Features

- Two Synchronous Buck Converters(OUT1,OUT2)
- Converter Input Voltage Range up to 12 V
- 0.6V Reference for OUT1 with 0.8\% Accuracy
- 3.3V Reference for OUT2 with 0.8\% Accuracy
- Both Outputs have Independent Soft-Start and Enable Functions
- Internal 300kHz Oscillator and Programmable Frequency Range from 70 kHz to 800 kHz
- 180 Degrees Phase Shift etween OUT1 and OUT2
- Short-Circuit Protection
- Thermally Enhanced SOP-20 Package
- Lead Free and Green Devices Available (RoHS Compliant)

Applications

- Graphic Cards
- Low-Voltage Distributed Power Supplies
- SMPS Application

Simplified Application Circuit

General Description

The APW7158 has two synchronous buck PWM controllers with high precision internal references voltage to offer accurate outputs. The PWM controllers are designed to drive two N -channel MOSFETs in synchronous buck topology. The device requires 12 V and 5 V power supplies. If the 5 V supply is not available, the device can offer an optional shunt regulator 5.8 V for 5 V supply.
Both outputs have independent soft-start and enable functions combined on the SS/EN pin. Connecting a capacitor from each SS/EN pin to the ground for setting the softstart time, and pulling the SS/EN pin voltage below 1 V to disable regulator. The device also offers 180° phase shift function between OUT1 and OUT2.
The default switching frequency is 300 kHz (keep the FS pin open or short to GND), and the device also provides the programmable switching frequency function to adjust the switching frequency from 70 kHz to 800 kHz . Connecting a resistor from FS pin to GND increases the switching frequency. Conversely, connecting a resistor from FS pin to VCC12 decreases the switching frequency. There is no current sensing or under-voltage sensing on the APW7158. However, it provides a simple short-circuit protection by monitoring the COMP1 pin and COMP2 pin for over-voltage. When any of two pins exceed their trip point and the condition keeps for 1-2 internal clock cycles ($3-6$ us at 300 kHz), all regulators are latched off.

Pin Configuration

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Ordering and Marking I nformation

APW7158		Package Code K: SOP-20 Operating Ambient Temperature Range E:-20 to $70^{\circ} \mathrm{C}$ Handling Code TR: Tape \& Reel Assembly Material G: Halogen and Lead Free Device
APW7158 K:	$\begin{array}{\|l\|l\|} \hline \text { APW } \begin{array}{c} \text { AP158 } \\ \text { xXXXX } \\ \hline \end{array} \\ \hline \end{array}$	XXXXX - Date Code

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight)

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
$\mathrm{V}_{\text {CC12 }}$	VCC12 to GND Voltage	-0.3 to 20	V
V_{CC}, Separate Supply	VCC, Separate Supply to GND Voltage	-0.3 to 5.5	V
$\mathrm{V}_{\text {UGATE1 }}, \mathrm{V}_{\text {UGATE2, }}$, $\mathrm{V}_{\text {BOot1 }}, \mathrm{V}_{\text {BOot2 }}$	UGATE1, UGATE2, BOOT1, BOOT2 to PGND Voltage	-0.3 to 30	V
$\mathrm{V}_{\text {LGate1 }}$, $\mathrm{V}_{\text {LGate2 }}$	LGATE1, LGATE2 to GND Voltage	-0.3 to 20	V
V_{FS}	FS to GND Voltage	-0.3 to 20	V
$\mathrm{V}_{\text {Refin }}, \mathrm{V}_{\text {Refout }} \mathrm{V}_{\text {Ref }}$	REFIN, REFOUT, VREF to GND Voltage	-0.3 to V_{Cc}	V
$\mathrm{V}_{\text {FB1 }}, \mathrm{V}_{\text {COMP1 }}, \mathrm{V}_{\text {FB2 }}, \mathrm{V}_{\text {COMP2 }}$	FB1, COMP1, FB2, COMP2 to GND Voltage	-0.3 to V_{Cc}	V
$\mathrm{V}_{\text {SS1/EN1 }}, \mathrm{V}_{\text {SS2/EN2 }}$	SS1/EN1, SS2/EN2, to GND Voltage	-0.3 to V_{Cc}	V
	PGND to GND Voltage	-0.3 to +0.3	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	-20 to +70	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SDR }}$	Maximum Lead Soldering Temperature, 10 Seconds	260	${ }^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter	Typical Value	Unit
θ_{JA}	Junction-to-Ambient Resistance in Free Air (Note 2)	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Junction-to-Case Resistance in Free Air ${ }^{(\text {Note 3) }}$	SOP-20	
SOP-20	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Note 2: θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.
Note 3: The case temperature is measured at the center of the exposed pad on the underside of the SOP-20 package.

Recommended Operating Conditions (Note 4)

Symbol	Parameter	Range	Unit
$\mathrm{V}_{\mathrm{CC12}}$	VCC12 Supply Voltage	10.8 to 13.2	V
$\mathrm{~V}_{\mathrm{CC}}$	VCC Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\text {IN }}$	Converter Input Voltage	2.2 to 13.2	V
$\mathrm{~V}_{\text {OUT }}$	Converter Output Voltage	0.6 to 5	V
$\mathrm{I}_{\text {OUT }}$	Converter Output Current	0 to 20	A
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-20 to 70	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Range	-20 to 125	${ }^{\circ} \mathrm{C}$

Note 4: Refer to the typical application circuit

Electrical Characteristics

Operating Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 12}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $70^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Unless Otherwise Specified.

Electrical Characteristics (Cont.)

Operating Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 12}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $70^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Unless Otherwise Specified.

Symbol	Parameter	Test Conditions	APW7158			Unit
			Min.	Typ.	Max.	
ERROR AMPLIFIER (OUT1 AND OUT2) (CONT.)						
	Maximum COMP High Voltage	COMP1/2, $R_{L}=10 k \Omega$ to ground; (may trip short-circuit)	-	$\mathrm{V}_{\text {cc }}$	-	V
	COMP Source Current	COMP1/2, $\mathrm{V}_{\text {COMP }}$ 2V	-	-50	-	mA
	COMP Sink Current	COMP1/2, $\mathrm{V}_{\text {comp }}=2 \mathrm{~V}$	-	45	-	mA
PROTECTION AND MONITOR						
	Short-Circuit Protection Threshold	$\mathrm{V}_{\text {COMP1 }}$ and $\mathrm{V}_{\text {COMP2 }}$ rising	-	3.3	-	V
	Short-Circuit Protection Filter Time	Based on internal oscillator clock frequency (nominal $300 \mathrm{kHz}=3.3 \mu \mathrm{~s}$ clock period)	1	-	2	Clock pulses
VREF						
$\mathrm{V}_{\text {REF }}$	VREF Output Voltage		-	3.3	-	V
	VREF Output Accuracy		-0.8	-	0.8	\%
	VREF Source Current		-	-	2.0	mA
REFOUT						
$\mathrm{V}_{\text {REFOUT }}$	REFOUT Output Voltage	Determined by REFIN voltage	0.6	-	3.3	V
	REFOUT Offset Voltage		-10	-	10	mV
	REFOUT Source Current		-	-	20	mA
	REFOUT Sink Current		-	-	0.48	mA
	REFOUT Output Capacitance		0.4	0.1	2.2	$\mu \mathrm{F}$
ENABLE/SOFT-START (SS/EN 1,2)						
	Enable Threshold Voltage	High level input voltage	2	-	-	V
		Low level input voltage	-	-	0.4	
	SS/EN Pin Soft-Start Current		-	-30	-	$\mu \mathrm{A}$
	Soft-Start High Voltage	End of ramp	-	3.5	-	V
GATE DRIVERS						
	OUT1 GATE Driver Source	$\mathrm{V}_{\text {UGATE }}, \mathrm{V}_{\text {LGATE1 }}=3 \mathrm{~V}, \mathrm{~V}_{\text {Boot }}=12 \mathrm{~V}$	-	1.8	-	A
	OUT2 GATE Driver Source	$\mathrm{V}_{\text {UGAte2 }}, \mathrm{V}_{\text {LGAte }}=3 \mathrm{~V}, \mathrm{~V}_{\text {boot }}=12 \mathrm{~V}$	-	1	-	A
	OUT1 GATE Driver Sink	$\mathrm{V}_{\text {UGATE1 }}, \mathrm{V}_{\text {LGATE } 1}=3 \mathrm{~V}, \mathrm{~V}_{\text {CC12 }}=12 \mathrm{~V}$	-	2.5	-	Ω
	OUT2 GATE Driver Sink	$\mathrm{V}_{\text {UGATE2, }}, \mathrm{V}_{\text {LGATE2 }}=3 \mathrm{~V}, \mathrm{~V}_{\text {CC12 }}=12 \mathrm{~V}$	-	4	-	Ω

Typical Operating Characteristics

Typical Operating Characteristics (Cont.)

Switching Frequency (kHz)

UGATE2 Source Current vs. Voltage

LGATE2 Source Current vs. Voltage

Typical Operating Characteristics (Cont.)

Operating Waveforms

Refer to the typical application circuit. The test condition is $\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Operating Waveforms (Cont.)

Refer to the typical application circuit. The test condition is $\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

OUT2 Short Circuit Protection

CH1: $\mathrm{V}_{\text {COMP2 }}$, 2V/Div, DC
CH2: $\mathrm{V}_{\text {SS2/EN2 }}$, 2V/Div, DC
CH3: V UGATE2, 20V/Div, DC
TIME: $20 \mu \mathrm{~s} / \mathrm{Div}$

OUT1 Load Transient

CH1: $\mathrm{V}_{\text {OUT1 }}, 200 \mathrm{mV} /$ Div, $A C$
CH2: V ${ }_{\text {OUT2 }}, 200 \mathrm{mV} /$ Div, $A C$
CH3: $\mathrm{I}_{\text {OUT1 }}, 10 \mathrm{~A} / \mathrm{Div}, \mathrm{DC}$
TIME: $50 \mu \mathrm{~s} / \mathrm{Div}$

OUT2 Load Transient

Operating Waveforms (Cont.)

Refer to the typical application circuit. The test condition is $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

UGATE2 Voltage Rising

CH1: V UGATE2 , 10V/Div, DC
CH2: $\mathrm{V}_{\text {PHASE2 }}, 10 \mathrm{~V} / \mathrm{Div}$, DC
CH3: V ${ }_{\text {LGATE2 }}$, 10V/Div, DC
TIME: 100ns/Div

UGATE2 Voltage Falling

CH1: $\mathrm{V}_{\text {UGATE2 }}, 10 \mathrm{~V} / \mathrm{Div}, \mathrm{DC}$
CH2: V ${ }_{\text {PHASE2 }}, 10 \mathrm{~V} /$ Div, DC
CH3: V ${ }_{\text {LGATE2 }}, 10 \mathrm{~V} / \mathrm{Div}$, DC
TIME: 100ns/Div

Pin Description

PIN		FUNCTION
NO.	NAME	
1	FB1	These pins are the inverting inputs of the error amplifiers of their respective regulators. They are used to set the output voltage and the compensation components.
2	COMP1	These pins are the outputs of error amplifiers of their respective regulators. They are used to set the compensation components.
3	COMP2	These pins are the outputs of error amplifiers of their respective regulators. They are used to set the compensation components.
4	FB2	These pins are the inverting inputs of the error amplifiers of their respective regulators. They are used to set the output voltage and the compensation components.
5	REFIN	This pin is the reference input voltage of error amplifier of OUT2. It also provides the voltage into a buffer, which is out on the REFOUT pin.
6	REFOUT	This pin provides a buffed voltage, which is from REFIN pin. A $0.1 \mu \mathrm{~F}$ capacitor to ground is recommended for stability.
7	SS1/EN1	These pins provide two functions. Connect a capacitor to the GND for setting the soft-start time. Use an
8	SS2/EN2	the respective output.
9	VREF	This pin provides a 3.3 V reference voltage, which can be used by the REFIN pin or other ICs as a voltage reference. A $1 \mu \mathrm{~F}$ capacitor to ground is recommended for stability.
10	FS	This pin is used to adjust the switching frequency. Connecting a resistor from FS pin to GND increases the switching frequency. Conversely, connecting a resistor from this pin to VCC12 reduces the switching frequency.
11	GND	This pin is the signal ground pin for the IC.
12	UGATE2	These pins provide the gate driver for the upper MOSFETs of OUT1 and OUT2 respectively.
13	BOOT2	These pins provide the bootstrap voltage to the gate driver for driving the upper MOSFETs. A boostrap circuit may be used to create a BOOT voltage.
14	PGND	This pin is the power ground for the gate driver circuits. It should be tied to the GND.
15	LGATE2	
16	LGATE1	g
17	VCC12	Power Supply Input Pin. Connect a nominal 12V power supply to this pin for the gate driver circuits. A decoupling capacitor (1 to $10 \mu \mathrm{~F}$) to GND is recommended for noise decoupling.
18	UGATE1	These pins provide the gate driver for the upper MOSFETs of OUT1 and OUT2 respectively.
19	BOOT1	These pins provide the bootstrap voltage to the gate driver for driving the upper MOSFETs. A boostrap circuit may be used to create a BOOT voltage.
20	VCC	Power Supply Input Pin. Connect a nominal 5V power supply to this pin for the control circuits, or connect a resistor (nominally 300Ω) to VCC12 to function this pin as a shunt regulator (typical 5.8 V). A decoupling capacitor (1 to $10 \mu \mathrm{~F}$) to GND is recommended for noise decoupling.

Block Diagram

Typical Application Circuit

Function Description

Phase Shift

The device offers 180° phase shift function between OUT1 and OUT2. The advantage of Phase shift is to avoid overlapping the switching current spikes of the two channels or interaction between the channels; it also reduces the RMS current of the input capacitors, allowing fewer caps to be employed. However, because the phase shift between the rising edge of $\mathrm{V}_{\text {LGATE1 }}$ and $\mathrm{V}_{\text {LGATE2 }}$ (See Figure 1.) depends on the duty cycles, the falling edges of the two channels might overlap. Therefore, the user should check it.

Figure 1. Phase of $\mathrm{V}_{\text {LGATE2 }}$ with respect to rising edge of $V_{\text {Lgatel }}$

Soft-Start/Enable

The SS/EN pins control the soft-start and enable or disable the controller. The two regulators have independent soft-start and enable functions. Connect a soft-start capacitor from each SS/EN pin to the GND to set the softstart interval, and an open drain logic signal for each SS/ EN pin will enable or disable the respective output.
Figure 2 shows the soft-start interval. When both V_{cc} and $\mathrm{V}_{\mathrm{CC12}}$ reach their Power-On-Reset threshold 4.23V and 7.8 V , a $30 \mu \mathrm{~A}$ current source starts to charge the capacitor. When the V_{ss} reaches the enabled threshold about 1 V , the internal 0.6 V reference starts to rise and follows the $\mathrm{V}_{\text {ss }}$; the error amplifier output ($\mathrm{V}_{\text {сомр }}$) suddenly raises to 1.1 V , which is the valley of the oscillator's triangle wave, and leads the $\mathrm{V}_{\text {out }}$ to start up.

Until the $\mathrm{V}_{\text {ss }}$ reaches about 3.0 V , the internal reference completes the soft-start interval and reaches to 0.6 V , and then $\mathrm{V}_{\text {out }}$ is in regulation. The $\mathrm{V}_{\text {ss }}$ still rises to 3.5 V and then stops.

Figure 2. Soft-Start Interval

$$
\mathrm{T}_{\text {SOFT-START }}=\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{\mathrm{CsS}}{\mathrm{I}_{\mathrm{SS}}} \cdot 2 \mathrm{~V}
$$

Where:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{ss}}=\text { external Soft-Start capacitor } \\
& \mathrm{I}_{\mathrm{ss}}=\text { Soft-Start current }=30 \mu \mathrm{~A}
\end{aligned}
$$

Shunt Regulator

The APW7158 must have two power supplies $\mathrm{V}_{\mathrm{cc}}(5 \mathrm{~V})$ and $\mathrm{V}_{\mathrm{CC} 12}(12 \mathrm{~V})$ to drive the $\mathrm{IC} ; \mathrm{V}_{\mathrm{CC}}(5 \mathrm{~V})$ is for the control circuits and $\mathrm{V}_{\mathrm{CC} 12}(12 \mathrm{~V})$ is for the drivers of outputs. The shunt regulator is designed for these systems like figure 3 that do not have a 5 V power supply; the range of the shunt regulator voltage (5.8 V , typical) is designed over the usual range 4.5 V to 5.5 V of typical 5 V power supplies. Connect a resistor from VCC12 pin to VCC pin for shunt regulator and for the supply current; the typical value, 300Ω of the resistor is recommended.

Function Description (Cont.)

Shunt Regulator (Cont.)

Figure 3. Optional R for Shunt Regulator

Oscillator

The APW7158 provides the oscillator switching frequency adjustment. Connect a resistor from FS pin to the ground; the nominal 300 kHz oscillator switching frequency is increased according to the value of the resistor. Thus, the adjustment range of the switching frequency is nominal 300 kHz to 800 kHz . Conversely, connecting a resistor from FS pin to the VCC12 pin reduces the switching frequency according to the value of the resistor. Thus, the adjustment range of the switching frequency is 70 kHz to nominal 300kHz. (See Figure 4.).

Figure 4. FS Resistance vs. Frequency

Short-Circuit Protection

The APW7158 has a simple short-circuit protection to monitor COMP1 pin and COMP2 pin for OUT1 and OUT2. When output voltage has a short, the FB pin should start to follow output since it is a resistor divider from the output. The FB pin is the inverting input of Error-Amp. When FB pin is lower than the Error-Amp reference, the $\mathrm{V}_{\text {сомр }}$ will rise to increase the duty-cycle of the upper MOSFET gate driver, and this allows output to get higher voltage. If the short-circuit condition is long enough, the $\mathrm{V}_{\text {сомр }}$ will exceed the trip point 3.3 V and the duty circle will hit the maximum. This means that either Over-Current or Un-der-Voltage condition is detected. If any of the $\mathrm{V}_{\text {cомр1 }}$ and $\mathrm{V}_{\text {comp2 }}$ exceed their trip points and hold over a filter time (1-2 clock cycles of switching frequency), all regulators will shut down and require a POR on either of VCC or VCC12 pin to restart.

Application Information

PWM Compensation

The output LC filter of a step down converter introduces a double pole, which contributes with $-40 \mathrm{~dB} /$ decade gain slope and 180 degrees phase shift in the control loop. A compensation network between $\mathrm{V}_{\text {COMP }}, \mathrm{V}_{\text {FB }}$ and $\mathrm{V}_{\text {OUT }}$ should be added.
The compensation network is shown in Fig. 8. The output LC filter consists of the output inductor and output capacitors. The transfer function of the LC filter is given by:

$$
\mathrm{GAIN}_{\mathrm{LC}}=\frac{1+\mathrm{s} \times \mathrm{ESR} \times \mathrm{C}_{\mathrm{OUT}}}{\mathrm{~s}^{2} \times \mathrm{L} \times \mathrm{C}_{\text {OUT }}+\mathrm{s} \times \mathrm{ESR} \times \mathrm{C}_{\text {OUT }}+1}
$$

The poles and zero of this transfer function are:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{LC}}=\frac{1}{2 \times \pi \times \sqrt{\mathrm{L} \mathrm{\times C}_{O U T}}} \\
& \mathrm{~F}_{\mathrm{ESR}}=\frac{1}{2 \times \pi \times \mathrm{ESR} \times \mathrm{C}_{\mathrm{OUT}}}
\end{aligned}
$$

The FLC is the double poles of the LC filter, and FESR is the zero introduced by the ESR of the output capacitor.

Figure 5. The Output LC Filter

Figure 6. The LC Filter Gain \& Frequency

The PWM modulator is shown in Figure. 7. The input is the output of the error amplifier and the output is the PHASE node. The transfer function of the PWM modulator is given by:

$$
\operatorname{GAIN}_{\mathrm{PwM}}=\frac{\mathrm{V}_{\mathrm{N}}}{\Delta \mathrm{~V}_{\text {osc }}}
$$

Figure 7. The PWM Modulator
The compensation circuit is shown in Figure 8. It provides a close loop transfer function with the highest zero crossover frequency and sufficient phase margin. The transfer function of error amplifier is given by:

$$
\begin{aligned}
\operatorname{GAIN}_{\text {AMP }} & =\frac{V_{\text {COMP }}}{V_{\text {OUT }}}=\frac{\frac{1}{s C 1} / /\left(R 2+\frac{1}{s C 2}\right)}{R 1 / /\left(R 3+\frac{1}{s C 3}\right)} \\
& =\frac{\mathrm{R} 1+\mathrm{R} 3}{\mathrm{R} 1 \times \mathrm{R} 3 \times \mathrm{C} 1} \times \frac{\left(\mathrm{s}+\frac{1}{\mathrm{R} 2 \times \mathrm{C} 2}\right) \times\left(\mathrm{s}+\frac{1}{(\mathrm{R} 1+\mathrm{R} 3) \times \mathrm{C} 3}\right)}{\mathrm{s}\left(\mathrm{~s}+\frac{\mathrm{C} 1+\mathrm{C} 2}{\mathrm{R} 2 \times \mathrm{C} 1 \times \mathrm{C} 2}\right) \times\left(\mathrm{s}+\frac{1}{\mathrm{R} 3 \times \mathrm{C} 3}\right)}
\end{aligned}
$$

The poles and zeros of the transfer function are:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Z} 1}=\frac{1}{2 \times \pi \times \mathrm{R} 2 \times \mathrm{C} 2} \\
& \mathrm{~F}_{\mathrm{Z} 2}=\frac{1}{2 \times \pi \times(\mathrm{R} 1+\mathrm{R} 3) \times \mathrm{C} 3} \\
& \mathrm{~F}_{\mathrm{P} 1}=\frac{1}{2 \times \pi \times \mathrm{R} 2 \times\left(\frac{\mathrm{C} 1 \times \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2}\right)} \\
& \mathrm{F}_{\mathrm{P} 2}=\frac{1}{2 \times \pi \times \mathrm{R} 3 \times \mathrm{C} 3}
\end{aligned}
$$

Application Information (Cont.)

PWM Compensation (Cont.)

Figure 8. Compensation Network

The closed loop gain of the converter can be written as:

$$
\operatorname{GAIN}_{\mathrm{LC}} \times \operatorname{GAIN}_{\mathrm{PWM}} \times \mathrm{GAIN}_{\mathrm{AMP}}
$$

Figure 9. Shows the asymptotic plot of the closed loop converter gain and the following guidelines will help to design the compensation network. Using the below guidelines should give a compensation similar to the curve plotted. A stable closed loop has a $-20 \mathrm{~dB} /$ decade slope and a phase margin greater than 45 degree.

1. Choose a value for R1, usually between 1 K and 5 K .
2. Select the desired zero crossover frequency F_{0} :

$$
(1 / 5 \sim 1 / 10) \times F_{S}>F_{o}>F_{E S R}
$$

Use the following equation to calculate R2:

$$
\mathrm{R} 2=\frac{\Delta \mathrm{V}_{\text {OSC }}}{\mathrm{V}_{\text {IN }}} \times \frac{\mathrm{F}_{\mathrm{O}}}{\mathrm{~F}_{\mathrm{LC}}} \times \mathrm{R} 1
$$

3. Place the first zero $F_{Z 1}$ before the output LC filter double pole frequency F_{LC}.

$$
\mathrm{F}_{\mathrm{z} 1}=0.75 \times \mathrm{F}_{\mathrm{LC}}
$$

Calculate the C 2 by the equation:

$$
\mathrm{C} 2=\frac{1}{2 \times \pi \times R 2 \times \mathrm{F}_{\mathrm{LC}} \times 0.75}
$$

4.Set the pole at the ESR zero frequency $F_{\text {ESR }}$:

$$
\mathrm{F}_{\mathrm{P} 1}=\mathrm{F}_{\mathrm{ESR}}
$$

Calculate the C 1 by the equation:

$$
\mathrm{C} 1=\frac{\mathrm{C} 2}{2 \times \pi \times \mathrm{R} 2 \times \mathrm{C} 2 \times \mathrm{F}_{\mathrm{ESR}}-1}
$$

5. Set the second pole $F_{P 2}$ at half the switching frequency and also set the second zero $F_{z 2}$ at the output LC filter double pole $F_{\text {LC }}$. The compensation gain should not exceed the error amplifier open loop gain, check the compensation gain at $F_{P 2}$ with the capabilities of the error amplifier.
$\mathrm{F}_{\mathrm{P} 2}=0.5 \times \mathrm{F}_{\mathrm{o}}$
$\mathrm{F}_{\mathrm{z} 2}=\mathrm{F}_{\mathrm{Lc}}$
Combine the two equations will get the following component calculations:

$$
\mathrm{R} 3=\frac{\mathrm{R} 1}{\frac{F_{\mathrm{S}}}{2 \times \mathrm{F}_{\mathrm{LC}}}-1}
$$

$$
\mathrm{C} 3=\frac{1}{\pi \times \mathrm{R} 3 \times \mathrm{F}_{\mathrm{s}}}
$$

Figure 9. Converter Gain \& Frequency

Output Inductor Selection

The inductor value determines the inductor ripple current and affects the load transient response. Higher inductor value reduces the inductor's ripple current and induces lower output ripple voltage. The ripple current and ripple voltage can be approximated by:

$$
\begin{aligned}
& \mathrm{I}_{\text {RIPPLE }}=\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}}{\mathrm{F}_{\mathrm{S}} \times \mathrm{L}} \times \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \\
& \Delta \mathrm{VOUT}=\mathrm{I}_{\text {RIPPLE }} \times \mathrm{ESR}
\end{aligned}
$$

Application I nformation (Cont.)

Output Inductor Selection (Cont.)

Where Fs is the switching frequency of the regulator. Although increase the inductor value and frequency reduce the ripple current and voltage, but there is a tradeoff exists between the inductor's ripple current and the regulator load transient response time
A smaller inductor will give the regulator a faster load transient response at the expense of higher ripple current. Increasing the switching frequency $\left(F_{s}\right)$ also reduces the ripple current and voltage, but it will increase the switching loss of the MOSFET and the power dissipation of the converter. The maximum ripple current occurs at the maximum input voltage. A good starting point is to choose the ripple current to be approximately 30% of the maximum output current.
Once the inductance value has been chosen, select an inductor that is capable of carrying the required peak current without going into saturation. In some types of inductors, especially core that is made of ferrite, the ripple current will increase abruptly when it saturates. This will result in a larger output ripple voltage.

Output Capacitor Selection

Higher Capacitor value and lower ESR reduce the output ripple and the load transient drop. Therefore select high performance low ESR capacitors that are intended for switching regulator applications. In some applications, multiple capacitors have to be parallel to achieve the desired ESR value. A small decoupling capacitor in parallel for bypassing the noise is also recommended, and the voltage rating of the output capacitors are also must be considered. If tantalum capacitors are used, make sure they are surge tested by the manufactures. If in doubt, consult the capacitors manufacturer.

Input Capacitor Selection

The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage.
The maximum RMS current rating requirement is approximately $\mathrm{I}_{\mathrm{out}} / 2$, where $\mathrm{I}_{\text {out }}$ is the load current. During power up, the input capacitors have to handle large amount of surge current. If tantalum capacitors are used, make sure
they are surge tested by the manufactures. If in doubt, consult the capacitors manufacturer. For high frequency decoupling, a ceramic capacitor $1 u F$ can be connected between the drain of upper MOSFET and the source of lower MOSFET.

MOSFET Selection

The selection of the N -channel power MOSFETs are determined by the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, reverse transfer capacitance ($\mathrm{C}_{\text {RSS }}$) and maximum output current requirement. The losses in the MOSFETs have two components: conduction loss and transition loss. For the upper and lower MOSFET, the losses are approximately given by the following :
$P_{\text {UPPER }}=\mathrm{I}_{\text {OUT }}(1+\mathrm{TC})\left(\mathrm{R}_{\text {DS(ON })}\right) \mathrm{D}+(0.5)\left(\mathrm{I}_{\text {OUT }}\right)\left(\mathrm{V}_{\text {IN }}\right)\left(\mathrm{t}_{\text {SW }}\right) \mathrm{F}_{\mathrm{s}}$ $P_{\text {LOWER }}=I_{\text {OUT }}(1+T C)\left(R_{\text {DSION }}\right)(1-D)$

Where
I is the load current
${ }^{\mathrm{OUT}} \mathrm{C}$ is the temperature dependency of $\operatorname{RDS}(\mathrm{ON})$
F is the switching frequency
$t{ }^{s}$ is the switching interval
${ }^{\text {sw }}$ is the duty cycle
Note that both MOSFETs have conduction losses while the upper MOSFET include an additional transition loss. The switching internal, t_{sw}, is a function of the reverse transfer capacitance $\mathrm{C}_{\text {RSS }}$.
The ($1+\mathrm{TC}$) term is to factor in the temperature dependency of the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and can be extracted from the " $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Temperature" curve of the power MOSFET.

Short Circuit Protection

The APW7158 provides a simple short circuit protection function, and it is not easy to predict its performance, since many factors can affect how well it works. Therefore, the limitations and suggestions of this method must be provided for users to understand how to work it well.

- The short circuit protection was not designed to work for the output in initial short condition. In this case, the short circuit protection may not work, and damage the MOSFETs. If the circuit still works, remove the short can cause an inductive kick on the phase pin, and it may damage the IC and MOSFETs.
- If the resistance of the short is not low enough to cause protection, the regulator will work as the load has

Application Information (Cont.)

Short Circuit Protection (Cont.)

increased, and continue to regulate up until the MOSFETs is damaged. The resistance of the short should include wiring, PCB traces, contact resistances, and all of the return paths.

- The higher duty cycle will give a higher COMP voltage level, and it is easy to touch the trip point. The compensation components also affect the response of COMP voltage; smaller caps may give a faster response.
- The output current has faster rising time during short; the COMP pin will have a sharp rise. However, if the current rises too fast, it may cause a false trip. The output capacitance and its ESR can affect the rising time of the current during short.

Layout Consideration

In high power switching regulator, a correct layout is important to ensure proper operation of the regulator. In general, interconnecting impedances should be minimized by using short, wide printed circuit traces.
Signal and power grounds are to be kept separate and finally combined using ground plane construction or single point grounding. Figure 10 illustrates the layout, with bold lines indicating high current paths; these traces must be short and wide. Components along the bold lines should be placed lose together. Below is a checklist for your layout :

- The metal plate of the bottom of the packages (SOP20) must be soldered to the PCB and connected to the GND plane on the backside through several thermal vias.
- Keep the switching nodes (UGATE, LGATE and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals. Therefore, keep traces to these nodes as short as possible.
- The traces from the gate drivers to the MOSFETs (UGATE1, LGATE1, UGATE2, LGATE2) should be short and wide.
- Decoupling capacitor, compensation component, the resistor dividers, boot capacitors, and SS capacitors should be close their pins.
- The input capacitor should be near the drain of the upper MOSFET; the output capacitor should be near the loads. The input capacitor GND should be close to the output capacitor GND and the lower MOSFET GND.
- The drain of the MOSFETs (VIN and phase nodes) should be a large plane for heat sinking.

Figure 10. Layout Guidelines

Package Information

SOP-20

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \end{aligned}$	SOP-20			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A		2.65		0.104
A1	0.10	0.30	0.004	0.012
A2	2.05		0.081	
b	0.31	0.51	0.012	0.020
c	0.20	0.33	0.008	0.013
D	12.60	13.00	0.496	0.512
E	10.10	10.50	0.398	0.413
E1	7.40	7.60	0.291	0.299
e	1.27 BSC		0.050 BSC	
h	0.25	0.75	0.010	0.030
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	$8{ }^{\circ}$

Note : 1. Follow from JEDEC MS-013 AC.
2. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

Carrier Tape \& Reel Dimensions

Application	A	H	T1	C	d	D	W	E1	F
SOP-20	330.0 ± 2.00	50 MIN .	$\begin{array}{r} 24.40+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	24.0 ± 0.30	1.75 ± 0.10	11.5 ± 0.10
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	12.0 ± 0.10	2.0 ± 0.10	$\begin{array}{r} \hline 1.5+0.10 \\ -0.00 \end{array}$	1.5 MIN.	$0.6+0.00$ -0.40	10.9 ± 0.20	13.3 ± 0.20	3.1 ± 0.20

(mm)

Devices Per Unit

Package Type	Unit	Quantity
SOP-20	Tape \& Reel	1000

Taping Direction Information

SOP-20

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat \& Soak Temperature min ($\mathrm{T}_{\text {smin }}$) Temperature max ($\mathrm{T}_{\text {smax }}$) Time ($\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {smax }}$) (t_{s})	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$
Average ramp-up rate ($T_{\text {smax }}$ to T_{P})	$3^{\circ} \mathrm{C} /$ second max.	$3^{\circ} \mathrm{C} /$ second max.
Liquidous temperature (T_{L}) Time at liquidous (tı)	$\begin{gathered} 183^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$
Peak package body Temperature $\left(T_{\text {D }}\right)^{*}$	See Classification Temp in table 1	See Classification Temp in table 2
Time (tp) ${ }^{* *}$ within $5^{\circ} \mathrm{C}$ of the specified classification temperature (T_{c})	20** seconds	30** seconds
Average ramp-down rate (T_{p} to $\mathrm{T}_{\text {smax }}$)	$6^{\circ} \mathrm{C} /$ second max.	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	6 minutes max.	8 minutes max.

Table 1. SnPb Eutectic Process - Classification Temperatures (Tc)

Package Thickness	${\text { Volume } \mathbf{~ m m}^{\mathbf{3}}}^{<350}$	Volume mm $^{\mathbf{3}}$ ≥ 350
$<2.5 \mathrm{~mm}$	$235^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

Table 2. Pb-free Process - Classification Temperatures (Tc)

Package Thickness	Volume $\mathbf{m m}^{\mathbf{3}}$ $<\mathbf{3 5 0}$	${\text { Volume } \mathbf{~ m m}^{\mathbf{3}}}^{\mathbf{3 5 0}} \mathbf{2 0 0 0}$	${\text { Volume } \mathbf{~ m m ~}^{\mathbf{3}}}^{\boldsymbol{> 2 0 0 0}}$
$<1.6 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
$1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	$5 \mathrm{Sec}, 245^{\circ} \mathrm{C}$
HOLT	JESD-22, A108	$1000 \mathrm{Hrs}, \mathrm{Bias}$ @ $125^{\circ} \mathrm{C}$
PCT	JESD-22, A102	$168 \mathrm{Hrs}, 100 \% \mathrm{RH}, 2 \mathrm{~atm}, 121^{\circ} \mathrm{C}$
TCT	JESD-22, A104	$500 \mathrm{Cycles},-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
HBM	MIL-STD-883-3015.7	VHBM $\geqq 2 \mathrm{KV}$
MM	JESD-22, A115	VMM $\geq 200 \mathrm{~V}$
Latch-Up	JESD 78	$10 \mathrm{~ms}, 1 \mathrm{tr} \geq 100 \mathrm{~mA}$

Customer Service

Anpec Electronics Corp.

Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax: 886-2-2917-3838

