HI-8010/HI-8110 Series January 2001 # CMOS HIGH VOLTAGE DISPLAY DRIVER #### GENERAL DESCRIPTION The HI-8010 & HI-8110 high voltage display drivers are constructed of MOS P Channel and N Channel enhancement mode devices in a single monolithic structure. They are designed to drive high voltage liquid crystal displays by converting low level input signals (TTL on the HI-8010 and CMOS on the HI-8110) to high voltage drive signals. Both devices can drive up to 38 segments and require minimal display-to-data source interfacing. Serial data is loaded and held in internal latches until new display data is received. The HI-8010 & HI-8110 are available in a variety of ceramic and plastic packaging including DIP; leaded and leadless chip carriers; and J-lead and gull-wing quad flat packs. #### **FEATURES** - 5 volt input translated to 30 volts or less - Pin-out adaptable to drive 30, 32 or 38 LCD segments - RC oscillator or high voltage (BP) clock input - TTL compatible inputs (HI-8010 only) - CMOS compatible inputs (HI-8110 only) - Low power consumption - Industrial (-40°C to +85°C) & Military (-55°C to +125°C) temperature ranges - Pin for pin compatible with the Micrel MIC8010/8011 series and the AMI S4520 series drivers - Cascadable - Military level processing available ## **APPLICATIONS** - Dichroic Liquid Crystal Displays - Standard Liquid Crystal Displays - Vacuum Fluorescent Displays ## PIN CONFIGURATION (Top View) (See page 3-6 for additional package pin configurations) #### **FUNCTIONAL BLOCK DIAGRAM** #### **FUNCTIONAL DESCRIPTION** Whenever a Logic "0" is applied to the Chip Select (\overline{CS}) input, one bit of data is clocked into the shift register from the serial data input (DIN) with each negative transition of the Clock (\overline{CL}) input. \overline{CS} is internally tied to VSS on some versions. A Logic "1" present at the Load (LD) input will cause a parallel transfer of data from the shift register to the data latch. If the Load (LD) input is held high while data is clocked into the shift register, the latch will be transparent. All four logic inputs are TTL compatible on the HI-8010 and CMOS compatible on the HI-8110. To display segments, a Logic "1" is stored in the appropriate shift register bit position, and the segment output is out-of-phase with the backplane. The backplane output functions in 1 of 2 modes; externally driven or self-oscillating. When the LCDØ input is externally driven with the LCDØOPT input open circuit (Figure 2), the backplane output will be in-phase with LCDØ. Utilizing the self-oscillating mode, inputs LCDØ and LCDØOPT are tied together and connected to an RC circuit (Figure 3). A 150K Ω resistor with a 470pF capacitor generates an approximate backplane frequency of 100Hz. The LCDØ/LCDØOPT oscillator frequency is divided by 256 to determine the backplane output frequency. The resistor value (R) must be at least $30 \text{K} \Omega$ for proper self-oscillator operation. For displays having a number of segments greater than 38, two or more of the display drivers may be cascaded together by connecting the serial data output (DOUT) from the first driver, to the serial data input (DIN) of the following driver, etc. (See Figures 2 & 3). Data out (DOUT) will change state on the rising edge of the Clock (\overline{CL}) . Clock (\overline{CL}) , Load (LD) and Chip Select (\overline{CS}) should be tied in common with each other, respectively, between all cascaded display drivers. #### INTERNAL OSCILLATOR CIRCUIT #### TIMING DIAGRAM #### **ABSOLUTE MAXIMUM RATINGS** Voltages referenced to VSS = 0V | Supply Voltage | | Power Dissipation300 mW | |----------------------|--|-------------------------| | Voltage at any input | VEEVDD-35V to 0V
, except LCDØ0.3 to VDD+0.3V | | | | outVDD-35 to VDD+0.3V | | | | ut pin10 mA | O(T (D | NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS VDD = 5V, VEE = -25V, VSS = 0V, TA = Operating Temperature Range (unless otherwise specified). | PARAMETER | SYMBOL | CONDITION | MIN | TYP | MAX | UNITS | |---|---------|----------------------------|---------|-----|---------|-------| | Operating Voltage | VDD | | 3.0 | | 7.0 | V | | Supply Current | IDD | Static, No Load | | | 200 | μΑ | | | IEE | Static, No Load fBP=100Hz | | | 150 | μΑ | | Input Low Voltage, HI-8010 (except LCDØ) | VILTTL | | 0 | | 0.8 | V | | Input High Voltage, HI-8010 (except LCDØ) | VIHTTL | | 2 | | VDD | V | | Input Low Voltage, HI-8110 (except LCDØ) | VILCMOS | | 0 | | 0.3 VDD | V | | Input High Voltage, HI-8110 (except LCDØ) | VIHcmos | | 0.7 VDD | | VDD | V | | Input Low Voltage (LCDØ) | VILX | | VEE | | 3 | V | | Input High Voltage (LCDØ) | VIHX | | 3.5 | | VDD | V | | Input Current | IIN | VIN = 0 to 5V | | | 1 | μA | | Input Capacitance (not tested) | CI | | | | 5 | pF | | Segment Output Impedance | RSEG | IL = 10μA | | | 10,000 | Ω | | Backplane Output Impedance | RBP | IL = 10μA | | | 450 | Ω | | Data Out Current: | IDOH | Source Current, VOH = 4.5V | | | -0.6 | mA | | | IDOL | Sink Current, VOL = 0.5V | 0.6 | | | mA | ### **AC ELECTRICAL CHARACTERISTICS** VDD = 5V, VEE = -25V, VSS = 0V, TA = Operating Temperature Range (unless otherwise specified). | PARAMETER | SYMBOL | VDD | MIN | TYP | MAX | UNITS | |------------------------------|--------|-----|------|-----|-----|-------| | Clock Period | tCL | 5V | 1200 | | | ns | | Clock Pulse Width | tcw | 5V | 520 | | | ns | | Data In - Setup | tDS | 5V | 50 | | | ns | | Data In - Hold | tDH | 5V | 400 | | | ns | | Chip Select - Setup to Clock | tcss | 5V | 200 | | | ns | | Chip Select - Hold to Clock | tcsH | 5V | 450 | | | ns | | Load - Setup to Clock | tLS | 5V | 500 | | | ns | | Chip Select - Setup to Load | tcsL | 5V | 300 | | | ns | | Load Pulse Width | tLW | 5V | 500 | | | ns | | Chip Select - Hold to Load | tLCS | 5V | 300 | | | ns | | Data Out Valid, from Clock | tcdo | 5V | | | 800 | ns | #### **CASCADING - EXT. OSCILLATOR** #### **CASCADING - RC OSCILLATOR** #### **ADDITIONAL HI-8010/HI-8110 PIN CONFIGURATIONS** (See page 3-3 for 52-Pin Plastic QFP) #### **ORDERING INFORMATION** | PART
NUMBER | NUMBER OF SEGMENTS | MASTER
/SLAVE | PACKAGE
DESCRIPTION | TEMPERATURE RANGE | FLOW | BURN
IN | LEAD
FINISH | | |----------------|--------------------|------------------|--------------------------------------|-------------------|------|------------|----------------|--| | TTL Logic Inpu | TL Logic Inputs | | | | | | | | | HI-8010J-85 | 32 | BOTH | 44 PIN PLASTIC J LEAD | -40°C TO +85°C | | NO | SOLDER | | | HI-8010PQI | 38 | BOTH | 52 PIN PLASTIC QUAD FLAT PACK (PQFP) | -40°C TO +85°C | I | NO | SOLDER | | | HI-8010PQT | 38 | BOTH | 52 PIN PLASTIC QUAD FLAT PACK (PQFP) | -55°C TO +125°C | Т | NO | SOLDER | | | HI-8010SM-32 | 38 | BOTH | 48 PIN CERAMIC LEADLESS CHIP CARRIER | -55°C TO +125°C | М | YES | SOLDER | | | HI-8010SM-36 | 30 | BOTH | 40 PIN CERAMIC LEADLESS CHIP CARRIER | -55°C TO +125°C | М | YES | SOLDER | | | CMOS Logic In | CMOS Logic Inputs | | | | | | | | | HI-8110J-85 | 32 | BOTH | 44 PIN PLASTIC J LEAD | -40°C TO +85°C | | NO | SOLDER | | | HI-8110PQI | 38 | BOTH | 52 PIN PLASTIC QUAD FLAT PACK (PQFP) | -40°C TO +85°C | | NO | SOLDER | | | HI-8110PQT | 38 | BOTH | 52 PIN PLASTIC QUAD FLAT PACK (PQFP) | -55°C TO +125°C | T | NO | SOLDER | | | HI-8110SM-32 | 38 | BOTH | 48 PIN CERAMIC LEADLESS CHIP CARRIER | -55°C TO +125°C | М | YES | SOLDER | | | HI-8110SM-36 | 30 | BOTH | 40 PIN CERAMIC LEADLESS CHIP CARRIER | -55°C TO +125°C | М | YES | SOLDER | | # **SEMI-CUSTOM PACKAGING** The above part numbers represent some of the typical configurations of the HI-8010 & HI-8110 products. They can also be provided with a varied number of output segments (30, 32 and 38), with either industrial or military screening and in a wide variety of packages. Listed below are currently available packages. Please contact the Holt Sales Department for your specific requirements. | PACKAGE
DESCRIPTION | #
LEADS | |-------------------------------------|------------| | PLASTIC DUAL-IN-LINE (PDIP) | 40 | | | 48 | | PLASTIC QUAD FLAT PACK (PQFP) | 52 | | PLASTIC J-LEAD CHIP CARRIER (PLCC) | 44 | | CERAMIC DUAL-IN-LINE (CDIP) | 40 | | | 48 | | CERAMIC LEADLESS CHIP CARRIER (LCC) | 40 | | | 48 | | CERAMIC J-LEAD CHIP CARRIER | 44 | | | 48 | | CERAMIC LEADED CHIP CARRIER | 40 | | | 48 | #### HI-8010/HI-8110 Series # **PIN DESCRIPTIONS** | SYMBOL | FUNCTION | | DESCRIPTION | |---------------|----------|----------------------|--| | VSS | POWER | 0 Volts | | | cs | INPUT | Logic input | Chip select | | CL | INPUT | Logic input | Clocks shift register on negative edge and DOUT pins on positive edge | | LD | INPUT | Logic input | Segment outputs equal shift register data if Load is high | | DIN | INPUT | Logic input | Shift register data input | | LCD0 | INPUT | Analog input | Display clock input and is always bonded out. Can swing from VEE to VDD | | LCD0OPT | OUTPUT | Analog output | Bonded out only if an RC oscillator is required | | VDD | POWER | 5 Volts | | | VEE | POWER | O Volts to -30 Volts | | | DOUT | OUTPUT | Logic output | Selected pinout can provide shift register taps at positions 30, 32, 34, or 38 | | BP | OUTPUT | Display drive output | Low resistance drive for the backplane and swings from VDD to VEE | | Segments | OUTPUT | Display drive output | High resistance drive for each segment and swings from VDD to VEE | # HI-8010/HI-8110 PACKAGE DIMENSIONS inches (millimeters) #### **52-PIN PLASTIC QUAD FLAT PACK** # HI-8010/HI-8110 PACKAGE DIMENSIONS inches (millimeters) PACKAGE TYPE: 40S #### 48-PIN CERAMIC LEADLESS CHIP CARRIER Package Type: 48S