FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: $\mathbf{8 k V}$
Low on resistance: 6.5Ω
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$
V_{DD} to V_{SS} analog signal range

APPLICATIONS

High voltage signal routing
Automatic test equipment
Analog front-end circuits
Precision data acquisition
Amplifier gain select
Industrial instrumentation

Relay replacement

GENERAL DESCRIPTION

The ADG5401 is a monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switch containing a latchup immune single-pole/single-throw (SPST) switch. The switch conducts equally well in both directions when on, and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 1.

PRODUCT HIGHLIGHTS

1. Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Low Ron of 6.5Ω.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5401 can operate from dual supplies of up to $\pm 22 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5401 can operate from a singlerail power supply of up to 40 V .
5. 3 V logic compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.
7. Available in 8-lead MSOP package.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
Continuous Current per Channel, S or D 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 10
Test Circuits 13
Terminology 15
Applications Information 16
Trench Isolation 16
Outline Dimensions 17
Ordering Guide 17

REVISION HISTORY

9/13-Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 6.5 \\ & 8 \\ & 1 \\ & 1.4 \end{aligned}$	10 1.7	VDD to $V_{S S}$ 12 2	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 19 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On})$, $\mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 18 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 18 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 21 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, I_{NL} or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, Cin	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or V_{DD}
```DYNAMIC CHARACTERISTICS ton toff Charge Injection, Qins Off Isolation Total Harmonic Distortion + Noise (THD + N) -3 dB Bandwidth Insertion Loss Cs (Off) CD (Off) CD (On), CS (On)```	160 193 175 207 220 -50 0.01 170 -0.4 22 24 75	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & 253 \\ & 242 \end{aligned}$	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { pC typ } \\ & \text { dB typ } \\ & \text { \% typ } \\ & \text { MHz typ } \\ & \text { dB typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \text { pF typ } \end{aligned}$	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} ; \text { see } \end{aligned}$   Figure 25   $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 20   $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 15 \mathrm{~V}$ p-p, $\mathrm{f}=20 \mathrm{~Hz}$ to   20 kHz; see Figure 22   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 23   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$;   see Figure 23   $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$   $V_{s}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$   $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD Iss $V_{D D} / V_{S S}$	$\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$		70   1 $\pm 9 / \pm 22$	$\mu A$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $V \min / V \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

[^0]
## ADG5401

## $\pm 20$ V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range On Resistance, Ron   On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 6 \\ & 7 \\ & 7 \\ & 1.2 \\ & 1.7 \\ & \hline \end{aligned}$	9 2.1	$V_{D D}$ to $V_{S S}$   11   2.5	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} ;$   see Figure 19 $\begin{aligned} & V_{D D}=+18 \mathrm{~V}, \mathrm{~V}_{S S}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, ID (Off)   Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	$\pm 2$   $\pm 2$   $\pm 8$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} ; \text { see } \end{aligned}$   Figure 18 $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see }$   Figure 18 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {; see Figure } 21$
DIGITAL INPUTS   Input High Voltage, Vinh   Input Low Voltage, VinL   Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{NH}}$   Digital Input Capacitance, Cin	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	$V$ min   $V$ max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\mathrm{DD}}$
```DYNAMIC CHARACTERISTICS ton toff Charge Injection, Qins Off Isolation Total Harmonic Distortion + Noise (THD + N) -3 dB Bandwidth Insertion Loss Cs (Off) CD (Off) CD (On), Cs (On)```	150 175 170 196 275 -50 0.01 170 -0.5 21 23 75	$\begin{aligned} & 207 \\ & 214 \end{aligned}$	$\begin{aligned} & 219 \\ & 223 \end{aligned}$	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { pC typ } \\ & \text { dB typ } \\ & \text { \% typ } \\ & \text { MHz typ } \\ & \text { dB typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see } \end{aligned}$   Figure 25   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 20   $R_{L}=1 \mathrm{k} \Omega, 20 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to   20 kHz ; see Figure 22   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 23   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$;   see Figure 23   $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$   $V_{s}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$   $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD Iss $V_{D D} / V_{S S}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		110 1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $V \min / V \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

[^1]ADG5401

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 14 \\ & 16 \\ & 2.8 \\ & 4 \end{aligned}$	19 5.5	0 V to V_{DD} 22 7	V Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 19 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	± 2 ± 2 ± 8	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} \text { to } 1 \mathrm{~V} ; \end{aligned}$ see Figure 18 $\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ to 1 V ; see Figure 18 $V_{S}=V_{D}=1 \mathrm{~V}$ to 10 V ; see Figure 21
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
```DYNAMIC CHARACTERISTICS ton toff Charge Injection, QiNs Off Isolation Total Harmonic Distortion + Noise (THD + N) -3 dB Bandwidth Insertion Loss Cs(Off) CD (Off) CD (On), CS (On)```	260 327 200 244 95 -50 0.02 190 -0.9 28 30 60	406 280	$\begin{aligned} & 454 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { pC typ } \\ & \text { dB typ } \\ & \text { \% typ } \\ & \text { MHz typ } \\ & \text { dB typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \hline \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 24   $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 24   $V_{s}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see   Figure 25   $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 20   $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 6 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to   20 kHz ; see Figure 22   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 23   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$; see   Figure 23 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS   IdD   $V_{D D}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & 65 \\ & 9 / 40 \end{aligned}$	$\mu A$ typ   $\mu \mathrm{A}$ max   $V$ min/V max	$V_{D D}=13.2 \mathrm{~V}$   Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

[^2]
## 36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range On Resistance, Ron   On-Resistance Flatness, Rflat (ON)	$\begin{aligned} & 7 \\ & 9 \\ & 1.8 \\ & 2.6 \end{aligned}$	11 $3$	0 V to $\mathrm{V}_{\mathrm{DD}}$   13   3.5		$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$   Figure 19 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, lo (Off)   Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	$\pm 2$ $\pm 2$ $\pm 8$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & V_{D D}=+39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} \text { to } 1 \mathrm{~V} \text {; see } \end{aligned}$   Figure 18   $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}==30 \mathrm{~V}$ to 1 V ; see Figure 18 $V_{S}=V_{D}=1 \mathrm{~V} \text { to } 30 \mathrm{~V} \text {; see Figure } 21$
DIGITAL INPUTS   Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, $\mathrm{I}_{\mathrm{NL}}$ or $\mathrm{I}_{\mathrm{INH}}$   Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min   $\checkmark$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
```DYNAMIC CHARACTERISTICS` ton toff Charge Injection, QiN, Off Isolation Total Harmonic Distortion + Noise (THD + N) -3 dB Bandwidth Insertion Loss Cs (Off) CD (Off) CD (On), CS (On)```	160 187 180 213 255 -50 0.01 170 -0.55 26 28 65	212 221	$\begin{aligned} & 230 \\ & 225 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 24   $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 24   $V_{S}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see   Figure 25   $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 20   $R_{L}=1 \mathrm{k} \Omega, 18 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to   20 kHz ; see Figure 22   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 23   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$;   see Figure 23 $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Ido $V_{D D}$	$\begin{aligned} & 80 \\ & 100 \end{aligned}$		$\begin{aligned} & 130 \\ & 9 / 40 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $V \min / V \max$	$\begin{aligned} & \mathrm{V} \mathrm{VD}=39.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{VDD} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$

[^3]
Abstract

Data Sheet ADG5401

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	Unit	Test Condition/Comments
CONTINUOUS CURRENT, S OR D					MSOP $\left(\theta_{\mathrm{JA}}=133.1^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	171	116	79	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	177	120.5	81	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	139	99	70	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	174	118	81	mA maximum	

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{5 S}$	48 V
$V_{\text {D }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D Pin	630 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, S or D^{2}	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
8-Lead MSOP (4-Layer Board)	$133.1{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

[^4]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Data Sheet

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S	Source Terminal. This pin can be an input or output.
2	NC	No Connect. Not internally connected.
3	GND	Ground (O V) Reference.
4	VDD	Most Positive Power Supply Potential.
5	NC	No Connect. Not internally connected.
6	IN	Logic Control Input.
7	VSS	Most Negative Power Supply Potential.
8	D	Drain Terminal. This pin can be an input or output.

Table 8. Truth Table

IN	Switch Condition
1	On
0	Off

ADG5401

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of V_{S}, V_{D} (Dual Supply)

Figure 4. On Resistance as a Function of $V_{s,} V_{D}$ (Single Supply)

Figure 5. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 6. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 20 V Dual Supply

Figure 7. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply

Figure 8. On Resistance as a Function of $V_{s}\left(V_{D}\right)$ for Different Temperatures, 36 V Single Supply

Figure 9. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 10. Leakage Currents as a Function of Temperature, ± 20 V Dual Supply

Figure 11. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 12. Leakage Currents as a Function of Temperature, 36 V Single Supply

Figure 13. Off Isolation vs. Frequency

Figure 14. Charge Injection vs. Source Voltage (Vs)

Figure 15. THD + N vs. Frequency

Figure 16. Bandwidth

Figure 17. $t_{\text {Transition }}$ Times vs. Temperature

ADG5401

TEST CIRCUITS

Figure 18. Off Leakage

Figure 19. On Resistance

Figure 20. Off Isolation

Figure 21. On Leakage

Figure 22. $T H D+N$

Figure 23. Bandwidth

Figure 24. Switching Times, ton and toff

TERMINOLOGY

$I_{D D}$

IDD represents the positive supply current.
Iss
Iss represents the negative supply current.

V_{D}, V_{s}

V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.

$\mathrm{R}_{\text {on }}$

Ron is the ohmic resistance between Terminal D and Terminal S.

$\mathbf{R}_{\text {fLat (ON) }}$

$\mathrm{R}_{\text {FLat (ON) }}$ represents the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I_{s} (Off)
I_{s} (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$V_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {InH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.

Iinl, $\mathbf{I}_{\text {INH }}$

$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)
Cs (Off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $C_{S}(\mathrm{On})$ represent the on switch capacitances, which are measured with reference to ground.
C_{IN}
C_{IN} represents digital input capacitance.
ton
$t_{\text {on }}$ represents the delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {off }}$
toff represents the delay time between the 50% and 90% points of the digital input and switch off condition.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB from its dc value.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD +N .

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5401 high voltage switch allows single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5401 (as well as other select devices within this family) achieves an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

TRENCH ISOLATION

In the ADG5401, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a

Figure 26. Trench Isolation

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.

Data Sheet

OUTLINE DIMENSIONS

gure 27. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG5401BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package $[\mathrm{MSOP}]$	$\mathrm{RM}-8$	S 2 M
ADG5401BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package $[\mathrm{MSOP}]$	RM-8	S2M

[^5]NOTES
\square
Data Sheet
ADG5401
NOTES

NOTES

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at the IN, S, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^5]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

