

Preliminary Product Information

Product Features

AG602

InGaP HBT Gain Block

- DC 2800MHz
- +18.5 dBm P1dB at 900MHz
- +33.5 dBm OIP3 at 900MHz
- 14 dB Gain at 900MHz
- Single Voltage Supply
- SOT-89 SMT Package
- Internally matched to 50 Ω

Product Description

Functional Diagram

The AG602 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG602 typically provides 14 dB of gain, +33.5 dBm Output IP3, and +18.5 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTBF values exceeding 100 years at mounting temperatures of +85°C and is housed in a SOT-89 industry standard SMT package.

The AG602 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

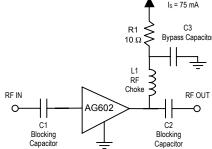
The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, W-CDMA, and UMTS. In addition, the AG602 will work for other various applications within the DC to 2.8 GHz frequency range such as CATV and fixed wireless.

Specifications

Parameters ¹	Units	Min	Тур	Max
Frequency Range	MHz		DC-2800	
S21 - Gain	dB		14	
S11 - Input Return Loss	dB		-15	
S22 - Output Return Loss	dB		-12	
Output P1dB	dBm		+18.5	
Output IP3	dBm		+33.5	
Noise Figure	dB		4.9	
Device Voltage	V		5.25	
Device Current	mA		75	

Test conditions unless otherwise noted

1. T = 25°C, Supply Voltage = +6 V, R_{bias} = 10 Ω , Frequency = 900MHz, 50 Ω System.


2. 30IP measured with two tones at an output power of 0 dBm/tone separated by 10MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.

Absolute Maximum Ratings

Parameters	Rating	
Operating Case Temperature	-40 to +85 °C	
Storage Temperature	-40 to +125 °C	
Operation of this device above any of there parameters may cause permanent damage		

 $V_{S} = +6 V$

Application Circuit

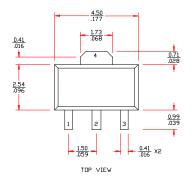
Typical Parameters

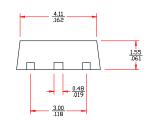
Parameter ¹	Units	Typical		
Frequency	MHz	900	1900	
S21	dB	14	13	
S11	dB	-20	-25	
S22	dB	-15	-15	
Output P1dB	dBm	+18.5	+18.2	
Output IP3	dBm	+33.5	+32.0	
Noise Figure	dB	4.9	4.9	
Supply Voltage	V	6	6	
Device Current	mA	75	75	
1. Data represents typical performance in an application board with				

T = 25°C, V_s = +6 V, and R_{bias} = 10 Ω in a 50 Ω system.

Ordering Information

Part No.	Description
AG602-89	InGaP HBT Gain Block
	SOT-89 Style Package
	(Available in Tape & Reel)
AG602-89PCB	Fully Assembled Application Board


This document contains information on a new product. Specifications and information are subject to change without notice


Preliminary Product Information

AG602-89 Package Information

Outline Drawing

3.48

1.27 .050

PIN NO.

2

3

4

3

0.86 .034 0.64

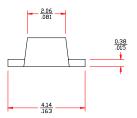
5.33 .210

Land Pattern

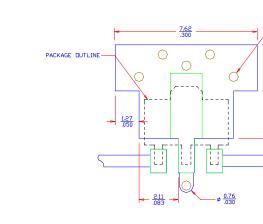
0.58

7

<u>
 1.70</u>
 .067


<u>3.86</u> .152

FUNCTION


INPUT GROUND

DUTPUT (BIAS)

GROUND

Mounting Configuration

- Notes: 1. Ground vias are critical for thermal and RF grounding considerations.
 2. Two 2-56 screws with washers should be used for thermal grounding to the main chassis.
 3. Ground plane on the backside should extend past the holes for the 2-56 screws as a minimum.
 4. No soldermask should be applied to the backside where heat sink area contacts the main chassis.
 5. Holes for the 2-56 screws should be plated through.
 6. Kapput dipattor for the 2-56 screws should be related through.

 - 6. Keepout diameter for the 2-56 screw is to allow good thermal

 - contact for the screw and washer. 7. Trace width depends on PC board. 8. A minimum of 1 oz. / 1 oz. copper should be used.

This document contains information on a new product. Specifications and information are subject to change without notice

ø <u>0.51</u>

2.49 .098

2.54 .100