8-bit parallel-in/serial out shift register Rev. 1 — 25 September 2013

Product data sheet

1. General description

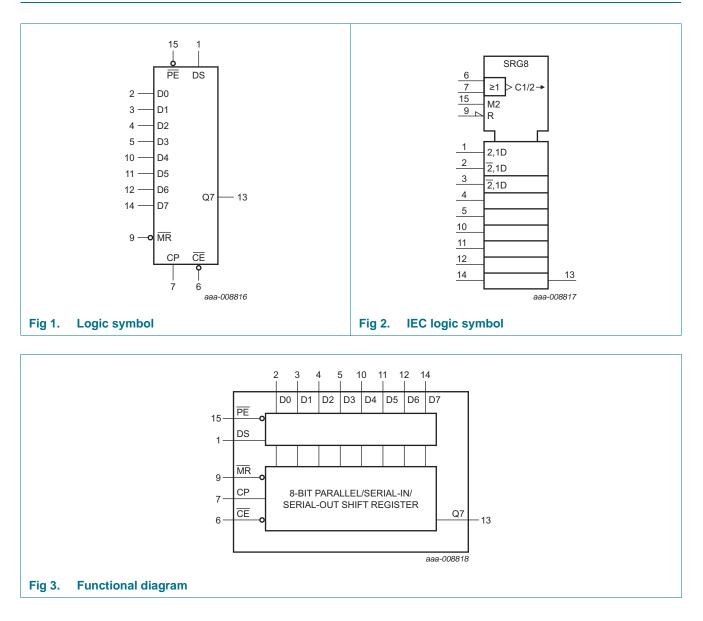
The 74HC166-Q100; 74HCT166-Q100 is an 8-bit serial or parallel-in/serial-out shift register. The device features a serial data input (DS), eight parallel data inputs (D0 to D7) and a serial output (Q7). When the parallel enable input (\overline{PE}) is LOW, the data from D0 to D7 is loaded into the shift register on the next LOW-to-HIGH transition of the clock input (CP). When \overline{PE} is HIGH, data enters the register serially at DS with each LOW-to-HIGH transition of CP. When the clock enable input (\overline{CE}) is LOW data is shifted on the LOW-to-HIGH transitions of CP. A HIGH on \overline{CE} disables the CP input. Inputs include clamp diodes which enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Synchronous parallel-to-serial applications
- Synchronous serial input for easy expansion
- Complies with JEDEC standard no. 7A
- Input levels:
 - For 74HC166-Q100: CMOS level
 - ◆ For 74HCT166-Q100: TTL level
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

3. Ordering information

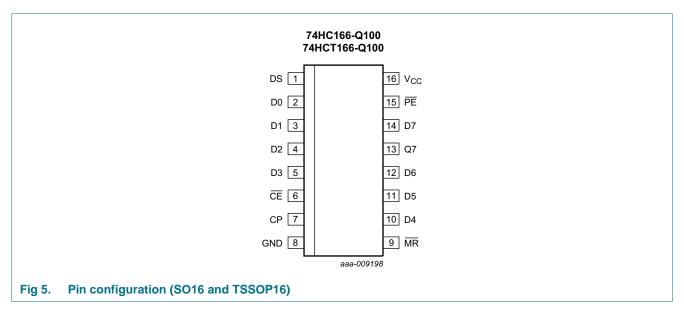

Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74HC166D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body	SOT109-1					
74HCT166D-Q100			width 3.9 mm						
74HC166PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1					

8-bit parallel-in/serial out shift register

4. Functional diagram

74HC166-Q100; 74HCT166-Q100 8-bit parallel-in/serial out shift register


NXP Semiconductors

© NXP B.V. 2013. All rights reserved. 3 of 19

8-bit parallel-in/serial out shift register

5. Pinning information

5.1 Pinning

5.2 Pin description

. . . .

Table 2.	Pin description	
Symbol	Pin	Description
DS	1	serial data input
D0 to D7	2, 3, 4, 5, 10, 11, 12, 14	parallel data inputs
CE	6	clock enable input (active LOW)
СР	7	clock input (LOW-to-HIGH edge-triggered)
GND	8	ground (0 V)
MR	9	asynchronous master reset (active LOW)
Q7	13	serial output from the last stage
PE	15	parallel enable input (active LOW)
V _{CC}	16	positive supply voltage

8-bit parallel-in/serial out shift register

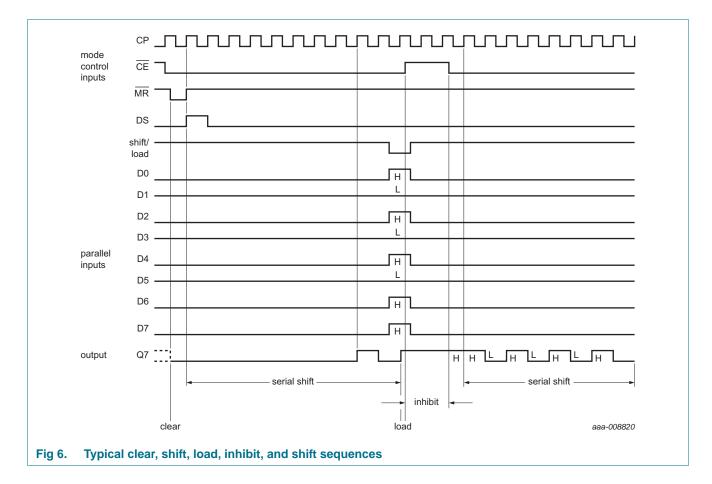
6. Functional description

Table 3.Function table^[1]

Operating modes	Inputs			Qn regi	Output			
	PE	CE	СР	DS	D0 to D7	Q0	Q1 to Q6	Q7
parallel load	I	I	1	Х	I	L	L to L	L
	Ι	I	\uparrow	Х	h	Н	H to H	Н
serial shift	h	I	\uparrow	I	Х	L	q0 to q5	q6
	h	I	\uparrow	h	Х	Н	q0 to q5	q6
hold "do nothing"	Х	Н	Х	Х	Х	q0	q1 to q6	q7

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;


L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

q = state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

 \uparrow = LOW-to-HIGH clock transition.

8-bit parallel-in/serial out shift register

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> -	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}}$ + 0.5 V	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C			
		SO16 package	[2] _	500	mW
		TSSOP16 package	[3]	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 8 mW/K above 70 °C.

[3] P_{tot} derates linearly with 5.5 mW/K above 60 °C.

8-bit parallel-in/serial out shift register

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC1	66-Q100	1	74HCT166-Q100			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C	to +85 °C	-40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC16	6-Q100							1		
VIH	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V
V _{ОН}	HIGH-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	I_{O} = -20 μ A; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_O = 20 \ \mu\text{A}; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \ \mu\text{A}; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
1	input leakage current	$V_I = V_{CC} \text{ or GND};$ $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μA
lcc	supply current		-	-	8.0	-	80	-	160	μA

8-bit parallel-in/serial out shift register

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT1	66-Q100									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
VIL	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{ОН}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 5.2 mA; V_{CC} = 4.5 V	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 4.5 V$	-	-	±0.1	-	±1	-	±1	μA
I _{CC}	supply current		-	-	8.0	-	80	-	160	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_1 = V_{CC} - 2.1 V$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 V$ to 5.5 V								
		Dn and DS inputs	-	35	126	-	157.5	-	171.5	μΑ
		CP and \overline{CE} inputs	-	80	288	-	360	-	392	μΑ
		MR input	-	40	144	-	180	-	196	μΑ
		PE input	-	60	216	-	270	-	294	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

8-bit parallel-in/serial out shift register

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); $t_r = t_f = 6$ ns: $C_L = 50$ pF unless otherwise specified; for test circuit, see <u>Figure 10</u>

Symbol	Parameter	Conditions		25 °C	;	−40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC16	6-Q100									
t _{pd}	propagation	CP to Q7; see Figure 7	[1]							
	delay	$V_{CC} = 2.0 V$	-	50	150	-	190	-	225	ns
		$V_{CC} = 4.5 V$	-	18	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	14	26	-	33	-	38	ns
		MR to Q7; see Figure 8								
		$V_{CC} = 2.0 V$	-	47	160	-	200	-	240	ns
		$V_{CC} = 4.5 V$	-	17	32	-	40	-	48	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	14	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	14	27	-	34	-	41	ns
t _t	transition	output; see Figure 7	[2]							
	time	$V_{CC} = 2.0 V$	-	19	75	-	95	-	110	ns
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
		$V_{CC} = 6.0 V$	-	6	13	-	16	-	19	ns
t _w pulse width	pulse width	CP input HIGH or LOW; see Figure 7								
		$V_{CC} = 2.0 V$	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	5	-	17	-	20	-	ns
		MR input LOW; see Figure 8								
		$V_{CC} = 2.0 V$	100	25	-	125	-	150	-	ns
		$V_{CC} = 4.5 V$	20	9	-	25	-	30	-	ns
		$V_{CC} = 6.0 V$	17	7	-	21	-	26	-	ns
t _{rec}	recovery time	MR to CP; see Figure 8								
		$V_{CC} = 2.0 V$	0	-19	-	0	-	0	-	ns
		$V_{CC} = 4.5 V$	0	-7	-	0	-	0	-	ns
		$V_{CC} = 6.0 V$	0	-6	-	0	-	0	-	ns
t _{su}	set-up time	Dn, CE to CP; see Figure 9								
		$V_{CC} = 2.0 V$	80	14	-	100	-	120	-	ns
		$V_{CC} = 4.5 V$	16	5	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	4	-	17	-	20	-	ns
		PE to CP; see Figure 9								
		V _{CC} = 2.0 V	100	33	-	125	-	150	-	ns
		$V_{CC} = 4.5 V$	20	12	-	25	-	30	-	ns
		$V_{CC} = 6.0 V$	17	10	-	21	-	26	-	ns

8-bit parallel-in/serial out shift register

	Conditions		25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit	
			Min	Тур	Max	Min	Max	Min	Max	-
hold time	Dn, CE to CP; see Figure 9									
			2	-8	-	2	-	2	-	ns
			2	-3	-	2	-	2	-	ns
			2	-2	-	2	-	2	-	ns
	PE to CP; see Figure 9									
	$V_{CC} = 2.0 V$		0	-28	-	0	-	0	-	ns
			0	-10	-	0	-	0	-	ns
	$V_{\rm CC} = 6.0 \rm V$		0	-8	-	0	-	0	-	ns
maximum	CP input; see Figure 7									
frequency	$V_{CC} = 2.0 V$		6	19	-	4.8	-	4	-	MH
	$V_{CC} = 4.5 V$		30	57	-	24	-	20	-	MH
	$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	63	-	-	-	-	-	MH
	$V_{\rm CC} = 6.0 \text{V}$		35	68	-	28	-	24	-	MH
power dissipation capacitance		<u>[3]</u>	-	41	-	-	-	-	-	pF
6-Q100										
propagation	CP to Q7; see Figure 7	[1]								
delay	$V_{CC} = 4.5 V$		-	23	40	-	50	-	60	ns
	V _{CC} = 5.0 V; C _L = 15 pF		-	20	-	-	-	-	-	ns
	MR to Q7; see Figure 8									
	V _{CC} = 4.5 V		-	22	40	-	50	-	60	ns
	V _{CC} = 5.0 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
transition	output; see Figure 7	[2]								
time	V _{CC} = 4.5 V		-	7	15	-	19	-	22	ns
pulse width	CP input HIGH or LOW; see <u>Figure 7</u>									
	$V_{CC} = 4.5 V$		20	9	-	25	-	30	-	ns
	MR input LOW; see Figure 8									
	$V_{CC} = 4.5 V$		25	11	-	31	-	38	-	ns
recovery time	MR to CP; see Figure 8									
	$V_{CC} = 4.5 V$		0	-7	-	0	-	0	-	ns
set-up time	Dn, CE to CP; see Figure 9									
	V _{CC} = 4.5 V		16	8	-	20	-	24	-	ns
	PE to CP; see Figure 9									
	V _{CC} = 4.5 V		30	15	-	38	-	45	-	ns
hold time	Dn, CE to CP; see Figure 9									
	V _{CC} = 4.5 V		0	-3	-	0	-	0	-	ns
	PE to CP; see Figure 9									
	maximum frequency power dissipation capacitance propagation delay transition time pulse width pulse width recovery time set-up time	Vcc = 2.0 VVcc = 4.5 VVcc = 6.0 VPE to CP; see Figure 9Vcc = 2.0 VVcc = 4.5 VVcc = 4.5 VVcc = 6.0 Vmaximum frequencyCP input; see Figure 7Vcc = 2.0 VVcc = 4.5 VVcc = 5.0 V; CL = 15 pFVcc = 6.0 VPower dissipation capacitancepropagation delayCP to Q7; see Figure 7Vcc = 4.5 VVcc = 4.5 VVcc = 5.0 V; CL = 15 pFVcc = 4.5 VVcc = 4.5 VPulse widthCP input HIGH or LOW; see Figure 7Vcc = 4.5 VPulse widthPulse widthCP input HIGH or LOW; see Figure 7Vcc = 4.5 VPulse widthPulse	$\begin{tabular}{ c c c c } \hline V_{CC} = 2.0 V \\ \hline V_{CC} = 4.5 V \\ \hline V_{CC} = 6.0 V \\\hline \hline PE to CP; see Figure 9 \\ \hline V_{CC} = 2.0 V \\ \hline V_{CC} = 4.5 V \\ \hline V_{CC} = 6.0 V \\\hline \hline V_{CC} = 6.0 V \\\hline \hline V_{CC} = 2.0 V \\\hline V_{CC} = 2.0 V \\\hline V_{CC} = 2.0 V \\\hline V_{CC} = 4.5 V \\\hline V_{CC} = 5.0 V; C_L = 15 pF \\\hline V_{CC} = 6.0 V \\\hline \hline V_{CC} = 5.0 V; C_L = 15 pF \\\hline \hline V_{CC} = 4.5 V \\\hline V_{CC} = 5.0 V; C_L = 15 pF \\\hline \hline \hline MR to Q7; see Figure 7 \\\hline \hline V_{CC} = 5.0 V; C_L = 15 pF \\\hline \hline \hline MR to Q7; see Figure 8 \\\hline V_{CC} = 4.5 V \\\hline V_{CC} = 4.5 V \\\hline V_{CC} = 4.5 V \\\hline \hline V_{CC} = 4.5 V \\\hline \hline V_{CC} = 4.5 V \\\hline \hline Rime \\\hline \hline MR input LOW; see Figure 8 \\\hline V_{CC} = 4.5 V \\\hline \hline RR to CP; see Figure 8 \\\hline V_{CC} = 4.5 V \\\hline \hline MR input LOW; see Figure 8 \\\hline V_{CC} = 4.5 V \\\hline \hline MR to CP; see Figure 8 \\\hline V_{CC} = 4.5 V \\\hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline \hline \hline \hline \hline \hline \hline PE to CP; see Figure 9 \\\hline V_{CC} = 4.5 V \\\hline \hline $	hold time Dn, CE to CP; see Figure 9 2 $V_{CC} = 2.0 V$ 2 $V_{CC} = 6.0 V$ 2 $V_{CC} = 6.0 V$ 2 \overline{PE} to CP; see Figure 9 0 $V_{CC} = 2.0 V$ 0 $V_{CC} = 4.5 V$ 0 $V_{CC} = 6.0 V$ 0 $V_{CC} = 2.0 V$ 6 $V_{CC} = 2.0 V$ 6 $V_{CC} = 6.0 V$ 30 $V_{CC} = 6.0 V$ 35 power per package; [3] $V_{I} = GND to V_{CC}$ 10 see-Q100 V_{CC} = 4.5 V - propagation CP to Q7; see Figure 7 [1] $V_{CC} = 4.5 V$ - - $V_{CC} = 5.0 V; C_L = 15 pF$ - - Ifme to Q7; see Figure 8 $V_{CC} = 4.5 V$ - $V_{CC} = 4.5 V$ 20 - Ifme input LIGH or LOW; see Figure 8	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	hold time hold time $V_{CC} = 2.0$ V 2 -8 - 2 - $V_{CC} = 2.0$ V 2 -3 - 2 - $V_{CC} = 4.5$ V 2 -3 - 2 - $V_{CC} = 6.0$ V 2 -2 - 2 - $V_{CC} = 6.0$ V 0 -28 - 0 - $V_{CC} = 4.5$ V 0 -10 - 0 - $V_{CC} = 6.0$ V 0 -8 - 0 - $V_{CC} = 2.0$ V 6 19 - 4.8 - $V_{CC} = 2.0$ V 6 19 - 4.8 - $V_{CC} = 2.0$ V 6 19 - 4.8 - $V_{CC} = 6.0$ V 30 57 - 24 - $V_{CC} = 6.0$ V 35 68 - 28 - folisispation clasispation clasispation clasispation CP to Q7; see Figure 7 10 - - -		hold time Dn, CE to CP; see Figure 9 Vcc = 2.0 V 2 -8 - 2 - 2 - Vcc = 4.5 V 2 -3 - 2 - 2 - Vcc = 6.0 V 2 -3 - 2 - 2 - Vcc = 6.0 V 0 -28 - 0 - 0 - PC = 0.0 V 0 -8 0 - 0 - 0 - Vcc = 6.0 V 0 -8 0 - 0 - 0 - Vcc = 5.0 V; CL = 15 pF - 63 - 28 - 24 - - power visispation visispation visispation - - - - - vic = 6.0 V; CL = 15 pF - 63 - 28 - 24 - - propagation per package; 12 - 41 - -

Dynamic characteristics ... continued Table 7.

... ot oirouit and Figur

Product data sheet

8-bit parallel-in/serial out shift register

Symbol	Parameter	Conditions	25 °C			–40 °C t	o +85 °C	–40 °C to +125 °C		Unit	
				Min	Тур	Max	Min	Max	Min	Max	
f _{max}	maximum	CP input; see Figure 7									
	frequency	$V_{CC} = 4.5 V$		25	45	-	20	-	17	-	MHz
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	50	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	per package; $V_1 = GND$ to V_{CC}	<u>[3]</u>	-	41	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

GND (ground = 0 V); $t_r = t_f = 6$ ns: $C_L = 50$ pF unless otherwise specified; for test circuit, see <u>Figure 10</u>

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] t_t is the same as t_{THL} and t_{TLH} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 $\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.

11. Waveforms

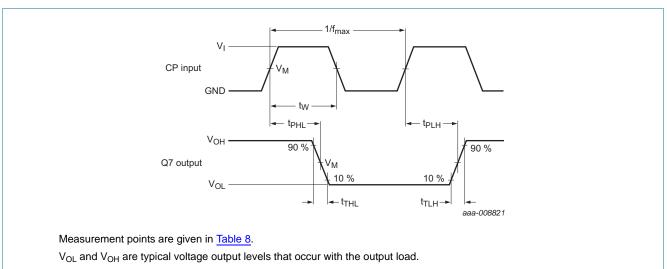
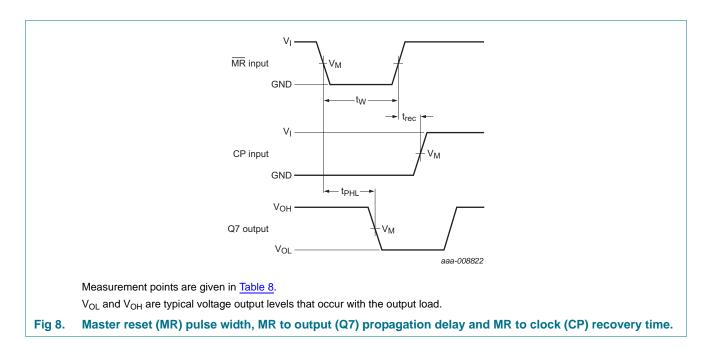
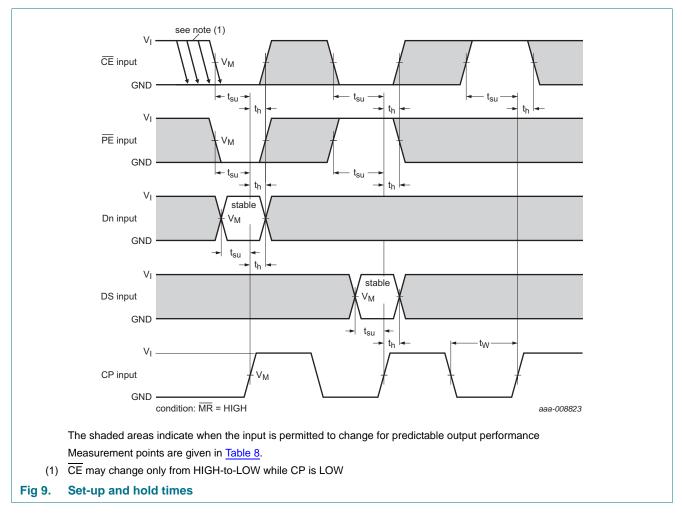
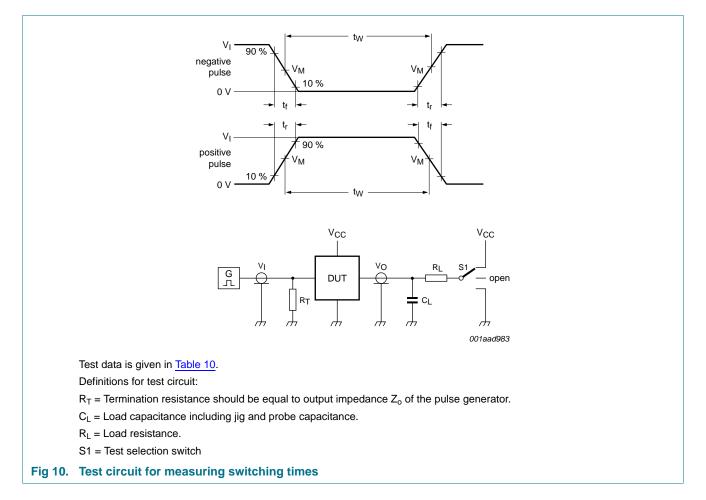




Fig 7. Clock (CP) to output (Q7) propagation delays, pulse width, output transition times and maximum frequency

8-bit parallel-in/serial out shift register

All information provided in this document is subject to legal disclaimers.

74HC_HCT166_Q100


12 of 19

NXP Semiconductors

74HC166-Q100; 74HCT166-Q100

8-bit parallel-in/serial out shift register

Table 8. Measurement points										
Туре	Input	Output								
	VI	V _M	V _M							
74HC166-Q100	V _{CC}	0.5V _{CC}	0.5V _{CC}							
74HCT166-Q100	3 V	1.3 V	1.3 V							

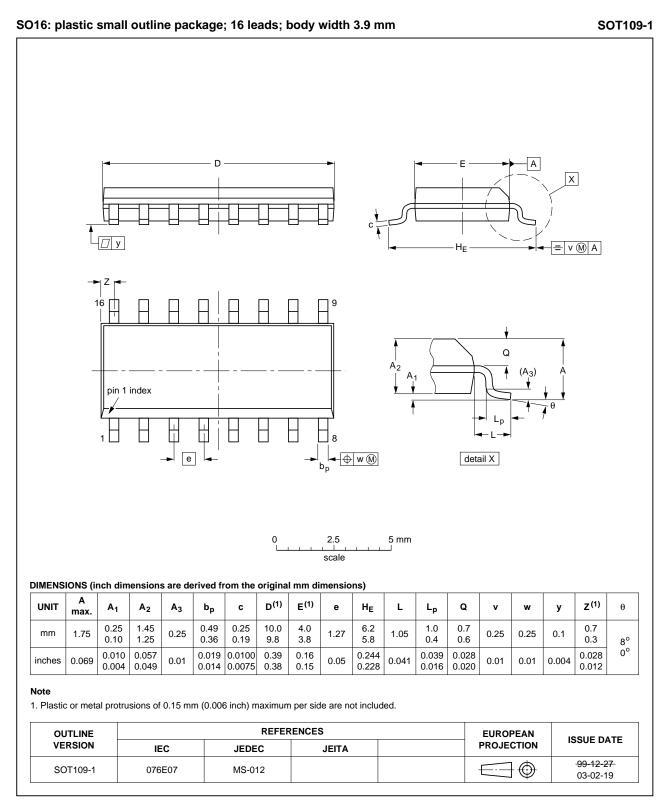
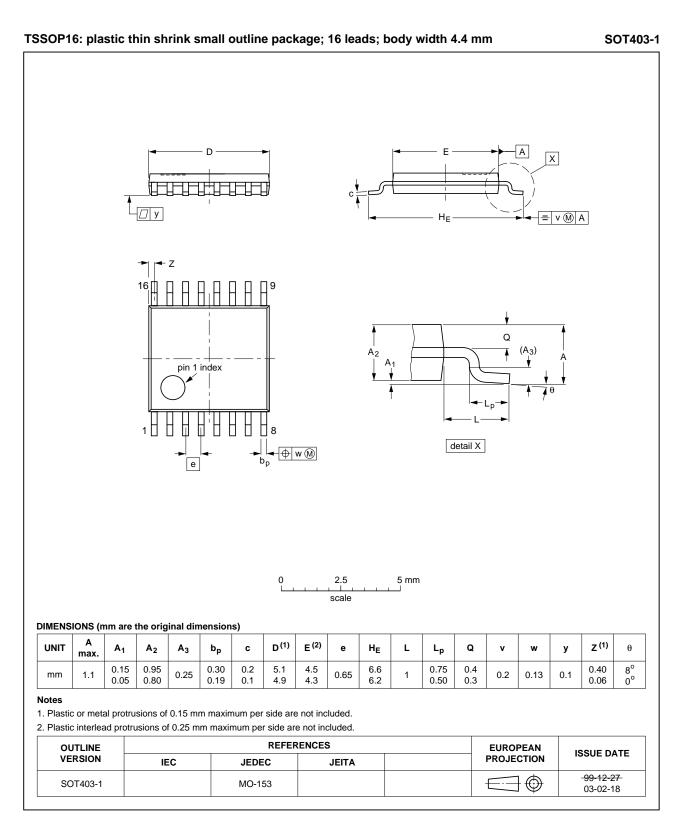


Table 9. Test data

Туре	Input		Load	Load				
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}			
74HC166-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open			
74HCT166-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open			


8-bit parallel-in/serial out shift register

12. Package outline

Fig 11. Package outline SOT109-1 (SO16)

8-bit parallel-in/serial out shift register

Fig 12. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

8-bit parallel-in/serial out shift register

13. Abbreviations

Table 10. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal-Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

14. Revision history

Table 11. Revision history							
Document ID	Release date	Data sheet status	Change notice	Supersedes			
74HC_HCT166_Q100 v.1	20130925	Product data sheet	-	-			

8-bit parallel-in/serial out shift register

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

8-bit parallel-in/serial out shift register

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

8-bit parallel-in/serial out shift register

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 6
8	Recommended operating conditions 7
9	Static characteristics 7
10	Dynamic characteristics 9
11	Waveforms 11
12	Package outline 14
13	Abbreviations 16
14	Revision history 16
15	Legal information 17
15.1	Data sheet status 17
15.2	Definitions 17
15.3	Disclaimers
15.4	Trademarks 18
16	Contact information 18
17	Contents 19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 September 2013 Document identifier: 74HC_HCT166_Q100