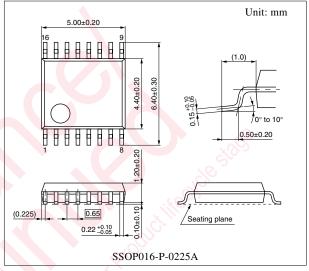
AN6091SA

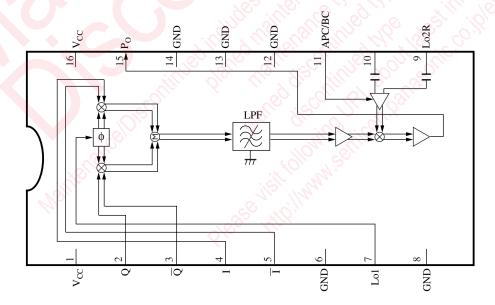
Quadrature modulation IC for mobile communications

■ Overview


The AN6091SA is a quadrature modulation IC for 1.5 GHz band digital cellular telephone, and incorporates a phase shifter, up-mixer and APC function as well as a quadrature modulator.

■ Features

- Low current consumption: 27 mA at $V_{CC} = 3 \text{ V}$
- APC built-in
- Excellent modulation precision characteristic


■ Applications

• Cellular telephone

Note) The package of this product will be changed to lead-free type (SSOP016-P-0225E). See the new package dimensions section later of this datasheet.

■ Block Diagram

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	V _{CC} (MOD)	9	Lo2R
2	Q input	10	Lo2
3	Q input	11	APC/BS
4	I input	12	GND
5	Ī input	13	GND
6	GND	14	GND
7	Lo1	15	RF ouput
8	GND	16	V _{CC} (up-mixer)

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	4.2	V
Supply current	I_{CC}	60	mA
Power dissipation *2	P_{D}	252	mW
Operating ambient temperature *1	T _{opr}	-30 to +80	°C
Storage temperature *1	T_{stg}	-55 to +125	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	2.7 to 4.0	V

■ Electrical Characteristics at T_a = 25°C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Outout level 1	P _{O1}	Lo1 = 178 MHz, -15 dBm Lo2 = 1607 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$	-16	-13	-10	dBm
Outout level 2	P _{O2}	Lo1 = 178 MHz, -15 dBm Lo2 = 1631 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$	-16	-13	-10	dBm
Current consumption	I _{CC}	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$	_	27	35	mA
Sleep current	I_{SL}	No signal V _{APC} = 0 V	_	0	10	μА

2 SDM00002BEB

^{*2:} $T_a = 80^{\circ}C$.

■ Electrical Characteristics at T_a = 25°C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Minimum output level	P _{MIN}	Lo1 = 178 MHz, -15 dBm	_	-50	-43	dBm
		Lo2 = 1619 MHz, -20 dBm				
		$V_{APC} = 1.0 \text{ V}$				

Note) $V_{CC} = 3.0 \text{ V}$

IQ signal amplitude: 0.5 V[p-p] (single phase), DC bias: 1.7 V, $\pi/4$ QPSK-modulated

 P_{O1} output frequency: 1 429.0025 MHz P_{O2} output frequency: 1 453.0025 MHz P_{MIN} output frequency: 1 441.0025 MHz

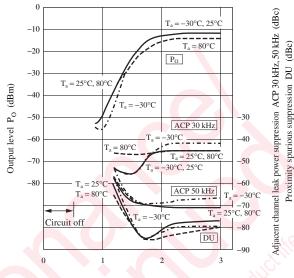
• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Carrier leak suppression $(f_{LO2} - f_{LO1})$	CL	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$, IQ: DC offset adjustment	1110	-35	_	dBc
Image leak suppression	IL	Lo1 = 178 MHz, -15 dBm Lo2 = 1 619 MHz, -20 dBm $V_{APC} = 2.3$ V, IQ: Level adjustment	<u> </u>	-40	_	dBc
Proximity spurious suppression	DU	Lo1 = 178 MHz, -15 dBm Lo2 = 1 619 MHz, -20 dBm V _{APC} = 2.3 V		-70	-65	dBc
Base band distortion suppression	BD	ditto	100	-40	*Q	dBc
Adjacent channel leak power suppression (30 kHz detuning)	BL1	ditto	,0°	-45	-38	dBc
Adjacent channel leak power suppression (50 kHz detuning)	BL2	ditto	2011/	-70	-60	dBc
Adjacent channel leak power suppression (100 kHz detuning)	BL3	ditto	03/	5-	-65	dBc
APC variable width	L_{APC}	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm V _{APC} = 1.0 V to 2.3 V	30	37	_	dB
APC output level control sensitivity	S _{APC}	Lo1 = 178 MHz, -15 dBm Lo2 = 1 619 MHz, -20 dBm V _{APC} = 1.0 V/1.6 V	_	46	_	dB/0.1 V
In-band output level deviation	ΔΡ	Lo1 = 178 MHz, -15 dBm Lo2 = 1607 MHz to 1631 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$	-1.5	_	+1.5	dB
Modulation precision	EVM	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm V _{APC} = 2.3 V	_	2.0	_	%[rms]

Note) Unless otherwise specified, $V_{CC} = 3.0 \text{ V}$

IQ signal: 0.5 V[p-p] (single phase), DC bias: 1.7 V


BL1, BL2, BL3, EVM: $\pi/4$ QPSK-modulated CL, IL, DU, BD, L_{APC} , S_{APC} , ΔP : PN9 stages

SDM00002BEB 3

AN6091SA Panasonic

■ Technical Data

APC control voltage characteristics

APC control voltage (V)

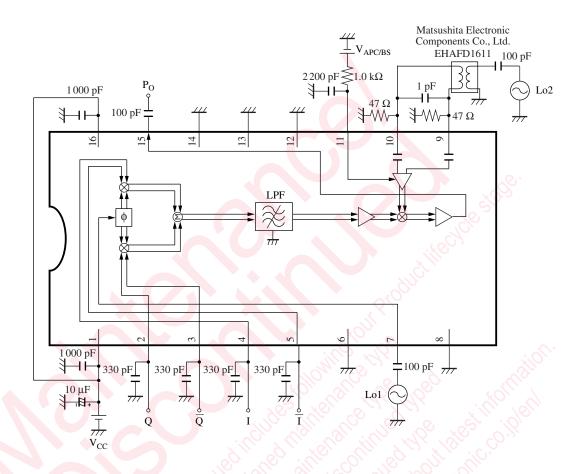
Test circuit: "■ Application Circuit Example"

 $V_{CC} = 3.0 \text{ V}$

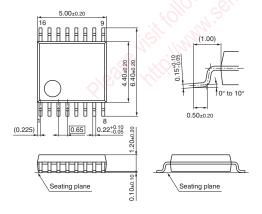
 $T_a = -30^{\circ}C, 25^{\circ}C, 80^{\circ}C$

Lo1: 178 MHz, -15 dBm

Lo2: 1619 MHz, -20 dBm


IQ: 0.5 V[p-p] (single phase), 1.7 V_{DC}

 $\pi/4$, using PN9 stage continuous wave


Note) 1. Unless otherwise specified, the test conditions are same as the electrical characteristics.

2. The above characteristics are theoretical values based on the IC design and are not guaranteed.

■ Application Circuit Example

- New Package Dimensions (Unit: mm)
- SSOP016-P-0225E (Lead-free package)

SDM00002BEB 5

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.