Features

- Increases proximity detection range of E909.05/E909.06 by a factor of $5\left(^{*}\right)$
- Improves signal to noise ratio by a factor of 3
- Optical receiver with high sensitivity (limiting output): total transimpedance typ. $422 \mathrm{M} \Omega$
- Integrated op-amp for buffering, gain or additional active filtering
- Very low phase shift in input overdrive
- High ambient light suppression up to photo currents of 10 mA
- Signal bandwidth up to 500 kHz
- No current consumption in standby mode
- Automotive qualified according to AEC-Q100
(*) in systems with highly focused IR beams and optimized optical sensor surfaces

Applications

- Optical receivers
- Transimpedance amplifiers
- Multiplex function for channel expander of the chip set E909.05/E909.06

General Description

The optical receiver device consists of a first stage transimpedance amplifier (TIA) with differential input, limiting amplifiers with integrated high pass filter characteristics and differential outputs OUTP_LA / OUTN_LA and a secondary linear output OUT.

A very high sensitivity equivalent to a transimpedance resistance of typ. $422 \mathrm{M} \Omega$ is achieved at the limiting outputs. By using a limiting amplifier no phase shift occurs if the input is overdriven. Ambient light equivalent to a constant photo current up to 10 mA is suppressed with an integrated gyrator.

Together with the HALIOS ${ }^{\circledR}$ chip set E909.05/E909.06 motion detectors a detection range of several meters can be realized. By switching the output to high impedance state several optical receivers can be multiplexed to the input of a HALIOS ${ }^{\circledR}$ multi-purpose sensor IC E909.05/E909.06.

Ordering Information

Ordering No.: $^{\text {Temp. Range }}$ Amb	Package	
E90907A52C	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	OFN20L4

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

1 Package and Pinout

1.1 Pin Description

No	Name	Type	Description
1	INN	A_I	Negative input of transimpedance amplifier (TIA)
2	INP	A_I	Positive input of transimpedance amplifier (TIA)
3	A	A_IO	Anode of photodiode connected to high side gyrator
4	GLS	A_IO	Low pass frequency control (to GGND)
5	GHS	A_IO	High pass frequency control (to GVDD)
6	GVDD	S	Supply gyrator
7	GGND	S	Ground gyrator
8	AMP	A_IO	Output of TIA or input of limiting amplifier (LA) controlled by IO_CTRL
9	GAIN_CTRL	D_I	Controls gain of LA, integrated pull down
10	ON_LA	D_I	Enabling output of LA, active Hi, integrated pull-down
11	OUTP_LA	A_O	Positive output limiting amplifier
12	OUTN_LA	A_O	Negative output limiting amplifier
13	ON	D_I	Activation signal for amplifier-IC, active Hi, integrated pull-down
14	OUT	A_O	Output of OPAMP
15	AVDD_LA	S	Supply limiting amplifier (LA)
16	AGND_LA	S	Ground limiting amplifier (LA)
17	IO_CTRL	D_I	Controls the input of the limiting amplifier, integrated pull down
18	AVDD	S	Supply transimpedance amplifier (TIA) and inverting amplifier
19	AGND	S	Analogue ground
20	C	A_IO	Cathode of photodiode connected to low side gyrator
21	EP	S	Exposed Die Pad

Table 1: Pin Description
Explanation of Types:
A = Analogue, D = Digital, S = Supply, I = Input, O = Output, B = Bidirectional, HV = High Voltage
When connecting the supply pins the requirements of the entire system has to be taken into account.
For highest sensitive it is recommended to use a separate RC filter for every supply input.
The ground pins GGND, AGND_LA and AGND must be soldered together in any application!
Pin EP, IO_CTRL and GAIN_CTRL must be soldered to Ground or VDD. See Chapter 5.7

Transimpedance Amplifier with High Sensitivity

PRODUCTION DATA - MAR 25, 2014

1.2 Package Reference

The device is available in a Pb free, RoHS compliant, 20-lead Quad Flat No Lead QFN2OL4 package with $16 \mathrm{~mm}^{2}$ (0.024 square inch) according to JEDEC standard MO-220- K ; Variant: VGGD-5.

1.3 Package Pinout

Fig. 2: Package Pinout E909.07 (Top View)

2 Block Diagram

Fig. 3: Block Diagram E909.07

3 Operating Conditions

3.1 Absolute Maximum Ratings

- Operating the device at or beyond these limits may cause permanent damage.
- All voltages are referred to ground (0 V).
- Currents flowing into the circuit have positive values.

No.	Description	Condition	Symbol	Min	Max	Unit
1	Negative supply voltage		$\begin{gathered} \text { AGND, } \\ \text { GGND, } \\ \text { AGND_LA } \end{gathered}$	0	0	V
2	Positive supply voltage		$\begin{gathered} \text { AVDD, } \\ \text { GVDD, } \\ \text { AVDD_LA } \end{gathered}$	-0,3	+3,6	V
3	Voltage digital I/O pins: ON, ON_LA, IO_CTRL, GAIN_CTRL		V (DPIN)	-0,3	$\begin{gathered} \text { AVDD } \\ +0,3 \end{gathered}$	V
4	Input current at digital pins: ON_LA, IO_CTRL, GAIN_CTRL		I(DPIN)	-10	10	mA
5	Voltage at analogue pins		V(APIN)	-0,3	$\begin{gathered} \text { AVDD } \\ +0,3 \end{gathered}$	V
6	Input current at analogue pins		I(APIN)	-100	100	mA
7	Junction temperature		T_{J}	-40	+125	${ }^{\circ} \mathrm{C}$
8	Ambient temperature	packaged devices	TA	-40	+105	${ }^{\circ} \mathrm{C}$
9	Storage temperature		T ${ }_{\text {StG }}$	-40	+150	${ }^{\circ} \mathrm{C}$
10	Power dissipation	$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {TOT }}$		150	mW

Table 2: Absolute Maximum Ratings

3.2 Recommended Operating Conditions

- Parameters are guaranteed within the range of recommended operating conditions unless otherwise specified.
- All voltages are referred to
- ground (OV).
- Currents flowing into the circuit have positive values.

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Positive supply voltage		AVDD, GVDD	3.0	3.3	3.5	V
2	VDD filter and buffer capacitor	Low-ESR type	$\mathrm{C}_{\text {Vdd }}$	10			$\mu \mathrm{F}$
3	Input coupling capacitors	$\mathrm{C}_{\text {INN }}=\mathrm{C}_{\text {INP }}$	$\mathrm{C}_{\text {INN }}, \mathrm{C}_{\text {INP }}$	0.22	0.47	10	nF
4	Gyrator coupling capacitors	$\mathrm{C}_{\text {GLS }}=\mathrm{C}_{\text {GHS }}$	$\mathrm{C}_{\text {GLS }}, \mathrm{C}_{\text {GHS }}$	10	47	220	nF
5	Capacitive load at output OUT		Cload, out			100	pF
6	Capacitive load at output AMP		Cload, amp			100	pF
7	Capacitive load at Pin OUTP LA, OUTN LA		Cload, outx_la			100	pF
8	Junction Temperature	normal operation	TJ	-40		+105	${ }^{\circ} \mathrm{C}$
9	Thermal resistance, junction to ambient	QFN20L4	$\mathrm{R}_{\mathrm{T}, \mathrm{J}-\mathrm{A}}$		45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
10	VDD Filter resistor		$\mathrm{R}_{\text {VDD }}$		10	20	Ω
11	Capacitance of photo diode at input C / A		$\mathrm{C}_{\text {diode }}$		70	250	pF

Table 3: Recommended Operating Conditions

4 Detailed Electrical Specification

4.1 Supply

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Supply current ${ }^{1), ~ 2)}$	$\begin{aligned} & \mathrm{ON}=\mathrm{AVDD}, \\ & \mathrm{ON} \mathrm{LA}=\mathrm{AVDD}, \\ & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{A}}=0 \mathrm{~mA}, \end{aligned}$	Ivdo		3.5	5.0	mA
2	Average supply current ${ }^{1), 3), 4)}$	$\begin{aligned} & \mathrm{ON}=\mathrm{AVDD}, \\ & \mathrm{ON} \mathrm{LA}=\mathrm{AVDD}, \\ & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{A}}=0 \mathrm{~mA}, \end{aligned}$	$\mathrm{I}_{\mathrm{VDD}, \mathrm{AV}}$		0.23		mA
3	Sleep Mode supply current ${ }^{1), 2)}$	$\begin{aligned} & \mathrm{ON}=0 \mathrm{~V}, \\ & \mathrm{ON} _\mathrm{LA}=0 \mathrm{~V}, \end{aligned}$	$\mathrm{I}_{\text {Vdd, SlEep }}$			1	$\mu \mathrm{A}$

Table 4: Electrical Parameters Supply

1) Average current from photodiode $P D$ negligible
2) Total supply current to AVDD, AVDD_LA and GVDD
$I_{V D D}=I_{\text {AVDD }}+I_{\text {AVDD_LA }}+I_{\text {GVDD }}$
3) Power Consumption Calculation

Sample Rate: 10 ms
Settling time $\mathrm{T}_{\mathrm{sw}}: 500 \mu \mathrm{~s}$
Measurement time: $250 \mu \mathrm{~s}$
Duty cycle: $(500 \mu \mathrm{~s}+250 \mu \mathrm{~s}) / 10 \mathrm{~ms} \sim 1 / 13$
$l_{\mathrm{VDD}, \mathrm{AV}}=5 \mathrm{~mA}$ * duty cycle $\sim 385 \mu \mathrm{~A}$
4) Not tested in production test

4.2 Transimpedance Amplifier

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Internal feedback resistance of TIA	Measured from INN to AMP	$\mathrm{R}_{\text {TIA }}$	75	100	125	$\mathrm{k} \Omega$
2	Input impedance INP		$\mathrm{R}_{\text {INP }}$	75	100	125	k Ω
3	Maximum output voltage (TIA drive capability)	$\begin{aligned} & \mathrm{I}_{\mathrm{AMP}}=-500 \mu \mathrm{~A} \\ & \mathrm{AVDD}=3.3 \mathrm{~V} \end{aligned}$	$V_{\text {AMP, max }}$	2.8			V
4	Minimum output voltage (TIA drive capability)	$\mathrm{I}_{\text {AMP }}=+500 \mu \mathrm{~A}$	$\mathrm{V}_{\text {AMP, min }}$			0.5	V
5	Common Mode Rejection Rate $\Delta_{\text {vout_TI_cm }} / \Delta V_{\text {out_TI_dm }}$	@22kHz	CMRR		80		dB
6	Internal feedback capacitor of transimpedance amplifier ${ }^{1)}$		Cf		2.25		pF
7	-3dB Corner frequency TIA		f_{Cs}		600		kHz

Table 5: Electrical Parameters Transimpedance Amplifier

4.3 Gyrator

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Voltage drop at low-side gyrator input (A)	$\mathrm{I}_{\mathrm{A}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{GGIND}}$	0.75	1.0	1.25	V
2	Voltage drop at high-side gyrator input (C)	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GVDD}}-\mathrm{V}_{\mathrm{C}}$	0.75	1.0	1.25	V
3	Max. photo current		$\mathrm{I}_{\text {Photo }}$	10			mA

Table 6: Electrical Parameter Gyrator

4.4 Linear Amplifier

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Gain linear amplifier		$\mathrm{G}_{0, \text { lin }}$		-10		$\mathrm{~V} / \mathrm{V}$
2	Maximum output voltage	$\mathrm{I}_{\mathrm{LIN}}=-500 \mu \mathrm{~A}$ $\mathrm{AVDD}=3.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{LIN}, \max }$	2.3			V
3	Minimum output voltage	$\mathrm{I}_{\mathrm{LIN}}=+500 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{LIN}, \min }$			1.0	V
4	-3dB Corner frequency		f_{CS}		600		kHz

Table 7: Electrical Parameters Linear Amplifier

1) Not tested in production test

4.5 High pass filter and limiting amplifier

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Differential gain Avout_LA $^{\prime}=$ (OUTP_LA OUTN_LA) / AMP	GAIN_CTRL $=0$	AV ${ }_{\text {outio }}$		$\left(\mathrm{AV}_{\text {outi }}\right)^{2)}$		V/V
2	Differential gain Avout_la $=$ (OUTP_LA OUTN_LA) / AM \bar{P}	GAIN_CTRL $=1$	AV ${ }_{\text {outl }}$		65		V/V
3	Maximum output voltage ${ }^{2)}$	loutp_LA $=-10 \mu \mathrm{~A}$	Voutp_LA,max		$\begin{gathered} \text { AVDD - } \\ 0.1 \end{gathered}$		V
4	Minimum output voltage ${ }^{2)}$	loutp_LA $=-10 \mu \mathrm{~A}$	$V_{\text {outp_LA,min }}$		$\begin{gathered} \text { AVDD - } \\ 1.1 \end{gathered}$		V
5	Single ended output resistance 1) 2)		Rout_la		1.5		k Ω
6	-3dB Corner frequency high pass filter ${ }^{1}{ }^{1}$		f_{6}		15		kHz
7	Overall gain (TIA +LA $)^{1)}$	GAIN_CTRL=0 IO_CTRL = 0	G		$\mathrm{R}_{\mathrm{TIA}}$ * AV ${ }_{\text {outlo }}$		M Ω

Table 8: Electrical Parameter High pass filter and limiting amplifier

4.6 Digital Control Inputs

No.	Description	Condition	Symbol	Min	Typ	Max	Unit
1	Input low level (Pin ON, ON_LA)		V_{IL}		0.8	V	
2	Input high level (Pin ON, ON_LA)		V_{IH}	AVDD- 0.8			V
3	Settling time after switching on the limiting amplifier ${ }^{1)}$	ON_LA="0" \rightarrow "1"	$\mathrm{T}_{\text {son }}$		1		$\mu \mathrm{~s}$
4	Settling time after switching from sleep to operating mode ${ }^{1)}$		$\mathrm{T}_{\text {SW }}$		500		$\mu \mathrm{~s}$
5	Pull down resistor ${ }^{1)}$		$\mathrm{R}_{\text {PD }}$		800	1600	$\mathrm{k} \Omega$

Table 9: Electrical Parameters Digital Control Inputs

1) Not tested in production test
2) For proper operation, the output pins OUTN_LA \& OUTP_LA must be decoupled with capacitors close to the E909.07. The load at these output pins shall be a load against ground.

5 Functional Description

5.1 Brief Functional Description

The E909.07 is transimpedance amplifier with high amplification. The differential inputs INN, INP and the differential limiting outputs OUTP_LA, OUTN_LA are forming the main signal path. Within the application field of optical receiver systems it uses a photodiode as input signal source. The differential outputs are designed for use in HALIOS® optical detector systems. The total transimpedance figure in this path is $200 \mathrm{M} \Omega$ minimum.

Together with the HALIOS® chip set E909.05/ E909.06 motion detectors with a detection range of several meters can be realized. By switching the output to high impedance state several optical receivers for multiple input channels can be multiplexed to one input of a HALIOS® sensor IC E909.05/E909.06, which enables a very economical construction of multi sensor systems with multiple optical detector nodes. These can be operated at minimum power consumption by use of the SLEEPmode feature of the E909.07 (controlled by pin ON)

5.2 Supply

The input GVDD, AVDD should be low pass filtered to increase ambient light suppression and EMC robustness.

5.3 Transimpedance Amplifier

The current input signal from an external differential source connected between INN and INP - typically a photodiode - is amplified in a first stage transimpedance amplifier (TIA) with a typical transimpedance figure of $100 \mathrm{k} \Omega$. The input photodiode has to be AC-coupled to the inputs by capacitors ($\mathrm{C}_{\operatorname{INN}}, \mathrm{C}_{\mathrm{INP}}$). The output of this TIA-stage is accessible at terminal AMP.

In order to achieve a good suppression of common mode disturbances at the pins C and A, the $A C$ coupling capacitors $\mathrm{C}_{\mathrm{INN}}, \mathrm{C}_{\mathrm{INP}}$ should have a very good matching.

5.4 Gyrator

Gyrator input stages at nodes C (cathode) and A (anode) are used to define the input operating point of the input photo diode properly. These gyrators are designed for a maximum DC current of 10 mA (photo current) which corresponds to a very high level of ambient light applied to the photo diode. When the device is switched off $(\mathrm{ON}=0)$ the gyrator is also switched off.

5.5 Linear Amplifier

Additionally to the limiting amplifier output an inverting amplifier output with an amplification factor of typ. $-10(20 \mathrm{~dB})$ is available and can be routed into the signal path. This results in a total transimpedance of typ. $2 \mathrm{M} \Omega$ at OUT with respect to the input of the TIA.

5.6 High Pass Filter and Limiting Amplifier

The limiting amplifier consists of six differential amplifier stages. At the input and after the third stage a high pass filter is placed. Thus the frequency behaviour between the limiting amplifier input IN_LA and the outputs OUTP_LA, OUTN_LA can be described with a second order high pass filter. These stages provide symmetrical outputs at OUTP_LA, OUTN_LA which are inverted with respect to each other. The differential gain (in the linear range) from the input of limiting amplifier (AMP) to the output (OUTP_LA - OUTN_LA) has a typ. value of +4225 . In case of input overdrive excessive phase shift is
avoided by the limiting amplifiers.
The outputs OUTP_LA, OUTN_LA are source follower outputs, which buffer the last differential stage of the limiting amplifier. The external load at these outputs should not be smaller than 10k, to avoid reduction of the output swing. The maximum output voltage swing has a typical value of 1 V . The limiting outputs can be switched to high impedance by use of control input ON_LA. This allows output multiplexing of several amplifier devices, e.g. in multi-sensor systems.

Using the input ON_LA during multiplex mode to switch between the channels of several E909.07 switching times of $1 \mu \mathrm{~s}$ can be realized.

5.7 Digital Control Inputs

Four control inputs are provided:

- ON_LA enables the limiting amplifier and activates the outputs OUTP_LA, OUTN_LA by closing the switch between the limiting amplifier and the output pins when pulled to high level. An internal pull down keeps the outputs in OFF mode (high impedance) when the pin is left open. If ON_LA is 0 the outputs are in high-impedance state.
- Input ON is used to switch the device from OPERATING mode to SLEEP mode. The device is active, when ON is pulled high to supply voltage AVDD. With $\mathrm{ON}=0$, the all components in the devices are switched off and the current consumption drops to almost zero. An internal pull-down will hold the device in SLEEP mode when the pin is left open.
- Input GAIN_CTRL allows to reduce the amplification factor of the limiting amplifier by bypassing one of the two amplification stages.
- With GAIN_CTRL = 0 both stages are active, the amplification factor has its maximum value.
- With GAIN_CTRL = 1 one amplifier stage is bypassed thus reducing the amplification factor by a factor of 2 .
- Input IO_CTRL allows to disconnect the TIA output from the pin AMP. Then it is possible to control the limiting amplifier with an external signal. In all cases, the TIA is connected to the linear amplifier.
- IO_CTRL = 0: The output of the transimpedance amplifier (TIA) is connected to the input of the limiting amplifier. The TIA output signal is available on the pin AMP which is of type output.
- IO_CTRL = 1: The output of the transimpedance amplifier is disconnected from the input of the limiting amplifier. Pin AMP is the input of the limiting amplifier.

PIN	Status	Description
ON_LA	0	Outputs OUTP_LA, OUTN,LA are inactive (high resistance state)
	1	
ON	0	SLEEP Mode
	1	Operating Mode
GAIN_CTRL	0	Both amplification stages are active, the amplification factor has its maximum value
	1	The second amplification stage is bypassed
IO_CTRL	0	TIA Output connected to input of limiting amplifier
	1	TIA Output disconnected to input of limiting amplifier. Limiting amplifier could be controlled by external signal (AMP)

Table 10: Table of Digital Control Inputs

6 ESD, Latch up and EMC

6.1 Electro Static Discharge (ESD)

Standard	AEC-Q100-002
Model	Human Body Model
Capacitance	100 pF
Resistance	$1,5 \mathrm{k} \mathrm{\Omega}$
Minimum withstand Voltage	$+/-2 \mathrm{kV}$
Supply and interface pins (OUTP_LA, OUTN_LA, GGND, AGND_LA, AGND, GVDD, AVDD_LA, AVDD)	$+/-4 \mathrm{kV}$

Table 11: ESD on IC Level, Human Body Model (HBM)

Standard	AEC-Q100-011
Model	Charged Device Model
Resistance	1Ω
Minimum withstand Voltage	$+/-500 \mathrm{~V}$
Pulse rise time $(10 \%-90 \%)$	$<400 \mathrm{ps}$

Table 12: ESD on IC Level, Charged Device Model (CDM)

6.2 Latch-up

Latch-up performance is validated according JEDEC standard JESD 78 in its valid revision.

6.3 EMC

The contents of this chapter were not specified yet!

7 Package Information

The E909.07 is available in a Pb free, RoHs compliant QFN20L4 plastic package, for this exposed pad size is no variant within JEDEC MO-220 K available. The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020 with a soldering peak temperature of $(260+5)^{\circ} \mathrm{C}$.

TOP VIEW

BOTTOM VIEW

SIDE VIEW

DETAIL A

Description	Symbo I	mm			inch		
		min	typ	max	min	typ	max
Package height	A	0.80	0.90	1.00	0.031	0.035	0.039
Stand off	A1	0.00	0.02	0.05	0.000	0.00079	0.002
Thickness of terminal leads, including lead finish	A3	--	0.20 REF	--	--	0.0079	--
REF							
Package length / width	b	0.18	0.25	0.30	0.0071	0.0098	0.012
Length / width of exposed pad	D / E	--	4.00 BSC	--	--	0.157 BSC	--
Lead pitch	D2 / E2	2.50	2.65	2.80	0.098	0.104	0.110
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.014	0.016	0.018
Number of terminal positions	N		20			20	

Note: the mm values are valid, the inch values contains rounding errors

WARNING－Life Support Applications Policy

Elmos Semiconductor AG is continually working to improve the quality and reliability of its products．Nevertheless， semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress．It is the responsibility of the buyer，when utilizing Elmos Semiconductor AG products，to observe standards of safety，and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product could cause loss of human life，body injury or damage to property．In the development of your design，please ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications．

General Disclaimer

Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable．However，no responsibility is assumed by Elmos Semiconductor AG for its use，nor for any infringements of patents or other rights of third parties，which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Elmos Semiconductor AG．Elmos Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice，to improve performance，reliability，or manufacturability ．

Application Disclaimer

Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG，which are included as means of illustrating typical applications．Consequently，complete information sufficient for construction purposes is not necessarily given． The information in the application examples has been carefully checked and is believed to be entirely reliable．However，no responsibility is assumed for inaccuracies．Furthermore，such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Elmos Semiconductor AG or others．

Contact Information

Headquarters

Elmos Semiconductor AG
Heinrich－Hertz－Str．1 • D－44227 Dortmund（Germany）

Sales and Application Support Office North America

Elmos NA．Inc．
32255 Northwestern Highway • Suite 220 Farmington Hills
MI 48334 （USA）
雷：＋12488653200 \boxtimes ：sales－usa＠elmos．com
Sales and Application Support Office Korea and Japan
B－1007，U－Space 2，\＃670 Daewangpangyo－ro
Sampyoung－dong，Bunddang－gu，Sungnam－si
Kyounggi－do 463－400 Korea π ．sales－korea＠elmos．com
Sales and Application Support Office China
Elmos Semiconductor Technology（Shanghai）Co．，Ltd．
Unit London，1BF GC Tower • No． 1088 Yuan Shen Road，
Pudong New District • Shanghai，PR China， 200122
㵢：＋862151785178 \boxtimes ：sales－china＠elmos．com
Sales and Application Support Office Singapore
Elmos Semiconductor Singapore Pte Ltd．
3A International Business Park
\＃09－13 ICON＠IBP•609935 Singapore 需：＋656908 1261 ：sales－singapore＠elmos．com
© Elmos Semiconductor AG，2013．Reproduction，in part or whole，without the prior written consent of Elmos Semiconductor AG，is prohibited．

