Buffer with Open Drain Output

The NL17SG07 MiniGate[™] is an advanced high-speed CMOS Buffer with Open Drain Output in ultra-small footprint.

The NL17SG07 input structures provides protection when voltages up to 5.5~V are applied with V_{CC} greater than or equal to 0.9 volts, otherwise the protection is up to 4.6 volts regardless of the supply voltage.

Features

- $\bullet~$ Wide Operating V_{CC} Range: 0.9 V to 3.6 V
- High Speed: t_{PD} = 2.5 ns (Typ) at V_{CC} = 3.0 V, C_L = 15 pF
- Low Power Dissipation: $I_{CC} = 0.5 \mu A$ (Max) at $T_A = 25^{\circ}C$
- 5.5 V Overvoltage Tolerant (OVT) Input Pins ($V_{CC} \ge 0.9 \text{ V}$)
- Ultra-Small Packages
- These are Pb-Free and Halide-Free Devices

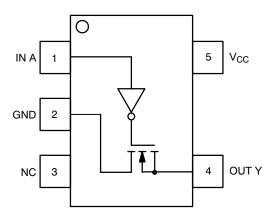


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

1

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

SOT-953 CASE 527AE

6 = Specific Device Code

M = Month Code

PIN ASSIGNMENT				
1	IN A			
2	GND			
3	NC			
4	OUT Y			
5	V _{CC}			

FUNCTION TABLE

Input A	Output Y
L	L
Н	Z

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +5.5	V
V _{IN}	DC Input Voltage		-0.5 to +4.6	V
V _{OUT}	DC Output Voltage	Output at High or Low State ower-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +4.6	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-20	mA
lout	DC Output Source/Sink Current		±20	mA
I _{CC}	DC Supply Current per Supply Pin		±20	mA
I _{GND}	DC Ground Current per Ground Pin		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		+150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3)	>2000 >100	V
I _{LATCHUP}	Latch-up Performance above V _{CC} and below GND at 12	5°C (Note 4)	±75	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.

2. Tested to EIA/JESD22-A114-A.

- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	Digital Input Voltage		0.0	3.6	V
V _{OUT}	Output Voltage Output at High or Low Power-Down Mode (V _{CC} =	State 0 V)	0.0 0.0	V _{CC} 3.6	V
T _A	Operating Temperature Range		-55	+125	°C
Δt / ΔV	Input Transition Rise or Fail Rate $V_{CC} = 3.3 \text{ V} \pm$	0.3 V	0	10	ns/V

DC ELECTRICAL CHARACTERISTICS

		Condition	V _{CC} (V)	T _A = 25°C			-55°C ≤ T _A ≤ 125°C			
Symbol Parameter	Min			Тур	Max	Min	Max	Unit		
V _{IH} High-Level			0.9	V _{CC}			V _{CC}			
	Input Voltage			1.1 to 1.3	0.70 x V _{CC}			0.70 x V _{CC}		
				1.4 to 1.6	0.65 x V _{CC}			0.65 x V _{CC}		V
				1.65 to 1.95	0.65 x V _{CC}			0.65 x V _{CC}		
				2.3 to 2.7	1.7			1.7		
				3.0 to 3.6	2.0			2.0		
V _{IL}	Low-Level			0.9			GND		GND	
	Input Voltage			1.1 to 1.3			0.30 x V _{CC}		0.30 x V _{CC}	
				1.4 to 1.6			0.35 x V _{CC}		0.35 x V _{CC}	V
				1.65 to 1.95			0.35 x V _{CC}		0.35 x V _{CC}	
				2.3 to 2.7			0.7		0.7	
				3.0 to 3.6			0.8		0.8	
V _{OL}	Low-Level	V _{IN} =	I _{OL} = 20 μA	0.9			0.1		0.1	V
	Output Voltage	V _{IH} or V _{IL}	I _{OL} = 0.3 mA	1.1 to 1.3			0.25 x V _{CC}		0.25 x V _{CC}	
			I _{OL} = 1.7 mA	1.4 to 1.6			0.25 x V _{CC}		0.25 x V _{CC}	
			I _{OL} = 3.0 mA	1.65 to 1.95			0.45		0.45	
		I _{OL} = 4.0	I _{OL} = 4.0 mA	2.3 to 2.7			0.4		0.4	
		I _{OL} = 8.0 mA	3.0 to 3.6			0.4		0.4		
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 3.6 \text{ V}$		0 to 3.6			±0.1		±1.0	μА
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND		3.6			0.5		10	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

					T _A = 25°C		T⊿ –55°C to	չ = o +125°C	
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PZL}	Propagation Delay,	C _L = 10 pF,	0.9	_	12	-	-	-	ns
	Enable Time,	$R_1 = R_L = 5 \text{ k}\Omega$	1.1 to 1.3	-	5.5	6.8	-	8.8	1
	A to Y		1.4 to 1.6	_	4.0	5.7	-	7.3	1
			1.65 to 1.95	_	3.3	3.9	-	5.9	
			2.3 to 2.7	_	2.7	3.3	-	4.5	
			3.0 to 3.6	_	2.4	2.9	-	3.7	1
		C _L = 15 pF,	0.9	_	12.5	_	-	-	ns
		$R_1 = R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	5.8	7.0	-	9.0	1
			1.4 to 1.6	_	4.1	6.0	-	7.4	1
			1.65 to 1.95	_	3.4	4.0	_	6.2	1
			2.3 to 2.7	_	2.8	3.4	_	4.6	1
			3.0 to 3.6	_	2.5	3.0	_	3.7	1
		C _L = 30 pF,	0.9	_	13.2	_	_	_	ns
		$R_1 = R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	6.2	7.4	_	9.4	- - -
			1.4 to 1.6	_	4.5	6.2	_	7.6	
			1.65 to 1.95	_	3.5	4.2	_	6.4	
			2.3 to 2.7	_	3.0	3.6	_	4.7	
			3.0 to 3.6	_	2.6	3.1	_	3.9	
t _{PLZ}	Propagation Delay,	$C_L = 10 \text{ pF},$ $R_1 = R_L = 5 \text{ k}\Omega$	0.9	_	8.0	_	-	_	ns
	Disable Time,		1.1 to 1.3	_	6.5	10.9	-	11.5	
	A to Y		1.4 to 1.6	_	5.2	7.2	_	8.3	
			1.65 to 1.95	_	4.9	7.0	_	7.8	
			2.3 to 2.7	_	3.8	6.5	-	7.3	
			3.0 to 3.6	_	3.5	6.2	-	6.8	
		C _L = 15 pF,	0.9	_	11.1	_	_	-	ns
		$R_1 = R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	9.0	13.4	_	14	-
			1.4 to 1.6	_	7.9	10	_	10.8	1
			1.65 to 1.95	_	7.6	9.5	_	10.5	-
			2.3 to 2.7	_	6.3	7.8	_	10	
			3.0 to 3.6	_	6.0	7.2	_	9.3	1
		C _L = 30 pF,	0.9	_	16.2	_	-	-	ns
		$R_1 = R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	14	18.4	_	20	1
			1.4 to 1.6	_	13	15	_	16	1
			1.65 to 1.95	_	12.5	14.5	_	15.8	
			2.3 to 2.7	_	11.2	13.5	_	15.4	
			3.0 to 3.6	_	11	13.2	_	14.3	1
C _{IN}	Input Capacitance		0 to 3.6	_	3	_	_	_	pF
C _{PD}	Power Dissipation Capacitance (Note 5)		0.9 to 3.6	-	4	-	-	-	pF
		· · · · · · · · · · · · · · · · · · ·	•		-			-	

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

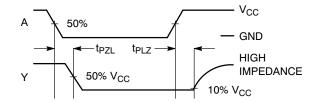


Figure 3. Switching Waveform

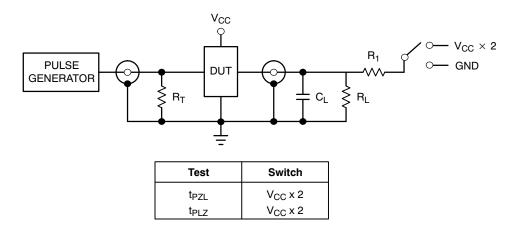
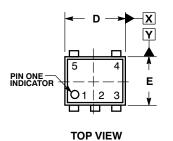
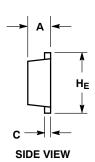
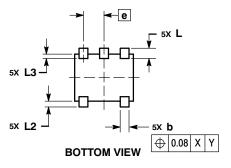


Figure 4. Test Circuit

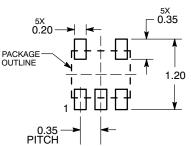

ORDERING INFORMATION


Device	Package	Shipping [†]
NL17SG07P5T5G	SOT-953 (Pb-Free)	8000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-953 CASE 527AE **ISSUE E**



NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS						
DIM	MIN	NOM	MAX				
Α	0.34	0.37	0.40				
b	0.10	0.15	0.20				
С	0.07	0.12	0.17				
D	0.95	1.00	1.05				
Е	0.75	0.80	0.85				
е		0.35 BSC					
HE	0.95	1.00	1.05				
L	0.175 REF						
L2	0.05	0.10	0.15				
L3							

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any reserves the right to make changes without intrier houce to any products never in. Scilled makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative