Features

- Broadband Performance Low Frequency to 3.5 GHz
- 1-Bit Control: Requires Single Control Line to Switch Between Two RF Paths
- Compatible With Low Voltage Logic (1.8V)
- Very Low Insertion Loss:
- 0.3dB at 1 GHz (Typ)
-0.4 dB at 2 GHz (Typ)
- Excellent Linearity:
- IIP2 > 100dBm (Typ)
- IIP3>63dBm (Typ)
- P0.1dB:23dBm (Typ)
- Compact Footprint
- $2.0 \mathrm{~mm} \times 1.3 \mathrm{~mm} \times 0.385 \mathrm{~mm}$, 6-Pin, QFN

Applications

- Cellular Handset Applications
- Antenna Tuning Applications
- IEEE802.11b/g WLAN Applications

Product Description

The RF1127 is a single pole double throw (SPDT) switch designed for general purpose switching applications which require very low insertion loss and low power handling capability. The RF1127 features low insertion loss, good isolation, and excellent linearity performance which makes it ideally suited for battery operated applications requiring high performance switching with very low DC power consumption. The RF1127 builds upon RFMD's GaAs pHEMT process and is packaged in a very compact, low profile $2 \mathrm{~mm} \times 1.3 \mathrm{~mm} \times 0.385 \mathrm{~mm}$, leadless QFN package.

Ordering Information

RF1127	Broadband Low Power SPDT Switch
RF1127PCBA-410	Fully Assembled Evaluation Board

Optimum Technology Matching ${ }^{\circledR}$ Applied

\square GaAs HBT	\square SiGe BiCMOS	\square GaAs pHEMT	\square GaN HEMT
\square GaAs MESFET	\square Si BiCMOS	\square Si CMOS	\square RF MEMS
\square InGaP HBT	\square SiGe HBT	\square Si BJT	\square LDMOS

Absolute Maximum Ratings

Parameter	Rating	Unit
Voltage (VD, V1)	6.0	V
Maximum Input Power (450 MHz to 3500 MHz$), ~ R F 1, ~ R F 2 ~$	+28	dBm
Operating Temperature	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating condiions is not implied

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No icense is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
					$\begin{aligned} & \mathrm{VDD}=2.6 \mathrm{~V}, \mathrm{~V} 1=\text { High }=1.8 \mathrm{~V}, \mathrm{~V} 1=\mathrm{Low}=0 \mathrm{~V}, \\ & \text { Temp }=25^{\circ} \mathrm{C} \text {, unless otherwise specified } \end{aligned}$
Operating Frequency	450		3500	MHz	
Insertion Loss					
RFC-RF1, RFC-RF2		0.3	0.4	dB	RF ON, 824 MHz to 960 MHz
		0.35	0.5	dB	RF ON, 1850 MHz to 1990 MHz
		0.4	0.65	dB	RF ON, 2170 MHz to 2500 MHz
		0.50		dB	RF ON, 3500MHz
RF Isolation					
RF1-RF2, RF2-RF1	27	29		dB	RF1-ANT, RF2-ANT, 824 MHz to 960 MHz
	19	20		dB	RF1-ANT, RF2-ANT, 1850 MHz to 1990 MHz
	17	19		dB	RF1-ANT, RF2-ANT, 2170 MHz to 2500 MHz
		18		dB	RF1-ANT, RF2-ANT, 3500MHz
RFC-RF1, RFC-RF2	27	29		dB	RF1-ANT, RF2-ANT, 824 MHz to 960 MHz
	19	20		dB	RF1-ANT, RF2-ANT, 1850 MHz to 1900 MHz
	17	19		dB	RF1-ANT, RF2-ANT, 2170 MHz to 2500 MHz
		18		dB	RF1-ANT, RF2-ANT, 3500 MHz
RF Port Return Loss					
VSWR			1.5:1		
880 MHz Harmonics					
Second Harmonic	69	92		dBc	Pin $=16 \mathrm{dBm} ; \mathrm{F}_{0}=880 \mathrm{MHz}$
Third Harmonic	69	105		dBc	Pin $=16 \mathrm{dBm} ; \mathrm{F}_{0}=880 \mathrm{MHz}$
1880 MHz Harmonics					
Second Harmonic	70	100		dBc	Pin $=16 \mathrm{dBm} ; \mathrm{F}_{0}=1880 \mathrm{MHz}$
Third Harmonic	70	107		dBc	$\mathrm{Pin}=16 \mathrm{dBm} ; \mathrm{F}_{0}=1880 \mathrm{MHz}$
$\mathbf{2 5 0 0}$ MHz Harmonics					
Second Harmonic	70	89		dBc	Pin $=16 \mathrm{dBm} ; \mathrm{F}_{0}=2500 \mathrm{MHz}$
Third Harmonic	70	92		dBc	$\mathrm{Pin}=16 \mathrm{dBm} ; \mathrm{F}_{0}=2500 \mathrm{MHz}$

RF1127
rfmd.com

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
IIP2					
RF1, RF2-ANT Cell		100		dBm	Tone 1: 836.5 MHz at 16 dBm , Tone 2: 1718 MHz at -20 dBm Receive Freq: 881.5 MHz
RF1, RF2-ANT AWS		99		dBm	Tone 1: 1732.5 MHz at 16 dBm , Tone 2: 3865 MHz at -20 dBm Receive Freq: 2132.5 MHz
RF1, RF2-ANT PCS		100		dBm	Tone 1: 1880 MHz at 16 dBm , Tone 2: 3840 MHz at -20 dBm Receive Freq: 1960 MHz
IIP3					
IIP3 RF1, RF2-ANT Cell		65		dBm	Tone 1: 836.5MHz at 16 dBm , Tone 2: 791.5 MHz at -20 dBm Receive Freq: 881.5 MHz
IIP3 RF1, RF2-ANT IMT		63		dBm	Tone 1: 1950 MHz at 16 dBm , Tone 2: 1760 MHz at -20 dBm Receive Freq: 2140 MHz
Input Power at 0.1 dB Compression Point					
	19	23		dBm	
Switching Speed					
			600	ns	50\% to 90\% RFon, 50\% to 10\% RF off.
DC Supply					
VDD	2.50	2.60	3.30	V	
V1 (H)		1.80	3.60	V	
V1 (L)	0.00		0.40	V	
Supply Current		120	250	uA	Pin $=16 \mathrm{dBm}$
Control Current		14	25	uA	Pin $=16 \mathrm{dBm}$

Note: Parameters hold at $25^{\circ} \mathrm{C}$ and VDD $=2.5 \mathrm{~V}$.

Control Logic

	Control Signal	Signal Paths	
	V1	RF1-RFC	RF2-RFC
Valid States	1	ON	OFF
	0	OFF	ON

O: Logic level low, OV~0.2V
1: Logic level high, 1.8V~3.6V
Note: In indeterminate states, both signal paths are ON with degraded performance.

Pin	Function	Description
$\mathbf{1}$	RF1	RF Port 1.
$\mathbf{2}$	GND	Ground.
3	RF2	RF Port 2.
4	VDD	Supply.
5	RFC	Antenna.
6	V1	Control Line.
Pkg Base	GND	Package base ground.

Pin Out

Package Drawing

Evaluation Board Schematic

Application Guidelines

The decoupling capacitors are optional and, if necessary, may be used for noise reduction. Decoupling capacitors on the control pins protect the control circuitry from possible RF leakage. For applications less than 300 MHz the DC-blocking capacitors on ports RF1, RF2, and ANT need to be 10 nF instead of 100 pF for best performance.

Evaluation Board Layout Board Thickness 0.0658", Board Material FR-4

Assembly Layer
Top Layer

Typical Performance Data on Evaluation Board

Fixture losses have been de-embedded (Temp $\left.=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.6 \mathrm{~V}, \mathrm{~V} 1=1.8 \mathrm{~V}\right)$.

