and IEN1.

When the interrupt occurs, the engine will vector to the predetermined address as shown in Table 9.1. Once interrupt service has begun, it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by a return from instruction RETI. When an RETI is performed, the processor will return to the instruction that would have been next when interrupt occurred.

When the interrupt condition occurs, the processor will also indicate this by setting a flag bit. This bit is set regardless of whether the interrupt is enabled or disabled. Each interrupt flag is sampled once per machine cycle, and then samples are polled by hardware. If the sample indicates a pending interrupt when the interrupt is enabled, then interrupt request flag is set. On the next instruction cycle the interrupt will be acknowledged by hardware forcing an LCALL to appropriate vector address.

Interrupt response will require a varying amount of time depending on the state of microcontroller when the interrupt occurs. If microcontroller is performing an interrupt service with equal or greater priority, the new interrupt will not be invoked. In other cases, the response time depends on current instruction. The fastest possible response to an interrupt is 7 machine cycles. This includes one machine cycle for detecting the interrupt and six cycles for perform the LCALL.

Table 9-1: Interrupt vectors

Interrupt Request Flags	Interrupt Vector Address	Interrupt Number *(use Keil C Tool)
IE0 – External interrupt 0	0003h	0
TF0 – Timer 0 interrupt	000Bh	1
IE1 – External interrupt 1	0013h	2
TF1 – Timer 1 interrupt	001Bh	3
RI0/TI0 – Serial channel 0 interrupt	0023h	4
LVIIF – Low Voltage Interrupt	0063h	12
IICIF – IIC interrupt	006Bh	13

^{*}See Keil C about C51 User's Guide about Interrupt Function description

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
	Interrupt										
AUX	Auxiliary register	91h	BRGS	-	-	PTS	[1:0]	PINT	S[1:0]	DPS	00H
IEN0	Interrupt Enable 0 register	A8H	EA	1	-	ES0	ET1	EX1	ET0	EX0	00H
IEN1	Interrupt Enable 1 register	B8H	-	ı	IEIIC	IELVI	-	-	-	1	00H
IRCON	Interrupt request register	C0H	-	1	IICIF	LVIIF	-	-	-	1	00H
IP0	Interrupt priority level 0	A9h	-		IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0	00h
IP1	Interrupt priority level 1	B9h	-	-	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0	00h

 Mnemonic: AUX
 Address: 91h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 BRGS
 PTS[1:0]
 PINTS[1:0]
 DPS
 00H

The INT0 · INT1 signal can be configured to other I/O ·

Pack	Package = 14 Pin								
PINTS [1:0]	INT0	INT1							
0x00	P3.2	P3.3							
0x01	P3.0	P3.1							
0x10	P3.6	P3.7							
0x11	P3.2	P3.3							
Pack	kage = 10 Pin								
PINTS [1:0]	INT0	INT1							
0x00	P3.6	P3.7							
0x01	P3.0	P3.1							
0x10	P3.6	P3.7							
0x11	P3.6	P3.7							

Interrupt Enable 0 register(IEN0)

Mnemoi	nic: IEN0						Addre	ess: A8h	
7	6	5	4	3	2	1	0	Reset	
EA	-	-	ES0	ET1	EX1	ET0	EX0	00h	

EA: EA=0 – Disable all interrupt.

EA=1 - Enable all interrupt.

ES0: ES0=0 - Disable Serial channel 0 interrupt.

ES0=1 – Enable Serial channel 0 interrupt.

ET1: ET1=0 – Disable Timer 1 overflow interrupt.

ET1=1 – Enable Timer 1 overflow interrupt.

EX1: EX1=0 - Disable external interrupt 1.

EX1=1 - Enable external interrupt 1.

ET0: ET0=0 – Disable Timer 0 overflow interrupt.

ET0=1 – Enable Timer 0 overflow interrupt.

EX0: EX0=0 - Disable external interrupt 0.

EX0=1 – Enable external interrupt 0.

Interrupt Enable 1 register (IEN1)

Mnemonic: IEN1								Addre	ss: B8h
	7	6	5	4	3	2	1	0	Reset
	-	-	IEIIC	IELVI	-	-	-	-	00h

IEIIC: IIC interrupt enable.

IEIICS = 0 - Disable IIC interrupt.

IEIICS = 1 - Enable IIC interrupt.

IELVI: LVI interrupt enable.

IELVI = 0 - Disable LVI interrupt.

IELVI = 1 - Enable LVI interrupt.

Interrupt request register (IRCON)

Mnemonic: IRCON							Addre	ss: C0h
7	6	5	4	3	2	1	0	Reset
-	-	IICIF	LVIIF	-	-	-	1	00H

IICIF: IIC interrupt flag. LVIIF: LVI interrupt flag.

9.1. Priority level structure

All interrupt sources are combined in groups:

Table 9-2: Priority level groups

Groups-					
External interrupt 0					
Timer 0 interrupt	-				
External interrupt 1	-				
Timer 1 interrupt	-				
Serial channel 0 interrupt	LVI interrupt				
-	IIC interrupt				

Each group of interrupt sources can be programmed individually to one of four priority levels by setting or clearing one bit in the special function register ip0 and one in ip1. If requests of the same priority level will be received simultaneously, an internal polling sequence determines which request is serviced first.

Mnemonic: IP0								Addres	ss: A9h
	7	6	5	4	3	2	1	0	Reset
	-	-	IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0	00h

Mnemonic: IP1								Addres	s: B9h
	7	6	5	4	3	2	1	0	Reset
	-	-	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0	00h

Table 9-3: Priority levels

IP1.x	IP0.x	Priority Level
0	0	Level0 (lowest)
0	1	Level1
1	0	Level2
1	1	Level3 (highest)

Table 9-4: Groups of priority

rabio o ii oroapo o priorriy								
Bit	Group							
IP1.0, IP0.0	External interrupt 0	-						
IP1.1, IP0.1	Timer 0 interrupt	-						
IP1.2, IP0.2	External interrupt 1	-						
IP1.3, IP0.3	Timer 1 interrupt	-						
IP1.4, IP0.4	Serial channel 0 interrupt	LVI interrupt						
IP1.5, IP0.5	-	IIC interrupt						

ISSFD-M053 34 Ver.H SM39R04G1 08/2013

Table 9-5: Polling sequence

Interrupt source	Sequence
External interrupt 0	
Timer 0 interrupt	Ιω
External interrupt 1	Poseq
Timer 1 interrupt	lue
Serial channel 0 interrupt	ling
LVI interrupt	↓ [™]
IIC interrupt	

10. Power Management Unit

Power management unit serves two power management modes, IDLE and STOP, for the users to do power saving function.

Mnemoi	nic: PCOI	N					Addre	ess: 87h	
7	6	5	4	3	2	1	0	Reset	
SMOD	-	-	-	-	-	STOP	IDLE	40h	l

STOP: Stop mode control bit. Setting this bit turning on the Stop Mode.

Stop bit is always read as 0

IDLE: Idle mode control bit. Setting this bit turning on the Idle Mode.

Idle bit is always read as 0

10.1. Idle mode

Setting the IDLE bit of PCON register invokes the IDLE mode. The IDLE mode leaves internal clocks and peripherals running. Power consumption drops because the CPU is not active. The CPU can exit the IDLE state with any interrupts or a reset.

10.2. Stop mode

Setting the STOP bit of PCON register invokes the STOP mode. All internal clocking in this mode is turn off. The CPU will exit this state only if interrupts asserted from external INT0/1 and LVI or hardware reset by WDT and LVR.

11. IIC function

The IIC module uses the SCL (clock) and the SDA (data) line to communicate with external IIC interface. Its speed can be selected to 400Kbps (maximum) by software setting the IICBR [2:0] control bit. The IIC module provided 2 interrupts (RXIF, TXIF). It will generate START, repeated START and STOP signals automatically in master mode and can detects START, repeated START and STOP signals in slave mode. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400pF.

The interrupt vector is 6Bh.

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
				IIC fu	nction						
IICCTL	IIC control register	F9h	IICEN	MSS	MAS	AB_EN	BF_E N		IICBR[2:0]		
IICS	IIC status register	F8h	-	MPIF	LAIF	RXIF	TXIF	RXAK	TXAK	RW,B B	00H
IICA1	IIC Address 1 register	FAh		IICA1[7:1] MATCH1 or RW1							A0H
IICA2	IIC Address 2 register	FBh		IICA2[7:1] MATCH2 or RW2							60H
IICRWD	IIC Read/Write register	FCh		IICRWD[7:0]							00H
IICEBT	IIC Enaable Bus Transaction	FDh	FU.	FU_EN -						00H	

Mnemonic: IICCTL							Addre	ess: F9h
7	6	5	4	3	2	1	0	Reset
IICEN	MSS	MAS	AB_EN	BF_EN		IICBR[2:0]		04h

IICEN: Enable IIC module

IICEN = 1 is Enable

IICEN = 0 is Disable.

MSS: Master or slave mode select.

MSS = 1 is master mode.

MSS = 0 is slave mode.

*The software must set this bit before setting others register.

MAS: Master address select (master mode only)

MAS = 0 is to use IICA1.

MAS = 1 is to use IICA2.

AB_EN: Arbitration lost enable bit. (Master mode only)

If set AB EN bit, the hardware will check arbitration lost. Once arbitration lost occurred, hardware will return to IDLE state. If this bit is cleared, hardware will not care arbitration lost condition. Set this bit when multi-master and slave connection. Clear this bit when single master to single slave.

BF_EN: Bus busy enable bit. (Master mode only)

If set BF EN bit, hardware will not generate a start condition to bus until BF=0. Clear this bit will always generate a start condition to bus when MStart is set. Set this bit when multi-master and slave connection. Clear this bit when single master to single slave.

IICBR[2:0]: Baud rate selection (master mode only), where Fosc is the external crystal or oscillator frequency. The default is Fosc/512 for users' convenience.

IICBR[2:0]	Baud rate
000	Fosc/32
001	Fosc/64
010	Fosc/128

011	Fosc/256
100	Fosc/512
101	Fosc/1024
110	Fosc/2048
111	Fosc/4096

Mnemonic: IICS								Addr	ess: F8H	
	7	6	5	4	3	2	1	0	Reset	
	-	MPIF	LAIF	RXIF	TXIF	RXAK	TxAK	RW	00H	l

MPIF: The Stop condition Interrupt Flag

The stop condition occurred and this bit will be set. Software need to clear this bit

LAIF: Arbitration lost bit. (Master mode only)

The Arbitration Interrupt Flag, the bus arbitration lost occurred and this bit will be set. Software need to clear this bit

RxIF: The data Receive Interrupt Flag (RXIF) is set after the IICRWD (IIC Read Write Data Buffer) is loaded with a newly receive data.

TxIF: The data Transmit Interrupt Flag (TXIF) is set when the data of the IICRWD (IIC Read Write Data Buffer) is downloaded to the shift register.

RxAK: The Acknowledge Status indicate bit. When clear, it means an acknowledge signal has been received after the complete 8 bits data transmit on the bus.

TxAK: The Acknowledge status transmit bit. When received complete 8 bits data, this bit will set (NoAck) or clear (Ack) and transmit to master to indicate the receive status.

RW: Master Mode:

Bus busy bit

If detect scl=0 or sda=0 or bus start, this bit will be set. If detect stop, this bit will be cleared. This bit can be cleared by software to return ready state.

Slave Mode:

The slave mode read (received) or wrote (transmit) on the IIC bus. When this bit is clear, the slave module received data on the IIC bus (SDA).(Slave mode only)

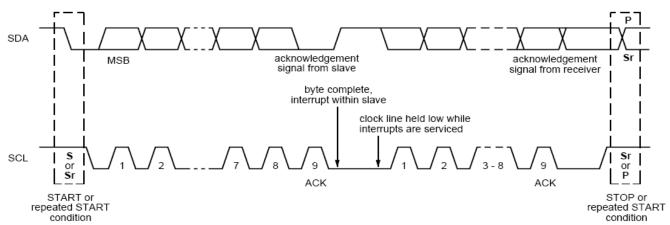


Fig. 11-1: Acknowledgement bit in the 9th bit of a byte transmission

Mnemonic: IICA1 Address					ess: FAH			
7	6	5	4	3	2	1	0	Reset
IICA1[7:1]						Match1 or RW1	A0H	
R/W						R or R/W		

Slave mode:

IICA1[7:1]: IIC Address registers

This is the first 7-bit address for this slave module. It will be checked when an address (from master) is received

Match1: When IICA1 matches with the received address from the master side, this bit will set to 1 by hardware. When IIC bus gets or send first data, this bit will clear automatically.

Master mode:

IICA1[7:1]: IIC Address registers

This 7-bit address indicates the slave with which it wants to communicate.

RW1: This bit will be sent out as RW of the slave side if the module has set the MStart or RStart bit. It appears at the 8th bit after the IIC address as shown in Fig. 14-2. It is used to tell the salve the direction of the following communication. If it is 1, the module is in master receive mode. If 0, the module is in master transmit mode.

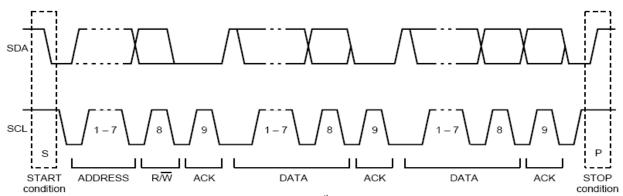


Fig. 11-2: RW bit in the 8th bit after IIC address

Mnemo	Mnemonic: IICA2 Address: FBn								
7	6	5	4	3	2	1	0 Rese		
IICA2[7:1]						Match2 or RW2	60h		
R/W						R or R/W			

Slave mode:

IICA2[7:1]: IIC Address registers

This is the second 7-bit address for this slave module.

It will be checked when an address (from master) is received

Match2: When IICA2 matches with the received address from the master side, this bit will set to 1 by hardware. When IIC bus gets or send first data, this bit will clear automatically.

Master mode:

IICA2[7:1]: IIC Address registers

This 7-bit address indicates the slave with which it wants to communicate.

RW2: This bit will be sent out as RW of the slave side if the module has set the MStart or RStart bit. It is used to tell the salve the direction of the following communication. If it is 1, the module is in master receive mode. If 0, the module is in master transmit mode.

Mnemonic: IICRWD							Addı	ess: FCh
7	6	5	4	3	2	1	0	Reset
	IICRWD[7:0]							00h

IICRWD[7:0]: IIC read write data buffer.

In receiving (read) mode, the received byte is stored here.

In transmitting mode, the byte to be shifted out through SDA stays here.

Mnemon	ic: IICEB	BT					Addre	ss: FDH
7	6	5	4	3	2	1	0	Reset
FU_	EN	-	-	ı	-	-	-	00H

Master Mode:

00: reserved

01: IIC bus module will enable read/write data transfer on SDA and SCL.

- 10: IIC bus module generate a start condition on the SDA/SCL, then send out address which is stored in the IICA1/IICA2(selected by MAS control bit)
- 11: IIC bus module generate a stop condition on the SDA/SCL.

Slave mode:

- 01: FU_EN[7:6] should be set as 01 only. The other value is inhibited. Notice:
 - 1. FU_EN[7:6] should be set as 01 before read/write data transfer for bus release; otherwise, SCL will be locked(pull low).
 - 2. FU_EN[7:6] should be set as 01 after read/write data transfer for receiving a stop condition from bus master.
 - 3. In transmit data mode (slave mode), the output data should be filled into IICRWD before setting FU_EN[7:6] as 01.
 - 4. FU_EN[7:6] will be auto-clear by hardware, so setting FU_EN[7:6] repeatedly is necessary.

12. LVI – Low Voltage Interrupt

The interrupt vector 63h.

Mnemonic: LVC Address: E6h Reset 3 0 LVI VS LVSIF **EPSIF** LVI EN LVRXE 20H

LVI EN: Low voltage interrupt function enable bit.

0: disable low voltage detect function.

1: enable low voltage detect function.

LVI_VS: Low Voltage Interrupt level Selection

0 :The level of voltage is set at Low-level

1 :The level of voltage is set at Hi-Level

LVRXE: External low voltage reset function enable bit.

0: disable external low voltage reset function.

1: enable external low voltage reset function.

LVSIF Low Voltage Status Flag

1:the VDD voltage under LVI voltage

0:the VDD voltage above LVI voltage

ESPIF MCU External Voltage Status Flag

1: means less than 3.8V(external power)

0: means more than 3.9V(external power)

Hi-level:

Symbol	Parameter	Min	Тур	Max	Units
V_{LVI}	Low Voltage Interrupt Voltage Level	3.4	3.7	4.0	V
V_{LVR}	Low Voltage Reset Voltage Level	3.2	3.5	3.8	V

The V_{IVI} always above V_{IVR} about 0.2V. Notes:

Low-level:

Symbol	Parameter	Min	Тур	Max	Units
V_{LVI}	Low Voltage Interrupt Voltage Level	2.1	2.3	2.5	V
V_{LVR}	Low Voltage Reset Voltage Level	1.9	2.1	2.3	V

Notes: The V_{LVI} always above V_{LVR} about 0.2V.

Ver.H SM39R04G1 08/2013 ISSFD-M053 41

13. In-System Programming (Internal ISP)

The SM39R04G1 can generate flash control signal by internal hardware circuit. Users utilize flash control register, flash address register and flash data register to perform the ISP function without removing the SM39R04G1 from the system. The SM39R04G1 provides internal flash control signals which can do flash program/chip erase/page erase/protect functions. User need to design and use any kind of interface which SM39R04G1 can input data. User then utilize ISP service program to perform the flash program/chip erase/page erase/protect functions.

13.1. ISP service program

The ISP service program is a user developed firmware program which resides in the ISP service program space. After user developed the ISP service program, user then determine the size of the ISP service program. User need to program the ISP service program in the SM39R04G1 for the ISP purpose.

The ISP service programs were developed by user so that it should includes any features which relates to the flash memory programming function as well as communication protocol between SM39R04G1 and host device which output data to the SM39R04G1. For example, if user utilize UART interface to receive/transmit data between SM39R04G1 and host device, the ISP service program should include baud rate, checksum or parity check or any error-checking mechanism to avoid data transmission error.

The ISP service program can be initiated under SM39R04G1 active or idle mode. It can not be initiated under power down mode.

13.2. Lock Bit (N)

The Lock Bit N has two functions: one is for service program size configuration and the other is to lock the ISP service program space from flash erase function.

The ISP service program space address range \$C00 to \$FFF. It can be divided as blocks of N*256 byte. (N=0 to 4). When N=0 means no ISP function, all of 4K byte flash memory can be used as program memory. When N=1 means ISP service program occupies 256 byte while the rest of 3.75K byte flash memory can be used as program memory. The maximum ISP service program allowed is 1K byte when N=4. Under such configuration, the usable program memory space is 3K byte.

After N determined, SM39R04G1 will reserve the ISP service program space downward from the top of the program address \$FFF. The start address of the ISP service program located at \$0C00. Please see section 3.1 program memory diagram for this ISP service program space structure.

The lock bit N function is different from the flash protect function. The flash erase function can erase all of the flash memory except for the locked ISP service program space. If the flash not has been protected, the content of ISP service program still can be read. If the flash has been protected, the overall content of flash program memory space including ISP service program space can not be read.

Table 13.1 ISP code area.

N	ISP service program address
0	No ISP service program
1	256 bytes (\$F00h ~ \$FFFh)
2	512 bytes (\$E00h ~ \$FFFh)
3	768 bytes (\$D00h ~ \$FFFh)
4	1.0 K bytes (\$C00h ~ \$FFFh)

ISP service program configurable in N*256 byte (N= 0 ~ 4)

13.3. Program the ISP Service Program

After Lock Bit N is set and ISP service program been programmed, the ISP service program memory will be protected (locked) automatically. The lock bit N has its own program/erase timing. It is different from the flash memory program/erase timing so the locked ISP service program can not be erased by flash erase function. If user needs to erase the locked ISP service program, he can do it by writer only. User can not change ISP service program when SM39R04G1 was in system.

13.4. Initiate ISP Service Program

To initiate the ISP service program is to load the program counter (PC) with start address of ISP service program and execute it. There are four ways to do so:

- (1) Blank reset. Hardware reset with first flash address blank (\$0000=#FFH) will load the PC with start address of ISP service program. The hardware reset includes MAX810 (power on reset) and external pad reset. The hardware will issue a strobe window about 256us after hardware reset.
- (2) Execute jump instruction can load the start address of the ISP service program to PC.
- (3) Enter's ISP service program by hardware setting. User can force SM39R04G1 enter ISP service program by setting "ISP active pin" (14L at P3.7 , 10L at P3.3), "active low" during hardware reset period. The hardware reset includes MAX810 (power on reset) and external pad reset. The hardware will issue a strobe window about 256us after hardware reset. In application system design, user should take care of the setting of "ISP active pin" (14L at P3.7 , 10L at P3.3), at reset period to prevent SM39R04G1 from entering ISP service program.
- (4) Enter's ISP service program by hardware setting, the P3.0 will be detected the two clock signals during hardware reset period. The hardware reset includes MAX810 (power on reset) and external pad reset. The hardware will issue a 256us strobe window to detect 2 clock signals after hardware reset.

During the strobe window, the hardware will detect the status of "ISP active pin" (14L at P3.7, 10L at P3.3) and P3.0. If they meet one of above conditions, chip will switch to ISP mode automatically. After ISP service program executed, user need to reset the SM39R04G1, either by hardware reset or by WDT, or jump to the address \$0000 to re-start the firmware program.

There are 6 kinds of entry mechanisms for user different applications. This entry method will select on the writer or ISP.

- (1) First Address Blank. i.e. \$0000 = 0xFF. And triggered by Internal reset signal.
- (2) First Address Blank. i.e. \$0000 = 0xFF. And triggered by PAD reset signal.
- (3) "ISP active pin" (14L at P3.7, 10L at P3.3)=0. And triggered by Internal reset signal.
- (4) "ISP active pin" (14L at P3.7, 10L at P3.3)=0. And triggered by PAD reset signal.
- (5) P3.0 input 2 clocks. And triggered by Internal reset signal.
- (6) P3.0 input 2 clocks. And triggered by PAD reset signal.

13.5. ISP register – TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC

Mnemonic	Description	Direct	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	RESET
				ISP 1	function						
TAKEY	Time Access Key register	F7h		TAKEY [7:0]							00H
IFCON	Interface Control register	8Fh	-	CDPR	-	-	-	-	-	ISPE	00H
ISPFAH	ISP Flash Address - High register	E1h		- ISPFAH [3:0]						FFH	
ISPFAL	ISP Flash Address - Low register	E2h		ISPFAL [7:0]						FFH	

ISPFD	ISP Flash Data register	E3h				ISPFE	7:0]				FFH
ISPFC	ISP Flash Control register	E4h	EMF1	EMF2	EMF3	EMF4	1	ISPF.2	ISPF.1	ISPF.0	00H

Mnemonio	: TAKEY						Add	dress: F7H
7	6	5	4	3	2	1	0	Reset
			TAKEY	[7:0]				00H

ISP enable bit (ISPE) is read-only by default, software must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the ISPE bit write attribute. That is:

MOV TAKEY, #55h MOV TAKEY, #AAh MOV TAKEY, #5Ah

Mnemoni	c: IFCON						Add	ress: 8FH
7	6	5	4	3	2	1	0	Reset
-	CDPR	-	-	-	-	-	ISPE	00H

The bit 0 (ISPE) of IFCON is ISP enable bit. User can enable overall SM39R04G1 ISP function by setting ISPE bit to 1, to disable overall ISP function by set ISPE to 0. The function of ISPE behaves like a security key. User can disable overall ISP function to prevent software program be erased accidentally. ISP registers ISPFAH, ISPFAL, ISPFD and ISPFC are read-only by default. Software must be set ISPE bit to 1 to enable these 4 registers write attribute.

Mnemoni	c: ISPFAH						Addre	ess: E1H
7	6	5	4	3	2	1	0	Reset
-	-	-	-	ISPFAH3	ISPFAH2	ISPFAH1	ISPFAH0	FFH

ISPFAH [3:0]: Flash address-high for ISP function

Mnemoni	c: ISPFAL						Addres	s: E2H
7	6	5	4	3	2	1	0	Reset
ISPFAL7	ISPFAL6	ISPFAL5	ISPFAL4	ISPFAL3	ISPFAL2	ISPFAL1	ISPFAL0	FFH

ISPFAL [7:0]: Flash address-Low for ISP function

The ISPFAH & ISPFAL provide the 12-bit flash memory address for ISP function. The flash memory address should not include the ISP service program space address. If the flash memory address indicated by ISPFAH & ISPFAL registers overlay with the ISP service program space address, the flash program/page erase of ISP function executed thereafter will have no effect.

Mnemonio	:: ISPFD						Addres	ss: E3H
7	6	5	4	3	2	1	0	Reset
ISPFD7	ISPFD6	ISPFD5	ISPFD4	ISPFD3	ISPFD2	ISPFD1	ISPFD0	FFH

ISPFD [7:0]: Flash data for ISP function.

The ISPFD provide the 8-bit data register for ISP function.

 Mnemonic: ISPFC
 Address: E4H

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 EMF1
 EMF2
 EMF3
 EMF4
 ISPF[2]
 ISPF[1]
 ISPF[0]
 00H

EMF1: Entry mechanism (1) flag, clear by reset. (Read only) EMF2: Entry mechanism (2) flag, clear by reset. (Read only) EMF3: Entry mechanism (3) flag, clear by reset. (Read only) EMF4: Entry mechanism (4) flag, clear by reset. (Read only)

ISPF [2:0]: ISP function select bit.

ISPF[2:0]	ISP function
000	Byte program
001	Chip protect
010	Page erase
011	Chip erase
100	Write option
101	Read option
110	Erase option
111	Finish Flag

One page of flash memory is 256 byte

The Option function can access the XTAL1 and XTAL2 configured to I/O pins select(description in section 1.2) \ Internal reset time select(description in section 1.4.1) \ clock source select(description in section 1.5) \ Reset configured to I/O pins function select(description in section 5) \ WDTEN control bit(description in section 8) \ or ISP entry mechanisms select(description in section 13) \ When chip protected or no ISP service, option can only read.

The choice ISP function will start to execute once the software write data to ISPFC register.

To perform byte program/page erases ISP function, user need to specify flash address at first. When performing page erase function, SM39R04G1 will erase entire page which flash address indicated by ISPFAH & ISPFAL registers located within the page.

e.g. flash address: \$YMN

page erase function will erase from \$Y00 to \$YFF

To perform the chip erase ISP function, SM39R04G1 will erase all the flash program memory except the ISP service program space. To perform chip protect ISP function, the SM39R04G1 flash memory content will be read #00H.

e.g. ISP service program to do the byte program - to program #22H to the address \$0105H

MOV TAKEY, #55h
MOV TAKEY, #AAh
MOV TAKEY, #5Ah
MOV IFCON, #01H
MOV ISPFAH, #01H
MOV ISPFAL, #05H
MOV ISPFD, #22H

; enable ISPE write attribute
; enable SM39R04G1 ISP function
; set flash address-high, 01H
; set flash address-low, 05H
; set flash data to be programmed, data = 22H

MOV ISPFC, #00H ; start to program #22H to the flash address \$0105H

Operating Conditions

Symbol	Description	Min.	Тур.	Max.	Unit.	Remarks
TA	TA Operating temperature		25	85	$^{\circ}\!\mathbb{C}$	Ambient temperature under bias
V _{cc}	Supply voltage	2.7		5.5	V	23MHz(Max)
V _{CC}	Supply voltage	3.0		5.5	V	25MHz(Max)

DC Characteristics

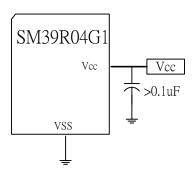
 $T_A = -40^{\circ}C$ to $85^{\circ}C$, $V_{CC} = 5.0V$

Symbol	Parameter	Valid	Min	Max	Units	Conditions
VIL1	Input Low-voltage	Port 1,3	-0.5	0.8	V	Vcc=5V
VIL2	Input Low-voltage	RES, XTAL1	0	0.8	V	
VIH1	Input High-voltage	Port 1,3	2.0	V _{CC} + 0.5	V	
VIH2	Input High-voltage	RES, XTAL1	70%Vcc	V _{CC} + 0.5	V	
VOL	Output Low-voltage	Port 1,3		0.4	V	IOL=5.0mA Vcc=5V
VOH1	Output High-voltage using Strong Pull-up ⁽¹⁾	Port 1,3	2.4		V	IOH= -16mA
VOH2	Output High-voltage using Weak Pull-up ⁽²⁾	Port 1,3	2.4		V	IOH= -280uA
IIL	Logic 0 Input Current	Port 1,3		-75	uA	Vin= 0.45V
ITL	Logical Transition Current	Port 1,3		-650	uA	Vin= 2.0V
ILI	Input Leakage Current	Port 1,3		±10	uA	0.45V <vin<vcc< td=""></vin<vcc<>
RRST	Reset Pull-down Resistor	RES	50	300	kΩ	
CIO	Pin Capacitance			10	pF	Freq= 1MHz, Ta= 25°C
				11	mA	Active mode, 12MHz, Vcc=5V, 25 °C
ICC	Power Supply Current	VDD		10	mA	Idle mode, 12MHz, Vcc=5V, 25 °C
				3	uA	Power down mode Vcc=5V, 25 °C

Notes: 1. Port in Push-Pull Output Mode

2. Port in Quasi-Bidirectional Mode

ISSFD-M053 46 Ver.H SM39R04G1 08/2013


$T_A = -40^{\circ}C$	to	85 ℃.	$V_{CC} =$	3.0V

Symbol	Parameter	Valid	Min	Max	Units	Conditions
VIL1	Input Low-voltage	Port 1,3	-0.5	0.8	V	Vcc=3.0V
VIL2	Input Low-voltage	RES, XTAL1	0	0.8	V	
VIH1	Input High-voltage	Port 1,3	2.0	V _{CC} + 0.5	V	
VIH2	Input High-voltage	RES, XTAL1	70%Vcc	V _{CC} + 0.5	V	
VOL	Output Low-voltage	Port 1,3		0.4	V	IOL=3.0mA Vcc=3.0V
VOH1	Output High-voltage using Strong Pull-up ⁽¹⁾	Port 1,3	2.4		V	IOH= -3.2mA
VOH2	Output High-voltage using Weak Pull-up ⁽²⁾	Port 1,3	2.4		>	IOH= -55uA
IIL	Logic 0 Input Current	Port 1,3		-75	uA	Vin= 0.45V
ITL	Logical Transition Current	Port 1,3		-650	uA	Vin=1.5V
ILI	Input Leakage Current	Port 1,3		±10	uA	0.45V <vin<vcc< th=""></vin<vcc<>
RRST	Reset Pull-down Resistor	RES	50	300	kΩ	
CIO	Pin Capacitance			10	pF	Freq= 1MHz, Ta= 25°℃
				10	mA	Active mode, 12MHz, Vcc=3.0V, 25 ℃
ICC	Power Supply Current	VDD		9	mA	Idle mode, 12MHz, Vcc=3.0V, 25 ℃
				2	uA	Power down mode, Vcc=3.0V, 25 °C

Notes: 1. Port in Push-Pull Output Mode

2. Port in Quasi-Bidirectional Mode

Suggest circuit connect:

ISSFD-M053 47 Ver.H SM39R04G1 08/2013