1. Overview

The SH7459 Group is a single-chip RISC (reduced instruction set computer) microcontroller based on a Renesas original RISC CPU core.
Basically the SH7459 Group is the same as the SH 7456 Group. Please refer to SH 7455 Group, SH 7456 Group User's Manual: Hardware Rev.1.10 (Sep 22, 2011). Table 1.1 shows the differences between the SH7456 Group and the SH7459 Group.

* Henceforth, the bold letter portion (shaped portion) shows a difference from SH7456 Group.

Table 1.1 Products

2. Details

This section shows the details of the difference from SH7455 Group, SH7456 Group User's Manual: Hardware Rev.1.10 (Sep 22, 2011). Table 2.1 shows the difference between the SH74562 and the SH74593.

Table 2.1 Difference between SH74562 and SH74593

Page	Description
1-1	- 1.1 Features
	Product SuperHyway RAM (SHwyRAM) Capacity
	SH74562 256 Kbytes
	SH74593 512 Kbytes
1-4	- Table 1.1 Specifications Overview: Descriptions of ROM
	Product ROM Capacity
	SH74562 1-Mbytes
	SH74593 1.5-Mbytes
	- Table 1.1 Specifications Overview: Descriptions of RAM
	Product RAM Capacity
	SH74562 256-Kbytes
	SH74593 512-Kbytes
1-4	- Table 1.1 Specifications Overview: Descriptions of CPG
	Product CPU clock (lck)
	SH74562 160 MHz maximum
	SH74593 240 MHz maximum

Page	Description
1-6	- Table 1.1 Specifications Overview: Descriptions of FlexRay
	Product Channels of FlexRay
	SH74562 None: SH7456 Group
	SH74593 Two channels: SH7459 Group
1-7	- Table 1.1 Specifications Overview: Descriptions of Operating temperature
	Product Operating temperature
	SH74562 $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	SH74593 $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
	- Table 1.2 Products
	Product Model ROM Capacity SHwyRAM Capacity FlexRay
	SH74562 R5F74562KBG 1 Mbyte 256 Kbytes No
	SH74593 R5F74593LBG 1.5 Mbytes 512 Kbytes Yes
	Please refer to Appendix A.
1-8	- Figure 1.1 Block Diagram
	Product SH-4A core clock ROM Capacity SHwyRAM Capacity
	SH74562 SH-4A core (160 MHz maximum) ROM (1 Mbyte) SHwyRAM (256 Kbytes)
	SH74593 SH-4A core ($\mathbf{2 4 0} \mathrm{MHz}$ maximum) \quad ROM ($\mathbf{1 . 5}$ Mbytes) ${ }^{\text {S }}$ SHwyRAM (512 Kbytes)
1-9	- Figure 1.2 Pin Arrangement (Top Transparent View)
1-15	- Table 1.3 Pin Functions of pin A6
	Product A6 pin
	SH74562 Vcc
	SH74593 Vss
	Please refer to Appendix B.
11-2	- Figure 11.2 Address Space (P0/UO Area): Descriptions of 29-bit physical address space (Single chip) Product ROM Capacity (Start address - Last address) SHwyRAM Capacity (Start address - Last address)
	SH74562 1 Mbyte (H'0000 0000 - H'000F FFFF) 256 Kbytes(H'1800 0000 - H'1803 FFFF)
	SH74593 1.5 Mbytes (H'0000 0000 - H'0017 FFFF) 512 Kbytes(H'1800 0000 - H'1807 FFFF)
	Please refer to Appendix C.1.
11-3	- Figure 11.3 Address Space (P1 Area): Descriptions of 29-bit physical address space (Single chip)
	Product ROM Capacity (Start address - Last address) SHwyRAM Capacity (Start address - Last address)
	SH74562 1 Mbyte (H'8000 0000 - H'800F FFFF) 256 Kbytes(H'9800 0000 - H'9803 FFFF)
	SH74593 1.5 Mbytes (H'8000 0000 - H'8017 FFFF) 512 Kbytes(H'9800 0000 - H'9807 FFFF)
	Please refer to Appendix C.2.
11-4	- Figure 11.4 Address Space (P2 Area): Descriptions of 29-bit physical address space (Single chip)
	Product ROM Capacity (Start address - Last address) SHwyRAM Capacity (Start address - Last address)
	SH74562 1 Mbyte (H'A000 0000 - H'A00F FFFF) 256 Kbytes(H'B800 0000 - H'B803 FFFF)
	SH74593 1.5 Mbytes (H'A000 0000 - H'A017 FFFF) 512 Kbytes(H'B800 0000 - H'B807 FFFF)
	Please refer to Appendix C.3.
11-5	- Figure 11.5 Address Space (P3 Area): Descriptions of 29-bit physical address space (Single chip)
	Product ROM Capacity (Start address - Last address) SHwyRAM Capacity (Start address - Last address)
	SH74562 1 Mbyte (H'C000 0000 - H'C00F FFFF) 256 Kbytes(H'D800 0000 - H'D803 FFFF)
	SH74593 1.5 Mbytes (H'C000 0000 - H'C017 FFFF) 512 Kbytes(H'D800 0000 - H'D807 FFFF)
	Please refer to Appendix C.4.

$\frac{\text { Page }}{12-20}$	Description	
	- Figure 12.6 FCU Mode Transition Diagram (ROM-Related Modes)	
	Product Transition from "ROM read mode" to "ROM P/E mode"	
	SH74562 FENTRYR $=$ H'0001	
	SH74593 FENTRYR $=$ H'0001 or FENTRYR $=$ H'0002	
	Please refer to Appendix D.5.	
12-20	- 12.6.2 Conditions for FCU Command Acceptance : (1) ROM read mode	
	Product Description	
	SH74562 This MCU switches to this mode when the FENTRY0 bit in the FENTRYR register is set to "0".	
	SH74593	This MCU switches to this mode when both the FENTRY1 and FENTRYO bits in the FENTRYR register are set to " 0 ".
12-20	- 12.6.2 Conditions for FCU Command Acceptance : (2) ROM P/E mode	
	Product Description	
	SH74562	The FCU enters this mode when the FENTRY0 bit is set to "1". Table 12.6 lists the commands that the FCU accepts. The high-speed ROM readout operation cannot be used in this mode. Although read access to locations H'FD80 0000 to H'FD8F FFFF is illegal, undefined values will be returned. To read the ROM data, the FCU must switch to ROM read mode. If a peripheral-bus read access to a location from H'FD80 0000 to H'FD8F FFFF is issued in the state where the FENTRYO bit is "1", a ROM access error will occur and the FCU will switch to the commandlocked state. (See section 12.8.3, Error Protection.)
	SH74593	The FCU enters this mode when either the FENTRY1 or FENTRY0 bit is set to "1". Table 12.6 lists the commands that the FCU accepts. The high-speed ROM readout operation cannot be used in this mode. Although read access to locations H'FD80 0000 to H'FD97 FFFF is illegal, undefined values will be returned. To read the ROM data, the FCU must switch to ROM read mode. If a
		peripheral-bus read access to a location from H'FD90 0000 to H'FD97 FFFF is issued in the state where the FENTRY1 bit is "1", or If a peripheral-bus read access to a location from
		H'FD80 0000 to H'FD8F FFFF is issued in the state where the FENTRY0 bit is "1", a ROM access error will occur and the FCU will switch to the command-locked state. (See section 12.8.3, Error
12-22	- Figure 12.7 Command State Transitions in ROM Read Mode and P/E mode	
	Product Tr	Transition from "ROM read mode" to "ROM P/E mode"
	SH74562 F	FENTRYR = H'0001
	SH74593 F	FENTRYR $=$ H'0001 or FENTRYR $=$ H'0002
	Please refer to Appendix D.6.	
12-23	- 12.6.3 FCU Command Usage : (1) Methods for switching to ROM P/E mode	
	SH74562 $\begin{array}{r}\text { F } \\ \\ \mathrm{F} \\ \mathrm{F} \\ \mathrm{S} \\ \mathrm{F}\end{array}$	For an application to execute ROM related FCU commands, it is necessary to set the FCU to ROM P/E mode by setting the FENTRYO bit in the FENTRYR register. (See section 12.6.2, Conditions for FCU Command Acceptance.) To use ROM related FCU commands, set the FENTRY0 bit to "1". See section 12.3.6, Flash P/E Mode Entry Register (FENTRYR) for the conditions for setting the FENTRYO bit.
	SH74593 $\begin{array}{r}\text { F } \\ \text { P } \\ \text { C } \\ \text { s } \\ \text { st } \\ \text { b }\end{array}$	For an application to execute ROM related FCU commands, it is necessary to set the FCU to ROM P/E mode by setting bits FENTRY1 and FENTRY0 in the FENTRYR register. (See section 12.6.2, Conditions for FCU Command Acceptance.) To use FCU commands for the first 1-Mbyte and second 0.5-Mbyte sections of ROM, set bits FENTRY1 and FENTRY0 to the corresponding state. See section 12.3.6, Flash P/E Mode Entry Register (FENTRYR) for the conditions for setting bits FENTRY1 and FENTRYO.

Page	Description	
12-23	- Figure 12.8 Procedure for Transition to ROM P/E Mode Product Specifies "ROM P/E mode"	
	SH74562 To set FENTRY0 to 1 : Write H'AA01	
	SH74593	To set FENTRY1 to 1 : Write H'AA02
		To set FENTRY0 to 1 : Write H'AA01
	Please refer to Appendix D.7.	
12-24	- 12.6.3 FCU Command Usage : (2) Entering ROM Read Mode	
	Product Description	
	SH74562 T	To enable high-speed ROM read access over the SuperHyway bus, it is necessary to set the FCU to ROM read mode by clearing the FENTRYO bit in the FENTRYR register.
	SH74593	To enable high-speed ROM read access over the SuperHyway bus, it is necessary to set the FCU to ROM read mode by clearing bits FENTRY1 and FENTRY0 in the FENTRYR register.
12-25	- 12.6.3 FCU Command Usage : (3) Programming	
	SH74562	The addresses that can be specified in the first to 131st cycles depend on the setting of the FENTRY0 bit in the FENTRYR register. An address in the range from H'FD80 0000 to H'FD8F FFFF is can be specified when the FENTRY0 bit is set to " 1 ". If a command is issued while an illegal combination of the FENTRYO bit value and addresses is specified, the FCU detects an error and enters command-locked state (see section 12.8.3, Error Protection).
	SH74593	The addresses that can be specified in the first to 131st cycles depend on the setting of bits
		FENTRY1 and FENTRY0 in the FENTRYR register. An address in the range from H'FD90 0000
		to H'FD97 FFFF is can be specified when the FENTRY1 bit is set to "1", or an address in the
		range from H'FD80 0000 to H'FD8F FFFF is can be specified when the FENTRY0 bit is set to "1".
		If a command is issued while an illegal combination of FENTRY1 and FENTRY0 bit values and addresses is specified, the FCU detects an error and enters command-locked state (see section
12-33	- 12.8.1 Hardware Protection : (1) Protection through FWE Pin	
	Product	Description
	SH74562 In	In this state,"1" cannot be written to the FENTRYO bit in the FENTRYR register; that is, ROM P/E mode cannot be entered, which prevents the ROM from being programmed or erased. When the FRDY bit is set to " 1 " and the FWE pin is "L" level, the FCU clears the FENTRYO bit to disable ROM programming and erasure.
	SH74593 In	In this state,"1" cannot be written to bits FENTRY1 and FENTRY0 in the FENTRYR register; that is, ROM P/E mode cannot be entered, which prevents the ROM from being programmed or erased. When the FRDY bit is set to "1" and the FWE pin is "L" level, the FCU clears bits FENTRY1 and FENTRYO to disable ROM programming and erasure.
12-33	- 12.8.2 Software Protection : (1) FENTRYR Protection	
	Product D	Description
	SH74562	When the FENTRYO bit is " 0 ", the EB00 to EB19 blocks of ROM (read addresses: H'0000 0000 to H'000F FFFF, program/erase addresses: H'FD80 0000 to H'FD8F FFFF) goes to ROM read mode.
	SH74593	When the FENTRY1 bit in the FENTRYR register is " 0 ", the EB20 to EB23 blocks of ROM (read addresses: H'0010 0000 to H'0017 FFFF, program/erase addresses: H'FD90 0000 to H'FD97 FFFF) goes to ROM read mode. When the FENTRY0 bit is " 0 ", the EB00 to EB19 blocks of ROM (read addresses: H'0000 0000 to H'000F FFFF, program/erase addresses: H'FD80 0000 to H'FD8F FFFF) goes to ROM read mode.

Page	Description
28-1	- Table 28.1 DRII Overview
	Product Access areas
	SH74562 All SHwyRAM areas (up to 256 Kbytes)
	SH74593 All SHwyRAM areas (up to $\mathbf{5 1 2}$ Kbytes)
	Please refer to Appendix H.1.
28-46	- 28.3.23 DRIi Address Reload Registers 0 and 1 (DRIIADRORLD and DRIIADR1RLD) : Description of DRIADmRLD bit
	Product Description
	SH74562 Address Bits 18 to 2 Reload Value (256-Kbyte area)
	SH74593 Address Bits 18 to 2 Reload Value (512-Kbyte area)
	Please refer to Appendix H.2.
28-47	- 28.3.24 DRIi Address Counters 0 and 1 (DRIIADR0CT and DRIiADR1CT) : Description of DRIADn bit Product Description
	SH74562 Destination Address Bits 18 to 2 (256-Kbyte area)
	SH74593 Destination Address Bits 18 to 2 (512-Kbyte area)
	Please refer to Appendix H.3.
29-1	- Table 29.1 DRO Module Overview
	Product Access area
	SH74562 SHwyRAM area (256 Kbytes)
	SH74593 SHwyRAM area (512 Kbytes)
	Please refer to Appendix I.
38-1	- Table 38.1 Absolute Maximum Ratings
	Product Power dissipation (Pd)
	SH74562 $1000 \mathrm{~mW}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	SH74593 $1200 \mathrm{~mW}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
	Please refer to Appendix J.1.
38-1	- Table 38.1 Absolute Maximum Ratings
	Product Operating temperature (Topr)
	SH74562 $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	SH74593 $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
	Please refer to Appendix J.1.
38-10	- Table 38.14 DC Characteristics - Supply Current
	Product Core supply current (Vdd power supply)
	SH74562 IDD is 480 mA (maximum) Ick $=160 \mathrm{MHz}$
	SH74593 IDD is $\mathbf{5 6 0 ~ m A}$ (maximum) Ick $=\mathbf{2 4 0 ~ M H z}$
	Please refer to Appendix J.2.
38-11	- 38.3 AC Characteristics: Descriptions of the timing conditions
	Product The timing conditions of AC Characteristics
	SH74562 $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	SH74593 $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
	Please refer to Appendix J.3.

Appendix A

Section 1 Overview

1.2 Product Line Overview

Table 1.2 lists the products.
Table 1.2 Products

Product	Model	ROM Capacity	RAM Capacity	Package	FlexRay
SH74552	R5F74552KBG	1 Mbyte	IL memory: 8 Kbytes, OL memory: 16 Kbytes, and SHwyRAM: 256 Kbytes	PRBG0176GA-A	Yes
SH74562	R5F74562KBG				No
SH74572	R5F74572LBG				Yes
SH74593	R5F74593LBG	1.5 Mbyte	IL memory: 8 Kbytes, OL memory: 16 Kbytes, and SHwyRAM: 512 Kbytes		Yes

Appendix B

Section 1 Overview

1.4 Pin Arrangement

Figure 1.2 shows the pin arrangement.

Figure 1.2 Pin Arrangement (Top Transparent View)

Appendix C

Appendix C. 1

Section 11 Address Space

F or details on the P0/U0 area to the P4 area, see figures 11.2 to 11.6.

Figure 11.2 Address Space (PO/U0 Area)

Appendix C. 2

Section 11 Address Space

Figure 11.3 Address Space (P1 Area)

Appendix C. 3

Section 11 Address Space

Figure 11.4 Address Space (P2 Area)

Appendix C. 4

Section 11 Address Space

Figure 11.5 Address Space (P3 Area)

Appendix D

Section 12 ROM

Appendix D. 1

12.1 Overview

- Two types of flash-memory MATs

<Read> Address H'0000 0000 Address H'0017 FFFF 15 Mbytes		<Program/erase>	<Read>		
		Address H'FD80 0000	Address H'0000 0000 Address H'0000 7FFF	$\begin{aligned} & \text { User boot MAT } \\ & \text { (32 Kbytes) } \end{aligned}$	Address H'FD80 0000 Address H'FD80 7FFF
	User MAT				
		Address H'FD97 FFFF			

Figure 12.1 Memory MAT Configuration in ROM

Appendix D. 2

12.1 Overview

- Programming/erasing unit

Figurel2.3 shows the block allocation of the user MAT.

$\begin{aligned} & \text { H'0000 } 0000 \\ & \text { H'0000 1FFF } \end{aligned}$	EB00 (8-Kbyte)	H'FD80 0000 H'FD80 1FFF	<Read>		<Program/erase>
H'0000 2000		$\begin{aligned} & \text { H'FD80 } 2000 \\ & \text { H'FD80 3FFF } \end{aligned}$			
H'0000 3FFF	EB01 (8-Kbyte)		Block start		Block start
H'0000 4000 H'0000 5FFF	EB02 (8-Kbyte)	H'FD80 4000 H'FD80 5FFF		Block name (size)	Block end
H'O000 6000	EB03 (8-Kbyte)	H'FD80 6000	Block end		
$\begin{aligned} & \text { H'O000 8000 } \\ & \text { H'0000 9FFF } \end{aligned}$	EB04 (8-Kbyte)	H'FD80 8000 H'FD80 9FFF			
$\begin{aligned} & \text { H'0000 A000 } \\ & \text { H'0000 BFFF } \end{aligned}$	EB05 (8-Kbyte)	H'FD80 A000 H'FD80 BFFF			
$\begin{aligned} & \text { H'0000 C000 } \\ & \text { H'OOOO DFFF } \end{aligned}$	EB06 (8-Kbyte)	H'FD80 C000 H'FD80 DFFF	H'0010 0000	EB20 (128-Kbyte)	H'FD90 0000
$\begin{aligned} & \text { H'0000 EOOO } \\ & \text { H'0000 FFFF } \end{aligned}$	EB07 (8-Kbyte)	H'FD80 E000 H'FD80 FFFF H'FD81 0000			
	EB08 (64-Kbyte)				
$\begin{aligned} & \text { H'0001 FFFF } \\ & \text { H'0002 } 0000 \end{aligned}$		H'FD81 FFFF H'FD82 0000	$\begin{aligned} & H^{\prime} 0011 \text { FFFF } \\ & H^{\prime} 00120000 \end{aligned}$		$\begin{aligned} & \text { H'FD91 FFFF } \\ & \text { H'FD92 } 0000 \end{aligned}$
	EB09 (64-Kbyte)				
$\begin{aligned} & \text { H'0002 FFFF } \\ & \text { H'0003 } 0000 \end{aligned}$		H'FD82 FFFFH'FD83 0000		EB21 (128-Kbyte)	
	EB10 (64-Kbyte)				
$\begin{aligned} & \text { H'0003 FFFF } \\ & \text { H'0004 } 0000 \end{aligned}$		H'FD83 FFFF H'FD84 0000	$\begin{aligned} & \text { H'0013 FFFF } \\ & \hline H^{\prime} 00140000 \end{aligned}$		$\begin{aligned} & \text { H'FD93 FFFF } \\ & \hline \text { H'FD94 } 0000 \end{aligned}$
	EB11 (64-Kbyte)				
H'0004 FFFF H'0005 0000		H'FD84 FFFF H'FD85 0000		EB22 (128-Kbyte)	
	EB12 (64-Kbyte)				
H'0005 FFFF H'0006 0000		H'FD85 FFFF H'FD86 0000	H'0015 FFFF H'0016 0000		
	EB13 (64-Kbyte)				
$\begin{aligned} & H^{\prime} \prime 0006 \text { FFFF } \\ & \text { H'0007 } 0000 \end{aligned}$		$\begin{aligned} & \text { H'FD86 FFFF } \\ & \text { H'FD87 } 0000 \end{aligned}$		EB23 (128-Kbyte)	
	EB14 (64-Kbyte)				
H'0007 FFFF H'0008 0000		H'FD87 FFFF H'FD88 0000	H'0017 FFFF		H'FD97 FFFF
	EB15 (64-Kbyte)				
H'0008 FFFF H'0009 0000		H'FD88 FFFF			
	EB16 (64-Kbyte)				
H'0009 FFFF H'OOOA 0000		H'FD89 FFFF H'FD8A 0000			
	EB17 (128-Kbyte)				
H'000B FFFF H'OOOC 0000		H'FD8B FFFF H'FD8C 0000			
	EB18 (128-Kbyte)				
$\begin{aligned} & \text { H'OOOD FFFF } \\ & \text { H'OOOE } 0000 \end{aligned}$		H'FD8D FFFF H'FD8E 0000			
	EB19 (128-Kbyte)				
H'O00F FFFF		H'FD8F FFFF			

Figure 12.3 User MAT and Block Allocation

Appendix D. 3

12.3.2 Flash Access Status Register (FASTAT)

The FASTAT register indicates the access error status for the ROM. If any bit in the FASTAT register is set to " 1 ", the FCU enters command-locked state (see section 12.8.3, Error Protection). To cancel a command-locked state, set the FASTAT register to H'10, and then issue a status-clear command to the FCU.

Flash Access Status Register (FASTAT) <P4 address: location H'FDFF A810>

Bit	Abbreviation	After Reset	R	W	<After Reset: H'OO> Description
7	ROMAE	0	R	$*^{1}$	Access Error Bit
					Indicates whether or not a ROM access error has been generated. If this bit becomes " 1 ", the ILGLERR bit in the FSTATR0 register is set to " 1 " and the FCU enters a command-locked state.
					0 : No ROM access error has occurred.
					1: A ROM access error has occurred.
					[Condition for clearing to "0"]

- When " 0 " is written after reading out ROMAE with the value " 1 ".
[Conditions for setting to "1"]
- A read access command is issued to ROM program/erase addresses H'FD90 0000 to H'FD97 FFFF while the FENTRY1 bit in the FENTRYR register is " 1 " in ROM P/E normal mode.
- A read access command is issued to ROM program/erase addresses H'FD80 0000 to H'FD8F FFFF while the FENTRY0 bit in the FENTRYR register is " 1 " in ROM P/E normal mode.
- An access command is issued to ROM program/erase addresses H'FD90 0000 to H'FD97 FFFF while the FENTRY1 bit in the FENTRYR register is " 0 ".
- An access command is issued to ROM program/erase addresses H'FD80 0000 to H'FD8F FFFF while the FENTRY0 bit in the FENTRYR register is " 0 ".
- A read access command is issued to ROM read addresses H'0000 0000 to H'0017 FFFF while the FENTRYR register value is not H'0000.
- A block erase, program, or lock bit program command is issued to ROM when the user boot MAT is selected.
- An access command is issued to an address other than ROM program/erase addresses H'FD80 0000 to H'FD80 7FFF when the user boot MAT is selected.

6,5	All 0	0	0	Reserved Bits These bits are always read as "0". The write value should always be "0".

Bit	Abbreviation	After Reset	R	W	Description
4	CMDLK	0	R	-	FCU Command Lock Bit Indicates whether the FCU is in command-locked state (see section 12.8.3, Error Protection). 0 : The FCU is not in a command-locked state 1: The FCU is in a command-locked state [Condition for clearing to "0"] - The FCU completes the status-clear command processing while the FASTAT register is $\mathrm{H}^{\prime} 10$. [Condition for setting to "1"] - The FCU detects an error and enters command-locked state.
3 to 0	-	All 0	0	0	Reserved Bits These bits are always read as " 0 ". The write value should always be " 0 ".

Note: *1 Writing a "0" after reading a "1" is only allowed in order to clear the flag.

Appendix D. 4

12.3.6 Flash P/E Mode Entry Register (FENTRYR)

The FENTRYR register specifies the P/E mode for the ROM. Writing to the FENTRYR register is enabled only when a specified value is written to the high-order byte. Writing any other value initializes this register. To specify the P/E mode for the ROM so that the FCU can accept commands, set either of bits FENTRY1 and FENTRY0 to "1". Note that if this register is set to a value other than H'0001 or H'0002, the ILGLERR bit in the FSTATR0 register will be set to "1" and the FCU will switch to the command-locked state.

The FENTRYR register can be initialized by a hardware reset, or setting the FRESET bit in the FRESETR register to "1".

Flash P/E Mode Entry Register (FENTRYR)

> <P4 address: location H'FDFF A902>

<After Reset: H'0000>

Bit	Abbreviation	After Reset		R	W

- The FWE bit in the FPMON register is "1".
- The FRDY bit in the FSTATR0 register is " 1 ".
- H'AA is written to the FEKEY bit in word access.
[Conditions for clearing to "0"]
- The FRDY bit in the FSTATR0 register becomes " 1 " and the FWE bit in the FPMON register becomes " 0 ".
- This register is written to in byte access.
- A value other than H'AA is written to the FEKEY bit in word access.
- " 0 " is written to FENTRY1 while the write enabling conditions are satisfied.
- The FENTRYR register is written to while the FENTRYR register is not $\mathrm{H}^{\prime} \mathbf{O O O O}$ and the write enabling conditions are satisfied.
[Condition for setting to "1"]
- " 1 " is written to the FENTRY1 bit while the write enabling conditions are satisfied and the FENTRYR register is H'0000.

Bit	Abbreviation	After Reset	R	W	Description
0	FENTRYO	0	R	W	ROM P/E Mode Entry Bit 0
					These bits specify the P/E mode for the EB00 to EB19 blocks of ROM (read addresses: H'0000 0000 to H'000F FFFF; program/erase addresses: H'FD80 0000 to H'FD8F FFFF).
					0: The block of ROM from EB00 to EB19 (1Mbyte) is in read mode
					1: The block of ROM from EB00 to EB19 (1Mbyte) is in P/E mode
					Programming is enabled when the following conditions are all satisfied: - The FWE bit in the FPMON register is " 1 ".
					- The FRDY bit in the FSTATR0 register is "1".
					- H'AA is written to the FEKEY bit in word access.
					[Conditions for clearing to "0"]
					- The FRDY bit in the FSTATR0 register becomes "1" and the FWE bit in the FPMON register becomes " 0 ".
					- This register is written to in byte access.
					- A value other than H'AA is written to the FEKEY bit in word access. - " 0 " is written to the FENTRYO bit while the write enabling conditions are satisfied.
					- The FENTRYR register is written to while the FENTRYR register is not $\mathrm{H}^{\prime} 0000$ and the write enabling conditions are satisfied.
					[Condition for setting to "1"]
					- "1" is written to FENTRY0 while the write enabling conditions are satisfied and the FENTRYR register is $\mathrm{H}^{\prime} 0000$.

Appendix D. 5

12.6.2 Conditions for FCU Command Acceptance

Figure 12.6 is an FCU mode transition diagram.

Figure 12.6 FCU Mode Transition Diagram (ROM-Related Modes)

Appendix D. 6

12.6.2 Conditions for FCU Command Acceptance

(2) ROM P/E mode

Figure 12.7 Command State Transitions in ROM Read Mode and P/E Mode

Appendix D. 7

12.6.3 FCU Command Usage

(1) Methods for switching to ROM P/E mode

Figure 12.8 Procedure for Transition to ROM P/E M ode

Appendix D. 8

12.8.3 Error Protection

Table 12.7 Error Protection Types

Error	Description					気	
FENTRYR setting error	The key code (H'AA) has been supplied as the upper 8 bits of the FENTRYR register but the value of the lower 8 bits is other than $\mathrm{H}^{\prime} \mathrm{O} 1$ or $\mathrm{H}^{\prime} \mathrm{O} 2$.	1	0	0	0	0	0
Illegal command error	An undefined code has been specified in the first cycle of an FCU command.	1	0	0	0	0	0
	The value specified in the last of the multiple cycles of an FCU command is not H'DO.	1	0	0	0	0	0
	The value specified in the second cycle of a program command is not $\mathrm{H}^{\prime} 80$.	1	0	0	0	0	0
	A command has been issued in command-locked state.	1	0/1	0/1	0/1	0/1	0/1
Erasure error	An error has occurred during erasure processing.	0	1	0	0	0	0
	A block erase command has been issued for the erasure block whose lock bit is set to " 0 " while the FPROTCN bit in the FPROTR register is "0".	0	1	0	0	0	0
Programming error	An error has occurred during programming processing.	0	0	1	0	0	0
	A program or lock bit program command has been issued for the erasure block whose lock bit is set to " 0 " while the FPROTCN bit in the FPROTR register is " 0 ".	0	0	1	0	0	0
FCU error	An error has occurred during CPU processing in the FCU.	0	0	0	1	0	0
ROM access error	A read access command has been issued to addresses H'FD90 0000 to H'FD97 FFFF while FENTRY1 = "1" in ROM P/E normal mode.	1	0	0	0	0	1
	A read access command has been issued to addresses H'FD80 0000 to H'FD8F FFFF while FENTRY0 = " 1 " in ROM P/E normal mode.	1	0	0	0	0	1
	An access command has been issued to addresses H'FD90 0000 to H'FD9F FFFF while FENTRY1 = "0".	1	0	0	0	0	1
	An access command has been issued to addresses H'FD80 0000 to H'FD8F FFFF while FENTRY0 = "0".	1	0	0	0	0	1
	A read access command has been issued to addresses H'0000 0000 to H'0017 FFFF while the FENTRYR register value is not $\mathrm{H}^{\prime} 0000$.	1	0	0	0	0	1
	A ROM programming or erasing command (program, lock bit program, or block erase command) has been issued while the user boot MAT is selected.	1	0	0	0	0	1
	An access command has been issued to an address other than the addresses for ROM programming/erasure H'FD80 0000 to H'FD80 7FFF while the user boot MAT is selected.	1	0	0	0	0	1

Appendix E

Section 13 SuperHyway RAM (SHwyRAM)

13.1 Overview

As shown in figure 13.2, the SH wyRAM is allocated to the upper 512 K bytes of area 6 (H '1800 0000 to H'1807 FFFF in the 29-bit physical address space).

32-bit virtual address space

29-bit physical address space
(area 6)

Page	Address (29-bit physical address)
Page 0	$\mathrm{H}^{\prime} 18000000$ to H'1800 FFFF
Page 1	$\mathrm{H}^{\prime} 18010000$ to H'1801 FFFF
Page 2	$\mathrm{H}^{\prime} 18020000$ to H'1802 FFFF
Page 3	$\mathrm{H}^{\prime} 18030000$ to H'1803 FFFF
Page 4	$\mathrm{H}^{\prime} 18040000$ to H'1804 FFFF
Page 5	$\mathrm{H}^{\prime} 18050000$ to H'1805 FFFF
Page 6	$\mathrm{H}^{\prime} 18060000$ to H'1806 FFFF
Page 7	$\mathrm{H}^{\prime} 18070000$ to H'1807 FFFF

Figure 13.2 Address Space

Appendix F

Section 14 Clock Generator (CPG)

14.1 Overview

Table 14.1 lists the relation between input frequency and input clock.
Table 14.1 Relation between Input Frequency and Input Clock

	PLL frequency					
Input frequency multiplier (MHz)	CPU clock $($ input to CPU)	SHwy clock (MHz)	Peripheral (MHz)	Peripheral A clock (MHz)	FlexRay clock clock (MHz)	(MHz)
20	$\times 12$	240	80	40	80	80

Appendix G

Section15 Interrupt Controller (INTC)

15.5 Interrupt Response Time

Table 15.9 shows the interrupt response time, which is the interval from when an interrupt request occurs until the interrupt exception handling is started and the start instruction of the interrupt handling is fetched.
Table 15.9 Interrupt Response Time

Item		Number of State			Remarks
		NMI	IRQ	Peripheral Module	
Priority determination time		7 Pcyc	6 Pcyc	5Pcyc	
Wait time until the CPU finishes the current sequence			S-1 (≥ 0) \times Icyc		
Interval from when interrupt exception handling begins (saving SR and PC) until a SHwy bus request is issued to fetch the start instruction of the interrupt handling			11Icyc + 1Scyc		
Response time	Total	$\begin{aligned} & \text { (S + 10) Icyc } \\ & +1 \mathrm{Scyc}+7 \text { Pcyc } \end{aligned}$	$\begin{aligned} & \hline(S+10) \text { Icyc } \\ & +1 \text { Scyc + } 6 \text { Pcyc } \end{aligned}$	$\begin{aligned} & \hline(S+10) \text { Icyc } \\ & +1 S c y c+5 \text { Pcyc } \end{aligned}$	
	Minimum	$55 \mathrm{Icyc}+\mathrm{S} \times$ Icyc	491cyc + S \times Icyc	43Icyc + S \times Icyc	When Icyc:Scyc: Pcyc $=6: 2: 1$

Legend:
Icyc: Period for one CPU clock cycle
Scyc: Period for one SHwy clock cycle
Pcyc: Period for one peripheral clock cycle
S: Number of instruction execution states

Appendix H

Section 28 Direct RAM Input Interface (DRI)

Appendix H. 1

28.1 Overview

Table 28.1 lists the overview of the DRIi modules.

Table 28.1 DRIi Overview

Item	Description
Number of channels	3 channels
Operating frequency	80 MHz (when PAck $=80 \mathrm{MHz}$)
Transfer method	Clock synchronous parallel input
Access areas	All SHwyRAM areas (up to 512 Kbytes)
Maximum transfer rate	80 Mbytes/second (when the DRli operating frequency is 80 MHz)
Minimum data acquisition	The following are the minimum periods when the DRli operating frequency is 80 MHz.
period	43.75 ns (special mode disabled and the input data bus width is 8 or 16 bits)
	25 ns (special mode enabled)
Data acquisition bus width	8 or 16 bits
Event counter	16 bits $\times 6$ counters (DEC5 to DEC0)
Bank switching function	Two banks can be specified as the data storage destination in SHwyRAM
Data acquisition edges	Either rising edges, falling edges, or both edges can be selected
Acquisition timing adjustment	Sets the time between detection of the data acquisition edge and the acquisition operation
Decimation control function	Data can be acquired selectively using an event counter (DEC5 to DEC0)

Appendix H. 2

28.3.23 DRII Address Reload Registers 0 and 1 (DRIIADRORLD and DRIiADR1RLD)

DRIIADR0CT and DRIiADR1CT are registers that hold counter reload values. When reload mode is selected with the DRIi transfer control register (DRIiTRMCNT) ADMD (address counter operating mode selection) bit, the corresponding DRIi address counters are reloaded with the values set in these registers when the DRIi data acquisition control register (DRIiDCAPCNT) DCPEN (acquisition enable) bit changes from " 0 " to " 1 ".

Note: - These registers may only be rewritten when the DRIi data acquisition control register (DRIiDCAPCNT) DCPEN (acquisition enable) bit is in the " 0 " state.

```
DRI0 Address Reload Register 0 (DRIOADR0RLD) <P4 address: location H'FFBF C024>
DRI1 Address Reload Register 0 (DRI1ADR0RLD)
DRI2 Address Reload Register 0 (DRI2ADRORLD)
<P4 address: location H'FFBF C024>
<P4 address: location H'FFBF D024>
<P4 address: location H'FFBF E024>
```


DRI0 Address Reload Register 1 (DRIOADR1RLD) <P4 address: location H'FFBF C02C> DRI1 Address Reload Register 1 (DRI1ADR1RLD) DRI2 Address Reload Register 1 (DRI2ADR1RLD)
<P4 address: location H'FFBF D02C> <P4 address: location H'FFBF E02C>

<After Reset: H'0000 0000>

Bit	Abbreviation	After Reset	R	W	Description
31 to 19	-	All 0	0	0	Reserved Bits
					These bits are always read as "0". The write value should always be "0".
18 to 2	DRIADmRLD	All 0	R	W	Address Bits 18 to 2 Reload Value (512-Kbyte area)
1, 0	-	All 0	0	0	Reserved Bits
					These bits are always read as "0". The write value should always be "0".

Legend: $m=0$ or 1

Appendix H. 3

28.3.24 DRIi Address Counters 0 and 1 (DRIIADROCT and DRIIADR1CT)

The DRIIADR0CT and DRIIADR1CT counters are provided to specify bits A18 to A2 of the address in SHwyRAM that is the DRIi module transfer destination. Bits A31 to A19 are fixed at " 0 ". These counters are incremented by " 4 " each time a DRIi transfer completes. There are two DRIi address counter operating modes, and applications can select the mode with the DRIi transfer control register (DRIiTRMCNT) ADMD bit. See the documentation of the DRIi transfer control register (DRIiTRMCNT) for details.

Notes: - If a DRIi address counter value is a value other than an area in which SHwyRAM is located, the DRIi module will behave as though the DRIi transfers complete, but no writes of the acquired data will be performed whatsoever.

- A DRIi address counter is incremented by " 4 " when a DRIi transfer completed. This is performed for the one that is active at that time according to the setting of the DRIi transfer control register (DRIiTRMCNT) ADSL (address counter selection) bit.
- These registers must only be rewritten in the state where a DRIi transfer counter (DRIiTRMCT) underflow has occurred (the counter is stopped at the value H'0000 0000).

DRII Address Counters 0 (DRIIADROCT)
<P4 address: location H'FFBF C028>
DRI1 Address Counters 0 (DRI1ADROCT)
<P4 address: location H'FFBF D028>
<P4 address: location H'FFBF E028>

DRIO Address Counters 1 (DRIOADR1CT) <P4 address: location H'FFBF C030>
DRI1 Address Counters 1 (DRI1ADR1CT)
<P4 address. location HFFBF C030> DRI2 Address Counters 1 (DRI2ADR1CT) <P4 address: location H'FFBF D030> <P4 address: location H'FFBF E030>

<After Reset: H'OOOO 0000>

Bit	Abbreviation	After Reset	R	W	Description
31 to 19	-	All 0	0	0	Reserved Bits These bits are always read as "0". The write value should always be "0".
18 to 2	DRIADn	All 0	R	W	Destination Address Bits 18 to 2 (512-Kbyte area)
1,0	-	All 0	0	0	Reserved Bits These bits are always read as " 0 ". The write value should always be "0".

Legend: $\mathrm{n}=0$ or 1

Appendix I

Section 29 Direct RAM Output Interface (DRO)

29.1 Overview

Table 29.1 lists the overview of the DRO module.

Table 29.1 DRO Module Overview

Item	Description
Transfer method	Parallel strobed output
Access area	SHwyRAM area (512 Kbytes)
Output data width	Either 8-bits or 16-bits
Maximum transfer clock	10 MHz
Maximum transfer rate	$20 \mathrm{Mbytes} / \mathrm{s}$ (when 16 bits is selected, Pck = 40MHz)
Strobe polarity	Either "H" active or "L" active may be selected.
Timing adjustment function	The setup and hold times can be programmed in 1Pck units relative to the strobe signal edge.
Interrupt request	An interrupt request is generated after a prespecified number of data items have been output.

Appendix J

Section 38 Electrical Characteristics

Appendix J. 1

38.1 Absolute Maximum Ratings

Table 38.1 shows the absolute maximum ratings.

Table 38.1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Remarks
Power supply $\mathrm{V}_{\text {dd }}$	Vdd	-0.3 to +2.0	V	
voltage Vcc, PLLVcc	Vcc	-0.3 to +6.5	V	
Input voltage Vcc power supply related pins	Vin	-0.3 to Vcc +0.3	V	
Analog supply voltage	AVcc	-0.3 to +6.5	V	
Analog reference voltage	AVREFH	-0.3 to AVcc +0.3	V	AVREFH > AVREFL
	AVREFL	-0.3 to AVss +0.3	V	
Analog input voltage	VAN	-0.3 to AVcc +0.3	V	
Vss differential voltage	Vss - PLLVss	-0.1 to +0.1	V	
	Vss - AVss	-0.1 to +0.1	V	
	PLLVss - AVss	-0.1 to +0.1	V	
Maximum input current per pin* (per pin)	Imax	-20 to +20	mA	
	Imax	-20 to +20	mA	
Power dissipation	Pd	1200	mW	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Operating temperature* ${ }^{1}$	topr	-40 to +105	${ }^{\circ} \mathrm{C}$	
Storage temperature	tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	Before assembly

[Usage Notes]
Operating the MCU in excess of the absolute maximum ratings may result in permanent damage. Be sure to use the MCU in compliance with the connection of power pins, combination conditions of applicable power supply voltages, voltage applicable to each pin, and conditions of output voltage, as specified in the manual. Connecting a non-specified power supply or using the MCU at an incorrect voltage may result in permanent damage of the MCU or the system that contains the MCU.
Notes: *1 This does not guarantee that the microcomputer can operate continuously at $85^{\circ} \mathrm{C}$-plus. Consult Renesas if the microcomputer is going to be used for $85^{\circ} \mathrm{C}$-plus applications.
*2 Ensure that the current input duration does not exceed 10 ms and that the total current input does not exceed 100 mA .

Appendix 12

Section 38 Electrical Characteristics

Table 38.14 DC Characteristics - Supply Current

Recommended Operating Conditions: Vcc $=$ PLLVcc $=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} / 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AVcc}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} / 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Item	Symbol	Min.	Typ.	Max.	Unit	Measurement Conditions
Core supply current (Vdd power supply)	IDD	-	-	560	mA	Ick $=\mathbf{2 4 0 ~ M H z}$
System consumption current (Vcc power supply) ${ }^{1}$ (Including flash memory programming and erasure)	Icc	-	-	90	mA	Pck $=40 \mathrm{MHz}$
PLL supply current (PLLVcc power supply)	IPLL	-	-	10	mA	
Analog supply current During A/D conversion	$\mathrm{I}_{\mathrm{AVCc}}$	-	-	10	mA	2 modules,
(AVcc power supply) Awaiting A/D conversion		-	-	1	mA	Pck $=40 \mathrm{MHz}$
ADC reference power During A/D conversion	$\mathrm{I}_{\text {aVRef }}$	-	-	4	mA	2 modules,
supply current (AVREF) Awaiting A/D conversion		-	-	3.5	mA	Pck $=40 \mathrm{MHz}$

Notes: *1 An inrush current of about 100 mA will be caused at power on.

- When the A / D converter is not used, do not leave the $A V c c, A V r e f, ~ a n d ~ A V s s ~ p i n s ~ o p e n . ~$
- The supply current is measured when $\mathrm{V}_{\mathrm{HH}} \min =\mathrm{Vcc}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}$, with all output pins unloaded.

Appendix 3

Section 38 Electrical Characteristics

38.3 AC Characteristics

- The timing conditions without specifications are the following :
$\mathrm{Vdd}=1.5 \mathrm{~V}+0.15 \mathrm{~V},-0.1 \mathrm{~V}, \mathrm{Vcc}=\mathrm{PLLVcc}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} / 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AVcc}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} / 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, AVREFH $=4.5 \mathrm{~V}$ to $\mathrm{AVcc} / 3.0 \mathrm{~V}$ to AVcc ,
Vss $=$ PLLVss $=$ AVss $=$ AVREFL $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+\mathbf{1 0 5}{ }^{\circ} \mathrm{C}$
When not otherwise specified, the input threshold value is the value under conditions where all module input pins for the same channel are set to the same characteristics. When not otherwise specified, the output driving ability is the value under conditions where all module output pins for the same channel are set to the same characteristics.
- Standard values are guaranteed when the output load capacity of the measurement pin is 15 pF to 50 pF . Note that the output load capacity of the CLKOUT pin is 15 pF to 30 pF .

Figure 38.1 Measurement Circuit for Output Switching Characteristics

Figure 38.2 Input Waveform and Timing Check Points at Characteristics Measurement

```
CMOS output
```


Note: - For details on CLKOUT output timing check points at characteristics measurement, refer to each figure in this section.

Figure 38.3 Output Timing Check Points at Characteristics Measurement

		Description	
Rev.	Date	Page	Summary
1.20	Sep 10, 2012	-	First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

- The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltag range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronic products
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
Refer to "htpp://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
Renesas
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourre End, Buckinghamshire, SL8 5FH, U.K
Tel: $+44-1628-585-100$, Fax: $+44-1628-585-900$
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: $+49-211-65030$, Fax: $+49-211-6503-1327$
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Renesas Electronics (Shangh-00-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: $+852-2886-9318$, Fax: +852 2886-9022/9044
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Renesas Electronics Malaysia Sdn.Bhd
Unit 906 , Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: $+60-3-7955-9390$, Fax: $+60-3-7955-9510$
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied'or Bldg., $720-2$ Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: $+82-2-558-3737$, Fax: $+82-2-558-5141$

