15 A microBUCK ${ }^{\circledR}$ SiC401A/B Integrated Buck Regulator with Programmable LDO

DESCRIPTION

The Vishay Siliconix SiC401A/B an adv anced stand-alone synchronous b uck re gulator f eaturing i ntegrated power MOSFETs, bootstrap switch, and a programmable LDO in a space-saving PowerPAK MLP55-32L pin packages.
The SiC40 1A/B is capa ble of ope rating with all cer amic solutions an ds witching frequ encies up to 1 MHz . The programmable frequ ency, synch ronous op eration and selectable p ower-save all ow ope ration at h igh e fficiency across the full range of load current. The internal LDO may be used to supply 5 V for the gate drive circuits or it may be bypassed with an external 5 V for optimum efficiency and used to d rive external n-channel MOSFETs or o ther loads. Additional f eatures include cycle-b y-cycle current limit, voltage soft-star t, unde r-voltage protection, pro grammable over-current protection, soft shu tdown an d sel ectable power-save. The Vishay Siliconix SiC401A/B also provides an enable input and a power good output.

FEATURES

- High efficiency > 93 \%
- 15 A continuous output current capability
- Integrated bootstrap switch
- Programmable 200 mA LDO with bypass logic
- Temperature compensated current limit

- All ceramic solution enabled
- Pseudo fixed-frequency adaptive on-time control
- Programmable input UVLO threshold
- Independent enable pin for switcher and LDO
- Selectable ultra-sonic power-save mode (SiC401A)
- Selectable power-save mode (SiC401B)
- Programmable soft-start and soft-shutdown
- 1% internal reference voltage
- Power good output
- Over-voltage and under-voltage protections
- Material catego rization: Fo rd efinitions of comp liance please see www.vishay.com/doc?99912

APPLICATIONS

- Notebook, desktop and server computers
- Digital HDTV and digital consumer applications
- Networking and telecommunication equipment
- Printers, DSL, and STB applications
- Embedded applications
- Point of load power supplies

TYPICAL APPLICATION CIRCUIT AND PACKAGE OPTIONS

Typical Application Circuit for SiC401A/B (PowerPAK MLP5x5-32L)

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM

SiC401A/B Functional Block Diagram

PIN CONFIGURATION

SiC401A/B Pin Configuration (Top View)

PIN DESCRIPTION		
Pin Number	Symbol	Description
1	FB	Feedback input for switching regulator used to prog ram the output voltage - connect to an external resistor divider from $\mathrm{V}_{\mathrm{OUT}}$ to $\mathrm{A}_{\mathrm{GND}}$.
2V	OUT	Switcher output voltage sense pin - also th e input to the inter nal switch-over between $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {LDO }}$. The voltage at this pin must be less than or equal to the voltage at the V_{DD} pin.
3 V	DD	Bias supply for the IC - when using the internal LDO as a bias power supply, V_{DD} is the LDO output. When using an external power supply as the bias for the IC, the LDO output should be disabled.
4, 30, PAD 1	$\mathrm{A}_{\text {GND }}$	Analog ground
5 F	BL	Feedback input for the inter nal LDO - used to program the LDO outpu t. Connect to an e xternal resistor divider from V_{DD} to $\mathrm{A}_{\mathrm{GND}}$.
6, 9 to 11, PAD 2	$\mathrm{V}_{\text {IN }}$	Input supply voltage
7	SS	The soft start ramp will be programmed by an internal current source charging a capacitor on this pin.
8B	ST	Bootstrap pin - connect a capacitor of at least 100 nF from BST to LX to develop the floating supply for the high-side gate drive.
12, 14	NC	No connection
13	LXBST	LX Boost - connect to the BST capacitor.
23 to 25, PAD3	LX	Switching (phase) node
15 to 22	$\mathrm{P}_{\mathrm{GND}}$	Power ground
26	$\mathrm{P}_{\text {GOOD }}$	Open-drain power good in dicator - high impedan ce in dicates power is goo d. An external pull-up resistor is required.
27	ILIM	Current limit sense pin - used to program the current limit by connecting a resistor from $\mathrm{L}_{\text {LIM }}$ to LXS.
28	LXS	LX sense - connects to $\mathrm{R}_{\text {ILIM }}$
29	EN/PSV	Enable/power save input for the s witching regulator - connect to $A_{G N D}$ to disab le the switching regulator, connect to V_{DD} to operate with power-save mode and float to operate in forced continuous mode.
31	t_{ON}	On-time programming input - set the on-time by connecting through a resistor to $\mathrm{A}_{\mathrm{GND}}$
32	ENL	Enable input for the LDO - connect ENL to $A_{G N D}$ to disable the LDO. Drive with logic signal for logic control, or program the $\mathrm{V}_{\mathbb{I N}}$ UVLO with a resistor divider between V_{IN}, ENL, and $\mathrm{A}_{\mathrm{GND}}$.

ORDERING INFORMATION

Part Number	Package	Marking (Line 1: P/N)	
SiC401ACD-T1-GE3	PowerPAK MLP55-32L	SiC401A	
SiC401BCD-T1-GE3	PowerPAK MLP55-32L	SiC401B	
SiC401DB	Reference board		

Format
LINE 1: P/N
LINE 2: Siliconix logo + Lot code + ESD symbol
LINE 3: Factory code + Year code + Work week code

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
Electrical Parameter	Conditions	Limits	Unit
$\mathrm{V}_{\text {IN }}$	to $\mathrm{P}_{\mathrm{GND}}$	- 0.3 to + 20	V
$\mathrm{V}_{\text {IN }}$	to V_{DD}	- 0.4 max.	
LX	to $\mathrm{P}_{\mathrm{GND}}$	-0.3 to +20	
LX (Transient < 100 ns)	to $\mathrm{P}_{\mathrm{GND}}$	- 2 to + 20	
V_{DD}	to $\mathrm{P}_{\mathrm{GND}}$	- 0.3 to + 6	
EN/PSV, P ${ }_{\text {GOOD }}$, ILIM	Reference to $\mathrm{P}_{\mathrm{GND}}$	-0.3 to $+\left(\mathrm{V}_{\mathrm{DD}}+0.3\right)$	
t_{ON}	to $\mathrm{P}_{\mathrm{GND}}$	-0.3 to $+\left(\mathrm{V}_{\mathrm{DD}}-1.5\right)$	
BST	to LX	-0.3 to +6	
	to $\mathrm{P}_{\mathrm{GND}}$	- 0.3 to + 25	
ENL		-0.3 to V_{IN}	
$\mathrm{A}_{\text {GND }}$ to $\mathrm{P}_{\text {GND }}$		-0.3 to +0.3	
Temperature			
Maximum Junction Temperature		150	${ }^{\circ} \mathrm{C}$
Storage Temperature		- 65 to 150	
Power Dissipation			
Junction to Ambient Thermal Impedance ($\left.\mathrm{R}_{\mathrm{thJA}}\right)^{(\mathrm{b})}$	IC Section	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation	Ambient Temperature $=25^{\circ} \mathrm{C}$	3.4	W
	Ambient Temperature $=10{ }^{\circ} \mathrm{C}$	1.3	
ESD Protection			
	HBM	2	kV

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating/conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (all voltages referenced to GND = 0 V)					
Parameter Symb	ol	Min.	Typ.	Max.	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$	3		17	
V_{DD} to $\mathrm{P}_{\mathrm{GND}}$		3		5.5	v
Output Voltage	$\mathrm{V}_{\text {OUT }}$	0.6		5.5	
Temperature					
Ambient Temperature					${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

Parameter S	ymbol	Test Conditions Unless Specified $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for typ., $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for min. and max., $\mathrm{T}_{\mathrm{J}}=<125^{\circ} \mathrm{C}$, typical application circuit	Min.	Typ.	Max.	Unit
Input Power Supplies						
Input Supply Voltage	$\mathrm{V}_{\text {IN }}$		3		17	v
V_{DD}	V_{DD}		3		5.5	
$\mathrm{V}_{\text {IN }}$ UVLO Threshold ${ }^{(a)}$	$\mathrm{V}_{\text {UVLO }}$	Sensed at ENL pin, rising	2.4	2.6	2.95	
		Sensed at ENL pin, falling	2.23	2.4	2.57	
$\mathrm{V}_{\text {IN }}$ UVLO Hysteresis	V UVLO, HYS			0.25		
$\mathrm{V}_{\text {DD }}$ UVLO Threshold	$V_{\text {UVLO }}$	Measured at V_{DD} pin, rising	2.5		3	
		Measured at V_{DD} pin, falling	2.4		2.9	
V_{DD} UVLO Hysteresis	V UVLO, HYS			0.2		
$\mathrm{V}_{\text {IN }}$ Supply Current	In	ENL, EN/PSV $=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=17 \mathrm{~V}$		10	20	$\mu \mathrm{A}$
		Standby mode; ENL= V ${ }_{\text {DD }}$, EN/PSV $=0 \mathrm{~V}$		130		
$\mathrm{V}_{\text {DD }}$ Supply Current	${ }^{\text {DD }}$	ENL, EN/PSV = 0 V		190	300	
		$\begin{gathered} \text { SiC401A, EN/PSV }=V_{D D}, \text { no load } \\ \left(\mathrm{f}_{\mathrm{SW}}=25 \mathrm{kHz}\right), \mathrm{V}_{\mathrm{FB}}>0.6 \mathrm{~V}^{(\mathrm{b})} \\ \hline \end{gathered}$		0.3		mA
		SiC401B, EN/PSV = $V_{D D}$, no load, $V_{F B}>0.6 V^{(b)}$		0.7		
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=250 \mathrm{kHz},$ EN/PSV = floating, no load ${ }^{(b)}$		9		
		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=250 \mathrm{kHz}, \\ \mathrm{EN} / \mathrm{PSV}=\text { floating, no load }{ }^{(\mathrm{b})} \end{gathered}$		5.5		
FB On-Time Threshold		Static $\mathrm{V}_{\text {IN }}$ and load	0.594	0.600	0.606	V
Frequency Range	$\mathrm{f}_{\text {Sw }}$	Continuous mode operation			1000	kHz
		Minimum $\mathrm{f}_{\text {SW }}$, (SiC401A only)		25		
Bootstrap Switch Resistance				10		Ω
Timing						
On-Time	${ }_{\text {ton }}$	Continuous mode operation $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{R}_{\text {ton }}=133 \mathrm{k} \Omega$	999	1110	1220	ns
Minimum On-Time ${ }^{(\mathrm{b})}$	$\mathrm{t}_{\mathrm{ON}, \mathrm{min} \text {. }}$			80		
Minimum Off-Time ${ }^{(b)}$	$\mathrm{t}_{\text {OFF, min. }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		250		
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$		370		
Soft Start						
Soft Start Current ${ }^{(b)}$	$\mathrm{I}_{\text {S }}$			3μ		A
Soft Start Voltage ${ }^{(b)}$	$\mathrm{V}_{S S}$	When $\mathrm{V}_{\text {OUT }}$ reaches regulation		1.5		V
Analog Inputs/Outputs						
$\mathrm{V}_{\text {Out }}$ Input Resistance	$\mathrm{R}_{\mathrm{O}-\mathrm{IN}}$			500		k Ω
Current Sense						
Zero-Crossing Detector Threshold Voltage	$\mathrm{V}_{\text {Sense-th }}$	LX-P ${ }_{\text {GND }}$	-3		+ 3	mV
Power Good						
Power Good Threshold	PG_V $\mathrm{V}_{\text {TH_UPPER }}$	Upper limit, $\mathrm{V}_{\mathrm{FB}}>$ internal 600 mV reference		± 20		\%
	PG_V ${ }_{\text {TH_LOWER }}$	Lower limit, V_{FB} < internal 600 mV reference		-10		
Start-Up Delay Time (between PWM enable and $\mathrm{P}_{\text {GOOD }}$ high)	$P G_{-} T_{\text {d }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\text {SS }}=10 \mathrm{nF}$		12		ms
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{C}_{S S}=10 \mathrm{nF}$		7		
Fault (noise-immunity) Delay Time ${ }^{(b)}$	PG_ICC			5μ		s
Leakage Current	PG_ILK				1μ	A
Power Good On-Resistance	PG_R $\mathrm{DS}_{\text {_ON }}$			10		Ω
Fault Protection						
Valley Current Limit	ILIM	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\text {LIM }}=3945, \mathrm{~T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12.75	15	17.25	A
		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{R}_{\text {ILIM }}=3945$		13.5		
ILIM Source Current				10		$\mu \mathrm{A}$

ELECTRICAL SPECIFICATIONS						
Parameter Symbol		Test Conditions Unless Specified $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for typ., $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for min. and max., $\mathrm{T}_{\mathrm{J}}=<125^{\circ} \mathrm{C}$, typical application circuit	Min.	Typ.	Max.	Unit
ILIM Comparator Offset Voltage	$\mathrm{V}_{\text {ILM-LK }}$	With respect to $\mathrm{A}_{\text {GND }}$	-10	0	+ 10	mV
Output Under-Voltage Fault	Vouv_Fault	V_{FB} with respect to Internal 600 mV reference, 8 consecutive clocks		-25		
Smart Power-Save Protection Threshold Voltage ${ }^{\text {b }}$	$\mathrm{P}_{\text {Save_VTH }}$	$V_{\text {FB }}$ with respect to internal 600 mV		+ 10		\%
Over-Voltage Protection Threshold		V_{FB} with respect to internal 600 mV		+ 20		
Over-Voltage Fault Delay ${ }^{\text {b }}$	tov-Delay			5μ		s
Over Temperature Shutdown ${ }^{\text {b }}$	$\mathrm{T}_{\text {Shut }}$	$10^{\circ} \mathrm{C}$ hysteresis		150		${ }^{\circ} \mathrm{C}$
Logic Inputs/Outputs						
Logic Input High Voltage	V_{IH}		1			
Logic Input Low Volatge	V_{IL}				0.4	
EN/PSV Input for P-Save Operation ${ }^{(b)}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	2.2		5	V
EN/PSV Input for Forced Continuous Operation ${ }^{(b)}$			12			
EN/PSV Input for Disabling Switcher			00		. 4	
EN/PSV Input Bias Current	$\mathrm{I}_{\text {EN }}$		-10		+ 10	
ENL Input Bias Current	$\mathrm{I}_{\text {ENL }}$			81	5	$\mu \mathrm{A}$
FBL, FB Input Bias Current	FBL_ILK		-1		+1	
Linear Dropout Regulator						
FBL ${ }^{\text {(b) }}$	V LDO ACC			0.75		V
LDO Current Limit	LDO_ILIM	Short-circuit protection, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}<0.75 \mathrm{~V}$		65		mA
		Start-up and foldback, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $0.75<\mathrm{V}_{\mathrm{DD}}<90 \%$ of final V_{DD} value		115		
		Operating current limit, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DD}}>90 \%$ of final V_{DD} value	135	200		
$\mathrm{V}_{\text {LDO }}$ to $\mathrm{V}_{\text {OUT }}$ Switch-over Threshold ${ }^{(d)}$	$\mathrm{V}_{\text {LDO-BPS }}$		-130		+ 130	mV
$\mathrm{V}_{\text {LDO }}$ to $\mathrm{V}_{\text {OUT }}$ Non-switch-over Threshold ${ }^{(d)}$	$\mathrm{V}_{\text {LDO-NBPS }}$		-500		+ 500	mV
$\mathrm{V}_{\text {LDO }}$ to $\mathrm{V}_{\text {OUT }}$ Switch-over Resistance	$\mathrm{R}_{\text {LDO }}$	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		2		Ω
LDO Drop Out Voltage ${ }^{(e)}$		$\begin{gathered} \text { From } \mathrm{V}_{\mathrm{IN}} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{VLDO}}=100 \mathrm{~mA} \end{gathered}$		1.2		V

Notes:
a. $\mathrm{V}_{\text {IN UVLO }}$ is programmable using a resistor divider from V_{IN} to ENL to $\mathrm{A}_{G N D}$. The ENL voltage is compared to an internal reference.
b. Typical value measured on standard evaluation board.
c. SiC401A/B has first order temperature compensation for over current. Results vary based upon the PCB thermal layout
d. The sw itch-over threshold is the maximum voltage dif ferential between the $V_{\text {LDO }}$ and V out pins which ensures that V LDO will internally switch-over to $\mathrm{V}_{\text {OUT }}$. The non-switch-over threshold is the minimum voltage diff erential between the $\mathrm{V}_{\text {LDO }}$ and $\mathrm{V}_{\text {OUt }}$ pins which ensures that $\mathrm{V}_{\text {LDO }}$ will not switch-over to $\mathrm{V}_{\text {OUT }}$.
e. The LDO drop out voltage is the voltage at which the LDO output drops 2% below the nominal regulation point.

ELECTRICAL CHARACTERISTICS

Effiency/Power Loss vs. Load P-Save ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC401B}$)

Effiency/Power Loss vs. Load P-Save
($\left.\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~B}\right)$

Effiency/Power Loss vs. Load FCM
($\left.\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC401B}\right)$

Effiency/Power Loss-P-Save vs. FCM $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~B}\right)$

Effiency/Power Loss-P-Save vs. FCM $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~B}\right)$

Effiency/Power Loss-P-Save
($\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{SiC401B}$)

ELECTRICAL CHARACTERISTICS

Load Regulation - FCM
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC401B}\right)$

Load Regulation - P-Save
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC401B}\right)$

Switching Frequency - P-Save Mode vs. FCM
($\left.\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{SiC401B}\right)$

Load Regulation - FCM
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC401B}\right)$

Load Regulation - P-Save
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC401B}\right)$

Switching Frequency - P-Save vs. FCM
$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~B}\right)$

ELECTRICAL CHARACTERISTICS

Load Regulation vs. Temperature - FCM
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}\right.$, SiC401B $)$

Load Regulation vs. Temperature - P-Save $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}\right.$, SiC401B)

Effiency Variation with $\mathrm{V}_{\text {OUT }}$ - P-Save
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{I N}=12 \mathrm{~V}, \mathrm{~L}=2.2 \mu \mathrm{H}(4.6 \mathrm{~m} \Omega)\right.$ for $\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V, SiC401B $)$

Load Regulation vs. Temperature - P-Save
$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~B}\right)$

Load Regulation vs. Temperature - FCM

$$
\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~B}\right)
$$

Efficiensy/Power Loss vs. P-Save
($\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$, SiC401B)

ELECTRICAL CHARACTERISTICS

Effiency/Power Loss vs. Load - P-Save
($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC401A}$)

Effiency/Power Loss - P-Save vs. FCM $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \operatorname{SiC} 401 \mathrm{~A}\right)$

Effiency/Power Loss vs. Load - P-Save
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \operatorname{SiC} 401 \mathrm{~A}\right)$

Effiency/Power Loss - P-Save vs. FCM $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~A}\right)$

Effiency/Power Loss - P-Save
($\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \operatorname{SiC} 401 \mathrm{~A}$)

Load Regulation - P-Save
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~A}\right)$

ELECTRICAL CHARACTERISTICS

Load Regulation vs. Temperature - P-Save
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC401A}\right)$

Time(1ms/div)
Start-up - EN/PSV
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~B}\right)$

Load Regulation vs. Temperature - P-Save
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{SiC} 401 \mathrm{~A}\right)$

Time($50 \mu \mathrm{~s} / \mathrm{div}$)
Shutdown-EN/PSV
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=5 \mathrm{~A}, \mathrm{SiC401B}\right)$

ELECTRICAL CHARACTERISTICS

Start-up (Pre-Bias) - EN/PSV
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{SiC401B}\right)$

Power-Save Mode
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~A}\right)$

Time (10 $/$ s/div)
Transient Response - P-Save Load Rising
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~A}\right.$ to $\left.11 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~B}, \mathrm{dV} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}\right)$

Power-Save Mode
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~B}\right)$

Forced Continuous Mode
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=15 \mathrm{~A}, \mathrm{SiC401B}\right)$

Transient Response - P-Save Load Falling
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=11 \mathrm{~A}\right.$ to $\left.0 \mathrm{~A}, \mathrm{SiC401B}, \mathrm{dV} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}\right)$

ELECTRICAL CHARACTERISTICS

Transient Response - FCM
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}\right.$ to $\left.11 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~B}, \mathrm{~d} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}\right)$

Transient Response - P-Save Load Rising
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}\right.$ to $\left.11 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~A}, \mathrm{~d} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}\right)$

Over Current Protection-Under Voltage Prodection ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{SiC401B}$)

Over Temperature Shutdown at $133.4^{\circ} \mathrm{C}$
$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}\right.$, LDO Mode, SiC401B $)$

Transient Response - P-Save Load Falling

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}\right.$, $\mathrm{I}_{\mathrm{OUT}}=11 \mathrm{~A}$ to $\left.0 \mathrm{~A}, \mathrm{SiC} 401 \mathrm{~A}, \mathrm{~d} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}\right)$

OPERATIONAL DESCRIPTION

Device Overview

The SiC40 $1 \mathrm{~A} / \mathrm{B}$ is a step down synchronous DC/DC buck co nverter wi th i ntegrated power MOSFETs a nd a 200 mA capable programmable LDO. The device is capable of 15 A ope ration at very high effici ency. A space saving $5 \times 5(\mathrm{~mm}) 32-$ pin package is used. The programmable operating frequency of up to 1 MHz enables optimizing the configuration for PCB area and efficiency.
The buck controller uses a pseudo-fixed frequency adaptive on-time con trol. This con trol method al lows fast transient igponse which permits the use of smaller output capacitors.

Input Voltage Requirements

The SiC4 01A/B requires two inpu tsupp lies for normal operation: $V_{I N}$ and $V_{D D}$. $V_{I N}$ operates over a wide range from 3 V to 17 V . V_{DD} requires a 3 V to 5.5 V supply input that can be a n e xternal source or the in ternal LDO con figured to supply 3 V to 5.5 V from V_{IN}.

Power Up Sequence

When the SiC401A/B uses an external power source at the $V_{D D}$ pin, the switching regulator initiates the start up when $\mathrm{V}_{I N}, \mathrm{~V}_{\mathrm{DD}}$, and EN/PSV are above their respective thresholds. When EN/PSV is at logic high, $V_{D D}$ needs to be applied after $\mathrm{V}_{\text {IN }}$ rises. It is also recommend ed to use a $10 \quad \Omega$ resistor between an external power source and the V_{DD} pin. To start up by using the EN/PSV pin when both $V_{D D}$ and $V_{\text {IN }}$ are above their respective thresholds, apply EN/PSV to e nable the start-up p rocess. For $\mathrm{SiC} 401 \mathrm{~A} / \mathrm{B}$ in self-biased mode, refer to the LDO section for a full description.

Shutdown

The $\operatorname{SiC} 401 \mathrm{~A} / \mathrm{B}$ can be sh ut-down by p ulling either V_{DD} or EN/PSV below its threshold. When using an external power source, it is recommended that the $V_{D D}$ voltage ramps down before the $\mathrm{V}_{\text {IN }}$ voltage. When V_{DD} is active and EN/PSV at logic low, the output voltage discharges in to the $\mathrm{V}_{\text {OUT }}$ pin through an internal FET.

Pseudo-Fixed Frequency Adaptive On-Time Control

The PW M co ntrol method u sed by the SiC $401 \mathrm{~A} / \mathrm{B}$ is pseudo- fi xed freq uency, ad aptive on-time, as sh own in figure 1. The ripple voltage generated at the output capacitor ESR is used as a PWM ramp signal. This ripple is used to trigger the on-time of the controller.

Figure 1 - Output Ripple and PWM Control Method
The adaptive on-time is determined by an internal one- shot timer. When the one-shot is triggered by the output ripple, the device se nds a si ngle on -time p ulse t o th e high- sid e MOSFET. The pulse period is determined by $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {IN }}$; the period is proportional to o utput vo Itage and in versely proportional to inp ut voltage. With this ada ptive on-time arrangement, the devi ce automatically anticipates the on-time ne eded to regul ate $\mathrm{V}_{\text {out }}$ fo r th e presen $t V_{\text {IN }}$ condition and at the selected frequency.
The advantages of adaptive on-time control are:

- Predictable operating fre quency comp ared to other variable frequency methods.
- Reduced compon ent count by el iminating th e error amplifier and compensation components.
- Reduced component count by removing the need to sense and control inductor current.
- Fast transient response - the response time is controlled by a fa st co mparator instead of a typically slow error amplifier.
- Reduced o utput cap acitance du e to fast transient response.

One-Shot Timer and Operating Frequency

The one-shot timer operates as shown in figure 2. The FB Comparator output goes h igh when V_{FB} is less than the internal 600 mV reference. This feeds into the gate drive and turns on the high-side MOSFET, and also starts the one-shot timer. The one-shot timer uses an internal comparator and a capacitor. One comparator input is connected to $\mathrm{V}_{\text {OUT }}$, the other input is connected to the capacitor. When the on-time begins, the in ternal capa citor charges fro m zero vol ts through a current which is proportional to $\mathrm{V}_{I N}$. When the capacitor voltage reach es $\mathrm{V}_{\text {OUT }}$, the on-time is completed and the high-side MOSFET turns off.

Figure 2 - On-Time Generation
This method automaticall y produces an o n-time th at is proportional to $\mathrm{V}_{\mathrm{OUT}}$ and inversely proportional to V_{IN}. Under steady-state con ditions, the switching freq uency ca n be determined from the on-time by the following equation.

$$
\mathrm{fsw}_{\mathrm{S}}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{tON} \times \mathrm{V}_{\text {IN }}}
$$

The SiC401A/B uses an external resistor to set the ontime which ind irectly se ts the frequency. The on-time can be programmed to provide op erating frequency up to 1 MHz using a resistor between the t_{ON} pin and ground. The resistor value is selected by the following equation.

$$
R_{\text {ton }}=\frac{k}{25 \mathrm{pF} \times f \mathrm{fsw}}
$$

The constant, k, equals $1, w$ hen $V_{D D}$ is greater than 3.6 V . If $V_{D D}$ is less than 3.6 V and $\mathrm{V}_{I N}$ is greater than $\left(\mathrm{V}_{\mathrm{DD}}-1.75\right) \times 10$, k is shown by the following equation.

$$
\mathrm{k}=\frac{\left(\mathrm{V}_{\mathrm{DD}}-1.75\right) \times 10}{\mathrm{~V}_{\mathrm{IN}}}
$$

The maximum RTON value allowed is shown by the following equation.

$$
R_{\text {ton_MAX }}=\frac{\mathrm{V}_{\text {IN_MIN }}}{15 \mu \mathrm{~A}}
$$

$\mathrm{V}_{\text {OUT }}$ Voltage Selection

The switcher output voltage is regulated by comparing $\mathrm{V}_{\text {OUT }}$ as seen through a resistor divider at the FB pin to the internal 600 mV reference voltage, see figure 3.

Figure 3 - Output Voltage Selection

Note that this con trol method reg ulates the valley of the output ri pple voltage, n ot the DC val ue. The DC o utput voltage $\mathrm{V}_{\text {OUT }}$ is offset by the outpu tripple according to the following equation.

$$
\mathrm{V}_{\mathrm{OUT}}=0.6 \times\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)+\left(\frac{\mathrm{V}_{\text {RIPPLE }}}{2}\right)
$$

When a large capacitor is placed in parallel with R 1 ($\mathrm{C}_{\mathrm{TOP}}$) $\mathrm{V}_{\text {OUT }}$ is shown by the following equation.

$$
\mathrm{V}_{\text {OUT }}=0.6 \times\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)+\left(\frac{\mathrm{V}_{\text {RIPPLE }}}{2}\right) \times \sqrt{\frac{1+\left(\mathrm{R}_{1} \omega \mathrm{C}_{\text {TOP }}\right)^{2}}{1+\left(\frac{\mathrm{R}_{2} \times \mathrm{R}_{1}}{\mathrm{R}_{2}+\mathrm{R}_{1}} \omega \mathrm{C}_{\text {TOP }}\right)^{2}}}
$$

Enable and Power-Save Inputs

The EN/PSV input is used to enable or disable the switching regulator. When EN/PSV is low (grounded), the switching regulator is off an d in its lowe st power state. When off, the output of the switching regulator soft-discharges the output into a 15Ω internal resistor via the $\mathrm{V}_{\text {OUT }}$ pin. When EN/PSV is allowed to float, the pin voltage will float to 33% of the voltage at V DD. The swi tching reg ulator turns on with power-save disabled and all switching is in forced continuous mode.
When EN/PSV is high (above 44% of the voltage at V_{DD}), the switching regul ator turns on with power-save enabled. The Si C401A/B P-Save operation re duces the switching frequency according to the I oad for in creased efficiency at light load conditions.

Forced Continuous Mode Operation

The Si C401A/B o perates the switcher i n FCM (Forced Continuous Mode) by floating the EN/PSV pin (see figure 4). In this mode one of the power MOSFETs is always on, with no in tentional d ead time o ther than to avoid crossconduction. This feature results in uniform frequency across the full load range with the trade-off being poor efficiency at light loads du e to the hi gh-frequency switching of the MOSFETs. DH is gate signal to drive upper MOSFET. DL is lower gate signal to drive lower MOSFET

Figure 4 - Forced Continuous Mode Operation

Ultrasonic Power-Save Operation (SiC401A)

The SiC 401 A pro vides ultrasonic pow er-save ope ration at light loads, with the minimum operating frequency fixed at slightly und er 25 kHz . This is accomplish ed by using an internal timer that monitors the time be tween consecutive high-side gate pulses. If the time exceeds $40 \mu \mathrm{~s}$, DL drives high to tu rn the low-side MOSFET on. This draws current from $\mathrm{V}_{\text {OUT }}$ through the inductor, forcing both $\mathrm{V}_{\text {OUT }}$ and V_{FB} to fall. When V_{FB} drops to the 600 mV threshold, the next DH (the drive signal for the high side FET) on-time is trigg ered. After the on-time is compl eted the high -side MOSFET is turned off and the low-side MOSFET turns on. The low-side MOSFET remains on until the in ductor current ramps down to zero, at which point the low-side MOSFET is turned off.
Because the o n-times are forc ed to occur at interval s no greater than $40 \mu \mathrm{~s}$, the freque ncy will n ot fall far below 25 kHz . Figure 5 shows ultrasonic power-save operation.

After the 40μ s time-out, DL drives high if $V_{F B}$ has not reached the FB threshold.

Power-Save Operation (SiC401B)

The SiC401B provides power-save operation at ligh t loads with n o min imum op erating freque ncy. Wi th po wer-save enabled, the internal zero crossing comparator monitors the inductor current via the voltage across the low-side MOSFET during the o ff-time. If the inductor current fall s to zero for 8 c onsecutive switching cycles, the controller enters MOSFET on each subs equent cycle provided that the power-save operation. It will turn off the low-side MOSFET on each subsequent cycle provided that the current crosses zero. At this time both MOSFETs remain off until $V_{F B}$ drops to the 600 mV threshold. Because the MOSFETs are off, the load is supplied by the output capacitor.
If the inductor current does not reach zero on any switching cycle, the controller immedi ately exits power-save and returns to forced continuous mode.
Figure 6 shows power-save operation at light loads.

Figure 6 - Power-Save Mode

Smart Power-Save Protection

Active loads may leak current from a higher voltage into the switcher output. Under light load conditions with power-save enabled, th is can force $\mathrm{V}_{\text {OUT }}$ to sl owly rise an d reach the over-voltage threshold, resulting in a hard shut-down. Smart power-save pre vents this co ndition. When the FB vol tage exceeds 10% abo ve nominal, the device immediately disables po wer-save, an d DL drives h igh to turn on the low-side MOSFET. This draws cu rrent from $\mathrm{V}_{\text {OUT }}$ through the inductor and causes $\mathrm{V}_{\mathrm{OUT}}$ to fall. When V_{FB} drops back to the 600 mV trip point, a normal t_{ON} switching cycle begins. This method pre vents a ha rd OVP sh ut-down a nd a Iso cycles energy from V out back to V_{IN}. It also minimizes operating power by avoid ing fo rced co nduction mode operation. Figure 7 shows typical waveforms for the Smart Power Save feature.

Figure 5 - Ultrasonic Power-Save Operation

Figure 7-Smart Power-Save

SmartDrive ${ }^{\mathrm{TM}}$

For each DH pulse, the DH driver initially turns on the high side MOSFET at a lo wer speed, allowing a softer, smoo th turn-off of the low-side diode. Once the diode is off and the LX voltage has risen 0.5 V a bove $\mathrm{P}_{\text {GND }}$, the Sma rtDrive circuit a utomatically drives the h igh-side MOSFET on at a rapid rate. This techn ique reduces switching losses while maintaining high efficiency and al so avoids the ne ed for r snubbers for the power MOSFETs.

Current Limit Protection

The device features programmable current limiting, which is accomplished by using the R $\mathrm{R}_{\text {DS-ON }}$ of the lower MOSFET for current sensing. The current limit is set by $\mathrm{R}_{\text {ILIM }}$ resistor. The $\mathrm{R}_{\text {ILIM }}$ resistor connects from the $\mathrm{I}_{\text {LIM }}$ pin to the LXS pin which is also the drain of the low-side MOSFET. When the low-side MOSFET is on, an internal $\sim 10 \mu \mathrm{~A}$ current flows from the $\mathrm{I}_{\text {LIM }}$ pin and through the $\mathrm{R}_{\text {ILIM }}$ resistor, creating a voltage drop across the resistor. While the low-side MOSFET is on, the inductor current flows thr ough it and creates a voltage across the $\mathrm{R}_{\text {DS-ON }}$. Th e voltage across the MOSFET is negative with respect to ground. If this MOSFET voltage drop exceeds the voltage across $\mathrm{R}_{\text {IIIM }}$, the voltage at the $\mathrm{I}_{\text {LIM }}$ pin will be ne gative and current limit will activate. The current limit then keeps the low-side MOSFET on and will not allow another high-side on-time, un til the current in the I ow-side MOSFET reduces enough to bring the ILIM voltage back up to zero. This method regulates the inductor valley current at the level shown by $\mathrm{l}_{\text {LIM }}$ in figure 8 .

Figure 8 - Valley Current Limit
Setting the vall ey current limit to 15 A results in a pe ak inductor current of 15 A plus peak rippl e current. In th is situation, the average (load) current through the inductor is 15 A plus one-half the peak-to-peak ripple current.
The in ternal $10 \mu \mathrm{~A}$ current source is tempe rature compensated at 4100 ppm in order to provide tracking with the $\mathrm{R}_{\mathrm{DS}-\mathrm{ON}}$.
The $R_{\text {ILIM }}$ value is calculated by the following equation.
$R_{\text {ILIM }}=263 \times$ I $_{\text {LIM }} \times\left[0.112 \times\left(5 \mathrm{~V}-\mathrm{V}_{\mathrm{DD}}\right)+1\right]$
When selecting a value for $R_{\text {ILIM }}$ be sure not to exceed the absolute maximum voltage value for the $\mathrm{I}_{\text {LIM }}$ pin. Note that because the low-side MOSFET with low $\mathrm{R}_{\text {DS-ON }}$ is used for current sen sing, the PCB layout, so Ider con nections, and PCB connection to the LX node must be do ne carefully to obtain good re sults. $\mathrm{R}_{\text {ILIM }}$ shou ld be conn ected directly to LXS (pin 28).

Soft-Start of PWM Regulator

SiC401A/B has a programmable soft-start time th at is controlled by an external capacitor at the SS pin. After the controller meets both UVLO and EN/PSV th resholds, the controller has aninternal current source of $3 \mu \mathrm{~A}$ flowing through the SS pin to charge the capacitor. During the start up process (figure 9), 50% of the voltage at the SS pin is used as th e reference for the FB comparator. Th e PWM comparator issues an on-time pulse when the voltage at the FB pin is less than 40% of the SS pin. As a result, the output voltage follows the SS voltage. The output voltage reaches and ma intains regulation whe n th e so ft sta rt voltage is $\geq 1.5 \mathrm{~V}$. Th e time between the first $L X$ pul se and $\mathrm{V}_{\text {OUT }}$ reaching regu lation is the s oft-start time (t ss). The calculation for the soft-start time is shown by the following equation.

$$
t_{S S}=C_{S S} \times \frac{1.5 \mathrm{~V}}{3 \mu \mathrm{~A}}
$$

The vo Itage a the SS pin continu es to ramp u p and eventually equals 64% of $V_{D D}$. After the soft start completes, the FB pin voltage is compared to an internal reference of 0.6 V . The delay time between the $\mathrm{V}_{\text {OUT }}$ regulation point and $P_{G O O D}$ going high is shown by the following equation.

$$
\mathrm{t}_{\text {PGOOD-DELAY }}=\frac{\mathrm{C}_{S S} \times\left(0.64 \times \mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}\right)}{3 \mu \mathrm{~A}}
$$

Figure 9 - Soft-start Timing Diagram

Pre-Bias Start-Up

The SiC401A/B can start up normally even when there is an existing output voltage present. The soft start time is still the same as normal start up (when the output voltage starts from zero). The output voltage starts to ramp up when 40% of the voltage at SS pi n mee ts the exi sting FB vol tage I evel. Pre-bias startup i s achi eved by turning off the I ower gate when the in ductor current fa lls bel ow zero. Th is method prevents the output voltage from discharging.

Power Good Output

The $\mathrm{P}_{\text {GOOD }}$ (p ower good) o utput is an op en-drain output which requires a pull-up resistor. When the voltage at the FB pin is 10% below the nominal voltage, $\mathrm{P}_{\mathrm{GOOD}}$ is pulled low. It is held low until the output voltage returns above - 8% of nominal.
$P_{\text {GOOD }}$ will transition low if the $V_{F B}$ pin exceeds $+20 \%$ of nominal, which is also the over-voltage shutdown threshold. $P_{G O O D}$ also pulls low if the EN/PSV pin is low when $V_{D D}$ is present.

Output Over-Voltage Protection

Over-voltage pr otection be comes active as so on a s the device is enabled. The thresho ld is set at $600 \mathrm{mV}+20 \%$ (720 mV). When $\mathrm{V}_{\text {FB }}$ exceeds the OVP threshold, DL latches high and the low -side MOSFET is turned on. DL remains high and the controller remains off, until the EN/PSV input is toggled or $V_{D D}$ is cycled. There is a $5 \mu \mathrm{~s}$ delay built into the OVP detector to prevent false transitions. $\mathrm{P}_{\mathrm{GOOD}}$ is also low after an OVP event.

Output Under-Voltage Protection

When $V_{\text {FB }}$ falls 25% be low its nomin al vol tage (falls to 450 mV) for eight consecutive clock cycles, the switcher is shut off and the DH and DL drives are pulled low to tristate the MOSFETs. The controller stays off until EN/PSV is toggled or $V_{D D}$ is cycled.

$V_{D D}$ UVLO, and POR

UVLO (Under-Voltage Lock-Out) circu itry inhibits switching and tri-states the $D H / D L$ drivers until $V_{D D}$ rises above 3 V . An internal POR (Power-On Reset) occurs when $\mathrm{V}_{\text {DD }}$ exceeds 3 V , which resets the fault latch and a soft-start counter cycle begins which prepares for soft-start. The SiC401A/B then begins a soft-start cycl e. The PWM will shut off if V_{DD} falls below 2.4 V .

LDO Regulator

$\mathrm{SiC} 401 \mathrm{~A} / \mathrm{B}$ has an op tion to bi as the switcher by using an internal LDO from V_{IN}. The LDO output is connected to V_{DD} internally. The output of the LDO is programmable by using external resistors from the V_{DD} pin to $\mathrm{A}_{G N D}$ (see figure 10). The feedback pin (FBL) for the LDO is regulated to 750 mV .

Figure 10- LDO Output Voltage Selection
The LDO output voltage is set by the following equation.

$$
\mathrm{V}_{\mathrm{LDO}}=750 \mathrm{mV} \times\left(1+\frac{\mathrm{R}_{\mathrm{LDO} 1}}{\mathrm{R}_{\mathrm{LDO} 2}}\right)
$$

A minimu m capa citance of $1 \mu \mathrm{~F}$ referenced to $A_{G N D}$ is normally required at the output of the LDO for stability.
Note th at if the LDO vo Itage is set lowe r than 4.5 V , the minimum output capacitance for the LDO is $10 \mu \mathrm{~F}$.

LDO ENL Functions

The ENL input is used to e nable/disable the internal LDO. When ENL is a logic low, the LDO is off. When ENL is above the $V^{\mathbb{I N}} \boldsymbol{U}$ VLO threshold, the LDO is en abled and the switcher is also enabled if the EN/PSV and VDD are above their threshold. The table below summarizes the function of ENL and EN/PSV pins.

EN/PSV	ENL	LDO	Switcher
Disabled	Low, $<0.4 \mathrm{~V}$	Off	Off
Enabled	Low, $<0.4 \mathrm{~V}$	Off	On
Disabled	$1 \mathrm{~V}<$ High $<2.6 \mathrm{~V}$	On	Off
Enabled	$1 \mathrm{~V}<$ High $<2.6 \mathrm{~V}$	On	Off
Disabled	High, $>2.6 \mathrm{~V}$	On	Off
Enabled	High, $>2.6 \mathrm{~V}$	On	On

The ENL pin also acts as the switcher under-voltage lockout for the V_{IN} supply. When $\mathrm{SiC} 401 \mathrm{~A} / \mathrm{B}$ is self-biased from the LDO and runs from the V_{IN} power source only, the V_{IN} UVLO
feature can be used to prevent false UV faults for the PWM output by programming with a resistor divider at the $\mathrm{V}_{\text {IN }}$, ENL and $\mathrm{A}_{\text {GND }}$ pi ns. Whe n SiC4 01A/B has a n externa I bia s voltage at V_{DD} and the ENL pin is used to program the $\mathrm{V}_{\text {IN }}$ UVLO feature, the voltage at FBL n eeds to be higher than 750 mV to force the LDO off.
Timing is impo rtant wh en drivi ng ENL with lo gic and not implementing $\mathrm{V}_{\text {IN }}$ UVLO. The ENL pin must tra nsition from high to low within 2switching cycles to avoid the PWM output turning off. If EN L goes below the $\mathrm{V}_{\text {IN }}$ UVLO th reshold and stays above 1 V , then the switcher will turn off but the LDO will remain on.

LDO Start-up

Before start-up, the LDO checks the status of the following signals to ensure proper operation can be maintained.

1. ENL pin
2. $\mathrm{V}_{\mathrm{LDO}}$ output

When the ENL pin is high and VIN is above the UVLO point, the LDO will begin start-up. During the initial phase, when the V_{DD} voltage (which is the LD O output voltage) is less than 0.75 V , the LDO initiates a current-limited start-up (typically 65 mA) to charge the output capacitors while protecting from a short circuit event. When V_{DD} is greater than 0.75 V but still less than 90% of its final value (as sensed at the FBL pin), the LDO current limit is increased to $\sim 115 \mathrm{~mA}$. Whe $\mathrm{n} \mathrm{V}_{\mathrm{DD}}$ has reached 90% of the final value (as sensed at the FBL pin), the LDO current limit is increased to $\sim 200 \mathrm{~mA}$ and the LDO output is qu ickly driven to the n ominal value by the internal LDO regulator. It is recommend ed that during LDO start-up to h old the PW M switching off un til the LDO has reached 90% of the fin al value. This prevents overloading the current-limited LDO output during the LDO start-up.
Due to the initial current limitations on the LDO during power up (figure 11), any external load attached to the $V_{D D}$ pin must be limited to less th an the start up current before the LDO has reached 90% of its final regulation value.

LDO Switch-Over Poeration

The $\mathrm{SiC} 401 \mathrm{~A} / \mathrm{B}$ includes a switch-over function for the LDO. The switch-over function is designed to increase efficiency by using the more effi cient DC/DC conve rter to powe r the LDO output, avoiding the less efficient LDO regulator when possible. The switch-over function con nects the V_{DD} pin directly to the $\mathrm{V}_{\text {OUT }}$ pin using an internal switch. When the switch-over is complete the LDO is turned off, which results in a po wer savings and ma ximizes efficienc y. If the LDO
output is used to bias the $\mathrm{SiC} 401 \mathrm{~A} / \mathrm{B}$, then after switch-over the device is self-powered from the switching regulator with the LDO turned off.
The switch-over starts 32 switching cycles after P GOOD output goes high. The voltages at the V_{DD} and $\mathrm{V}_{\text {OUT }}$ pins are then compared; if the two voltages are within $\pm 300 \mathrm{mV}$ of each other, the V_{DD} pin connects to the $\mathrm{V}_{\text {OUT }}$ pin using an internal switch, and the D O is turned off. To avoid unwanted switch-over, the minimum difference between the voltag es for $\mathrm{V}_{\text {OUT }}$ and V_{DD} should be $\pm 500 \mathrm{mV}$.
It is not recommended to use the switch-over feature for an output voltage less than V_{DD} UVLO th reshold since the $\mathrm{SiC} 401 \mathrm{~A} / \mathrm{B}$ is not operational below that threshold.

Switch-Over MOSFET Parasitic Diodes

The switch-over MOSFET contains parasitic diodes that are inherent to its construction, as sho wnin figure 12. If the voltage at the V out pin is hig her than V_{DD}, then t he respective diode will turn on and the current will flow through this diode. This has the poten tial of damaging the device. Therefore, $\mathrm{V}_{\text {OUT }}$ must be less than V_{DD} to prevent damaging the device.

Figure 12 - Switch-over MOSFET Parasitic Diodes

Design Procedure

When de signing a switch mo de supp ly the input voltage range, load current, switching frequency, and inductor ripple current must be specified.
The maximum input voltage ($\mathrm{V}_{\mathrm{IN} \text { max. }}$) is the highest specified input vo Itage. The min imum i nput voltage ($\mathrm{V}_{\mathrm{IN} \min }$) is determined by the lo west input voltage after evaluating the voltage drops due to connectors, fuses, switches, and PCB traces.
The following parameters define the design:

- Nominal output voltage ($\mathrm{V}_{\mathrm{OUT}}$)
- Static or DC output tolerance
- Transient response
- Maximum load current (loUT)

There are two values of load current to evaluate - continuous load current and peak load current. Continuous load current relates to thermal stresses w hich d rive the selection of the in ductor and in put capaci tors. Peak loa d current determines instantaneous component stresses and filtering requirements such as inductor saturation, output capacitors, and design of the current limit circuit.
The following values are used in this design:

- $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \pm 10 \%$
- $\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V} \pm 4 \%$
- $\mathrm{f}_{\mathrm{SW}}=300 \mathrm{kHz}$
- Load = 15 A max.

Frequency Selection

Selection of the swi tching freq uency re quires making a trade-off betwee n the size and cost of the external filter components (inductor and outpu t capacitor) and the power conversion efficiency.
The desired switching frequency is 300 kHz which results from using component selected for optimum size and cost.
A resistor ($\mathrm{R}_{\mathrm{tON}}$) is used to progra m the on -time (indirectly setting the frequency) using the following equation.

$$
\mathrm{R}_{\text {ton }}=\frac{\mathrm{k}}{25 \mathrm{pF} \times \mathrm{fsw}}
$$

To select $R_{\text {tON }}$, use the maximum value for V_{IN}, and for t_{ON} use the value associated with maximum V_{IN}.

$$
\text { toN }=\frac{V_{\text {OUT }}}{V_{\text {INmax. }} x f_{\text {SW }}}
$$

Substituting for $\mathrm{R}_{\text {toN }}$ results in the following solution.
$R_{\mathrm{tON}}=133.3 \mathrm{k} \Omega$, use $\mathrm{R}_{\mathrm{tON}}=130 \mathrm{k} \Omega$.

Inductor Selection

In order to determine the inductance, the ripple current must first be defined. Low inductor values result in smaller size but create hi gher ripple curren t which can reduce efficien cy. Higher inductor values will reduce the ripple current/voltage and for a given DC resistance are more efficien t. However, larger inductance translates directly into larger packages and higher cost. Co st, size, output ripple, and efficiency are a ll used in the selection process.
The ripp le current will also set the boun dary fo $r P_{\text {Save }}$ operation. The switching will typ ically en ter P save mode when the load current decreases to $1 / 2$ of the ripple current. For example, if ripple current is 4 A then $\mathrm{P}_{\text {Save }}$ operation will typically start for loads less than 2 A . If ripple current is set at 40% of maximum bad current, then $\mathrm{P}_{\text {Save }}$ will start for loads less than 20% of maximum current.
The in ductor value is typically selected to provide a ripple current that is between 25% to 50% of the maximum load current. This provides a n optimal trade-off betwe en cost, efficiency, and transient performance.
During the on-time, voltage across th e inductor is $\left(V_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$. The equation for de termining inductance is shown next.

$$
\mathrm{L}=\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{t}_{\mathrm{ON}}}{\mathrm{I}_{\text {RIPPLE }}}
$$

Example

In this e xample, the i nductor rip ple current is set equ al to 30% of the maximum load current. Thus ripple current will be
$30 \% \times 15 \mathrm{~A}$ or 4.5 A . To fin d the min imum ind uctance needed, use the $V_{\text {IN }}$ and t oN valu es that correspo nd to $V_{\text {INmax }}$.

$$
\mathrm{L}=\frac{(13.2-1.5) \times 379 \mathrm{~ns}}{4.5 \mathrm{~A}}=0.99 \mu \mathrm{H}
$$

A slightly larger value of $1 \mu \mathrm{H}$ is selected. This will decrease the maximum $\mathrm{I}_{\text {RIPPLE }}$ to 4.43 A .
Note that the inductor must be rated for the maximum DC load current plus $1 / 2$ of the ripple current.
The ripple current under minimum $\mathrm{V}_{{ }^{\mathrm{N}}}$ con ditions is a Iso checked using the following equations.

$$
\begin{aligned}
& \text { ton_VINmin. }=\frac{25 \mathrm{pF} \times \mathrm{R}_{\text {tON }} \times \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {INmin. }}}=451 \mathrm{~ns} \\
& \text { IRIPPLE }=\frac{\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right) \times \text { toN }}{\mathrm{L}} \\
& \text { IRIPPLE_VINmin. }=\frac{(10.8-1.5) \times 451 \mathrm{~ns}}{1 \mu \mathrm{H}}=4.19 \mathrm{~A}
\end{aligned}
$$

Capacitor Selection

The output ca pacitors are chosen ba sed upo n requi red ESR and cap acitance. The maximum ESR requ irement is controlled by the o utput ri pple re quirement and the DC tolerance. The output voltage has a DC value that is equal to the valley of the o utput ripple plus $1 / 2$ of the peak-to-peak ripple.
A change in the output ripple voltage will lead to a change in DC voltage at the output.
The design goal for output voltage ripple is 3% of 1.5 V or 45 mV . The maximum ESR value allowed is shown by the following equations.

$$
\begin{aligned}
& \mathrm{ESR}_{\text {max } .}=\frac{V_{\text {RIPPLE }}}{I_{\text {RIPPLEmax. }}}=\frac{45 \mathrm{mV}}{4.43 \mathrm{~A}} \\
& \mathrm{ESR}_{\text {max } .}=10.2 \mathrm{~m} \Omega
\end{aligned}
$$

The output capacitance is usually chosen to meet transient requirements. A worst-case load rele ase, from maximum load to no load at the exact moment when inductor current is at the peak, determines the required capacitance. If the load release is i nstantaneous (lo ad changes from maximum to zero in $<1 \mu \mathrm{~s}$), the output capacitor must absorb all the inductor's stored energy. This will cause a peak voltage on the capacitor according to the following equation.

$$
\text { CoUT_min. }=\frac{\mathrm{L}\left(\text { lout }+\frac{1}{2} \times \mathrm{I}_{\text {RIPPLEmax. }}\right)^{2}}{\left(\mathrm{~V}_{\text {PEAK }}\right)^{2}-\left(\mathrm{V}_{\text {OUT }}\right)^{2}}
$$

Assuming a peak voltage $\mathrm{V}_{\text {PEAK }}$ of $1.65 \mathrm{~V}(150 \mathrm{mV}$ rise upon load rele ase), and a 15 A load rele ase, the required capacitance is shown by the next equation.

$$
\begin{aligned}
& \text { Cout_min. }=\frac{1 \mu \mathrm{H}\left(10+\frac{1}{2} \times 4.43\right)^{2}}{(1.65)^{2}-(1.5)^{2}} \\
& \text { Cout_min. }=316 \mu \mathrm{~F}
\end{aligned}
$$

During the load release time, the voltage cross the inductor is approximately - $\mathrm{V}_{\text {OUT }}$. This causes a down-slope or falling $\mathrm{di} / \mathrm{dt}$ in the inductor. If the load dl/dt is not much faster than the dl/dt of the inductor, then the inductor current will tend to track the falling lo ad cu rrent. This wi II red uce the e xcess inductive energy that must be ab sorbed by the o utput capacitor; therefore a smaller capacitance can be used.
The fol lowing canbeu sed to calculate the ne eded capacitance for a given dl LOAD $/ \mathrm{dt}$.
Peak inductor current is shown by the next equation.
$I_{\text {LPK }}=I_{\text {max. }}+1 / 2 \times I_{\text {RIPPLEmax }}$.
$I_{\text {LPK }}=10+1 / 2 \times 4.43=12.215 \mathrm{~A}$

$$
\text { Rate of change of load current }=\frac{\mathrm{d}_{\text {LOAD }}}{\mathrm{dt}}
$$

$I_{\text {max. }}=$ maximum load release $=15 \mathrm{~A}$

$$
C_{\text {OUT }}=I_{\text {LPK }} \times \frac{L \times \frac{I_{\text {LPK }}}{V_{\text {OUT }}}-\frac{I_{\text {max. }}}{d_{\text {IOAD }}} \times d t}{2\left(V_{\text {PK }}-V_{\text {OUT }}\right)}
$$

Example

$$
\frac{\mathrm{d}_{\mathrm{LOAD}}}{\mathrm{dt}}=\frac{2.5 \mathrm{~A}}{1 \mu \mathrm{~s}}
$$

This would cause the output current to move from 15 A to 0 A in $4 \mu \mathrm{~s}, \mathrm{~g}$ iving the min imum o utput ca pacitance requirement shown in the following equation.

$$
\begin{aligned}
& \text { COUT }=12.215 \times \frac{1 \mu \mathrm{H} \times \frac{12.215}{1.5}-\frac{10}{2.5} \times 1 \mu \mathrm{~s}}{2(1.65-1.5)} \\
& \text { COUT }=169 \mu \mathrm{~F}
\end{aligned}
$$

Note that $C_{\text {out }}$ is much small er in this exa mple, $169 \mu \mathrm{~F}$ compared to $316 \mu \mathrm{~F}$ based on a worst case load release. To meet the two de sign criteria of minimum $316 \mu \mathrm{~F}$ and maximum $10.2 \mathrm{~m} \Omega$ ESR, select one capacitor of $330 \mu \mathrm{~F}$ and $9 \mathrm{~m} \Omega$ ESR.

Stability Considerations

Unstable o peration is p ossible wi th ada ptive o n-time controllers, and usually takes the form of doub le-pulsing or ESR loop instability.
Double-pulsing occurs due to switchingnoise seen at the FB input or because the FB ripple voltage is too low. This causes the FB compa rator to trigger pre maturely after the 250 ns minimum off-time has expired. In extreme case s the noise can cause three or more successi ve on -times. Do ublepulsing will result in higher ripple voltage at the output, but in
most app lications it wil I not affect ope ration. This form of instability can usually be avoided by providing the FB pin with a smooth, clean ripple signal that is at least $10 \mathrm{mVp}-\mathrm{p}$, which may dictate th e need to increa se the ESR of the output capacitors. It is also impe rative to provid e a prop er PCB layout as discussed in the Layout Guidelines section.
Another way to eliminate doubling-pulsing is to add a small ($\sim 10 \mathrm{pF}$) capacitor across the up per feedback resistor, as shown in figure 13. This capacitor should be left unpopulated until it can be con firmed that double-pulsing exists. Adding the $\mathrm{C}_{\text {TOP }}$ capacitor will couple more rip ple into FB to help eliminate the problem. An o ptional connection on the PCB should be available for this capacitor.

Figure 13 - Capacitor Coupling to FB Pin
ESR lo op i nstability is caused by in sufficient ESR. The details of this stabi lity issue are discussed in the ESR Requirements section. The b est me thod for checking stability is to apply a zero-to-full load transient and observe the output voltage ripple envelope for overshoot and ringing. Ringing for more than one cycle after the initial step is an indication that the ESR should be increased.

ESR Requirements

A minimum ESR is required for two reasons. One reason is to g enerate en ough o utput rip ple voltage to provide $10 \mathrm{mVp}-\mathrm{p}$ at the FB pin (after the resistor divider) to avoid double-pulsing.
The second reason is to prevent instability due to insufficient ESR. The on-time control regulates the valley of the output ripple vo Itage. This ripp le vol tage is the sum of the two voltages. One is the ripple generated by the ESR, the other is the rip ple due to capa citive chargi ng an d discha rging during the switching cycle. For most applications the minimum ESR ripp le voltage is dominated by the output capacitors, typically SP or POSCAP devices. For stabilitythe ESR zero of the ou tput ca pacitor shou ld be lowe r than approximately on e-third t he switchin g freq uency. The formula fo r minimum ESR is sh own $b y$ th e foll owing equation.

$$
\mathrm{ESR}_{\min .}=\frac{3}{2 \times \pi \times \text { CoUT } \times \mathrm{fSW}}
$$

Using Ceramic Output Capacitors

When the system is using high ESR value capac itors, the feedback voltage ripple lags the phase node voltage by 90°. Therefore, the co nverter is easil y sta bilized. When the system is using ceramic output capacitors, the ESR value is normally too small to mee t the above ESR criteria. As a result, the feedback voltage ripple is 180° from the phase node and behaves in an unstable manner. In this application it is necessa ry to add a small virtual ESR n etwork that is composed of two capacitors and one resistor, as sh own in figure 14.

Figure 14 - Virtual ESR Ramp Current
The ripple voltage at FB is a superposition of two voltage sources: the voltage across C_{L} and output ripple voltage. They are defined in the following equations.

$$
\begin{aligned}
& V_{C L}=\frac{I_{L} \times D C R(s \times L / D C R+1)}{S \times R_{L} \times C_{L}+1} \\
& \Delta V_{\text {OUT }}=\frac{\Delta I_{L}}{8 C \times f_{s W}}
\end{aligned}
$$

Figure 15 shows the magnitude of the ripple contribution due to C_{L} at the FB pin.

Figure 15 - FB Voltage by C_{L} Voltage
It is shown by the following equation.

$$
V F B_{C L}=V_{C L} \times \frac{\left(R_{1} / / R_{2}\right) \times S \times C_{C}}{\left(R_{1} / / R_{2}\right) \times S \times C_{C}+1}
$$

Figure 16 shows the magnitude of the ripple contribution due to the output voltage ripple at the FB pin.

Figure 16 - FB Voltage by Output Voltage
It is shown by the following equation.

$$
\mathrm{VFB} \Delta \mathrm{~V}_{\text {OUT }}=\Delta \mathrm{V}_{\text {OUT }} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1} / / \frac{1}{\mathrm{~S} \times \mathrm{C}_{\mathrm{C}}}+\mathrm{R}_{2}}
$$

The purpose of this network is to couple the inductor current ripple in formation into the feedback voltage such that the feedback voltage has 90° phase lag to the switching node similar to the case of using standard high ESR capa citors. This is illustrated in figure 17.

Figure 17 - FB Voltage in Phasor Diagram
The ma gnitude of the feed back rip ple vo Itage, wh ich is dominated by the contribution from C_{L}, is controlled by the value of R_{1}, R_{2} and C_{C}. If the corner frequency of $\left(R_{1} / / R_{2}\right) x$ C_{C} is too high, the rip ple magnitude at the FB pin will be smaller, which can lead to double-pulsing. Conversely, if the corner frequ ency of $\left(R_{1} / / R_{2}\right) \times C \quad$ is too low, the ripp le magnitude at FB pi n will be higher. Since the $\mathrm{Si} \mathrm{C} 401 \mathrm{~A} / \mathrm{B}$ regulates to the valley of the ripple voltage at the FB pin, a high ripp le ma gnitude is undesirable a s it sign ificantly impacts the output voltage reg ulation. As a result, it is desirable to select a corner fre quency for $\left(R_{1} / / R_{2}\right) \times C_{C}$ to achieve e nough, but not excessive, ripple mag nitude a nd phase margin. The co mponent values for R_{1}, R_{2}, and C_{C} should be calculated using the following procedure.
Select C_{L} (typical 10 nF) and R_{L} to match with L and DCR time constant using the following equation.

$$
R_{L}=\frac{L}{D C R \times C_{L}}
$$

Select C_{C} by using the following equation.

$$
\mathrm{C}_{\mathrm{C}} \approx \frac{1}{\mathrm{R}_{1} / / \mathrm{R}_{2}} \times \frac{3}{2 \times \pi \times \mathrm{f}_{\mathrm{Sw}}}
$$

The resistor values (R_{1} and R_{2}) in the voltage divider circuit set the $\mathrm{V}_{\text {OUT }}$ for the switcher. The typical valuefor C_{C} is from 10 pF to 1 nF .

Dropout Performance

The outpu t voltag e adju stment rang efo r continuous conduction operation is limited by the fixed 250 ns (typical) minimum off-time of the one-shot. When wo rking with low input voltages, the duty-factor limit must be calculated using worst-case values for on and off times.
The duty-factor limitation is shown by the next equation.

$$
\text { DUTY }=\frac{\operatorname{tON}(\text { min. })}{\operatorname{tON}(\min .) \times \operatorname{tOFF}(\text { max. })}
$$

The inductor resistance and MOSFET on-state voltage drops must be included whe n pe rforming wo rst-case dropout duty-factor calculations.

System DC Accuracy (V ${ }_{\text {OUT }}$ Controller)

Three factors affect $\mathrm{V}_{\text {OUt }}$ accuracy: the trip point of the FB error comp arator, the ripple voltage variation with line and load, and the external resistor tolera nce. The error comparator offset is trimmed so that under static conditions it trips when the feedback pin is $600 \mathrm{mV}, 1 \%$.
The on -time pu Ise from the $\operatorname{SiC} 401 \mathrm{~A} / \mathrm{B}$ in the design example is ca lculated to gi ve a pse udo-fixed frequency of 300 kHz . Some fre quency variation with line and load is expected. This va riation changes the output ripple voltage. Because adaptive on-time converters regulate to the valley of the output ripple, $1 / 2$ of the output ripple appears as a DC regulation error. For example, if the output ripple is 50 mV with VIN $=6 \mathrm{~V}$, then the measured DC output will be 25 mV above the comparator trip point.
If the ripple increases to 80 mV with $\mathrm{V}_{\mathrm{IN}}=17 \mathrm{~V}$, the n the measured DC ou tput will be 40 mV ab ove the compa rator trip. The best way to minimize this effect is to minimize the output ripple.
The use of 1% feedback resistors may result in up to 1% error. If tighter DC accura cy is re quired, 0.1% resistors should be used.
The output inductor value may change with current. This will change the o utput ripple and the refore will have a mino r effect on the DC output voltage. The output ESR also affects the output ripple and thus has a minor effect on the DC output voltage.

Switching Frequency Variation

The switching frequency varies with load current as a result of the power losses $i n$ the MOSFETs and DCR o f the inductor. For a conven tional PWM constant-freque ncy converter, as I oad increases the duty cycle also increases slightly to compen sate for IR and swi tching Iosses in the MOSFETs and inductor. An adaptive on-time converter must also compens ate for the same losses by inc reasing the effective duty cycle (more time is spent drawing energy from V_{IN} as losses increase). The on-time is essentially constant for a given $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}$ combination, to offset the losses the offtime will tend to reduce slightly as load increases. The net effect is that switching fr equency increases sli ghtly w ith increasing load.

SIC401 (2) (3) EVALUATION REF BOARD

Evaluation Board Schematic

BILL OF MATERIALS

Qty.	Ref. Designator	PCB Footprint	Value	Voltage	Description	Part Number	Manufacturer
3	C6, C11, C14	SM0603	$0.1 \mu \mathrm{~F}$	50 V	CAP, $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 0603$	Generic Component	
3	C10, C20, C22	593D	$68 \mu \mathrm{~F}$	20 V	68 ¢F TAN, 20 V, 593D, 20 \%	593D686X0020D2TE3	
1	C12	Radial	$150 \mu \mathrm{~F}$	35 V	CAP, Radial, $150 \mu \mathrm{~F}, 35 \mathrm{~V}$	EU-FM1V151	
1	C13	SM0402	$0.01 \mu \mathrm{~F}$	50 V	CAP, $0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, 0402$	Generic Component	
1	C21	SM1206	$10 \mu \mathrm{~F}$	16 V	10μ F, 16 V.X7R.B, 1206	Generic Component	
3	C16, C17, C18	SM593D	$330 \mu \mathrm{~F}$	6.3 V	$330 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{D}$	593D337X06R3E2	
2	C25, C30	SM0402	68 pF	50 V	CAP, $68 \mathrm{pF}, 50 \mathrm{~V}, 0402$	Generic Component	
2	C26, C27	SM0805	$1 \mu \mathrm{~F}$	10 V	$4.7 \mu \mathrm{~F}, 10 \mathrm{~V}, 0805$	Generic Component	
1	C28	SM0402	$0.1 \mu \mathrm{~F}$	10 V	CAP, $0.1 \mu \mathrm{~F}, 10 \mathrm{~V}, 0402$	Generic Component	
1	C15	SM1210	$2.2 \mu \mathrm{~F}$	35 V	CAP, $2.2 \mu \mathrm{~F}, 35 \mathrm{~V}, 1210$	GMK325BJ225MN	
1	C29	SM0603	3.3 nF	25 V	CAP, CER, $22 \mathrm{nF}, 25 \mathrm{~V}$	Generic Component	
1	L1	IHLP4040	$1 \mu \mathrm{H}$	0	$1 \mu \mathrm{H}$	IHLP4040DZER1R0M01	
4	M1, M2, M3, M4	0	0	0	Nylonon Standoff	8834	
8	$\begin{gathered} \text { P1, P2,P6, P7,P8, } \\ \text { P9, P10, P11 } \end{gathered}$	Terminal	0	0	Test Points	1573-3	
1	R7	SM0603	0Ω	50 V	Res, 0Ω	Generic Component	
1	R8	SM0603	3.92 K	50 V	Res, 12.4K, 0603	Generic Component	
1	R10	SM0603	5.11K	50 V	Res, $5.11 \mathrm{~K}, 0603$	Generic Component	
1	R13	SM0402	100Ω	50 V	$100 \mathrm{R}, 50 \mathrm{~V}, 0402$	Generic Component	
1	R14	SM0402	0Ω	50 V	$100 \mathrm{R}, 50 \mathrm{~V}, 0402$	Generic Component	
1	R15	SM0603	10K	50 V	Res, 10K, $50 \mathrm{~V}, 0603$	Generic Component	
1	R23	SM0603	7.15K	50 V	Res, $5.11 \mathrm{~K}, 0603$	Generic Component	
1	R30	SM0603	130K	50 V	Res, 69.8K, 0603	Generic Component	
1	R39	SM0402	0Ω	50 V	$0 \mathrm{R}, 50 \mathrm{~V}, 0402$	Generic Component	
1	R52	SM0603	0Ω	50 V	RES, 31.6K, $50 \mathrm{~V}, 0603$	Generic Component	
1 U	1	PowerPAK MLP55-32L	00		15A micro BUCK integrated Buck Regulator with Programmable LDO	SiC401ACD-T1-GE3/ SiC401BCD-T1GE3	
4	B1, B2, B3, B4	0	0	0	BANANA JACK	575-4	

PACKAGE DIMENSIONS

Dim.	Millimeters			Inches			Note
	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	0.70	0.75	0.80	0.027	0.029	0.031	
A1	0.00	-	0.05	0.00	-	0.002	8
A2	0.20 ref.			0.008 ref.			
b	0.20	0.25	0.30	0.078	0.098	0.110	4
D	5.00 BSC			0.196 BSC			
E	0.50 BSC			0.019 BSC			
E	5.00 BSC			0.196 BSC			
L	0.35	0.40	0.45	0.013	0.015	0.017	
N3	2			32			3
Nd	8			8			8
Ne	8			8	3		

Dim.	Millimeters			Inches					
	Min.	Nom.	Max.	Min.	Nom.	Max.			
D2-1	3.43	3.48	3.53	0.135	0.137	0.139			
D2-2	1.00	1.05	1.10	0.039	0.041	0.043			
D2-3	1.00	1.05	1.10	0.039	0.041	0.043			
D2-4	1.92	1.97	2.02	0.075	0.077	0.079			
D2-5	0.36			0.014					
E2-1	3.43	3.48	3.53	0.135	0.137	0.139			
E2-2	1.61	1.66	1.71	0.063	0.065	0.067			
E2-3	1.43	1.48	1.53	0.056	0.058	0.060			
E2-4	0.45					0.018			

Note:

1. Use millimeters as the primary measurement.
2. Dimensioning and tolerances conform to ASME Y1 4.5M-1994.
3. N is the number of terminals

Nd is the number of terminals in X -direction and
Ne is the number of terminals in Y -direction.
4. Dimensions applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip.
5. The pin \#1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body.
6. Exact shape and size of this feature is optional.
7. Package warpage max. 0.08 mm .
8. Applied only for terminals.

Vishay Siliconix ma intains worldwide manufacturing capability. Products may be manufactured at one of several qualified locat ions. Reliability da ta for Sili con Technology and Package Reli ability repre sent a compo site of all qua lified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63835.

PowerPAK ${ }^{\circledR}$ MLP55-32L CASE OUTLINE

Top View

Side View
Bottom View

DIM	MILLIMETERS			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.80	0.85	0.90	0.031	0.033	0.035
$\mathrm{A} 1^{(8)}$	0.00	-	0.05	0.000	-	0.002
A2	0.20 REF.			0.008 REF.		
$\mathrm{b}^{(4)}$	0.20	0.25	0.30	0.078	0.098	0.011
D	5.00 BSC			0.196 BSC		
Q	0.50 BSC			0.019 BSC		
E	5.00 BSC			0.196 BSC		
L	0.35	0.40	0.45	0.013	0.015	0.017
$\mathrm{N}^{(3)}$	32			32		
$\mathrm{Nd}^{(3)}$	88					
$\mathrm{Ne}^{(3)}$	88					
D2-1	3.43	3.48	3.53	0.135	0.137	0.139
D2-2	1.00	1.05	1.10	0.039	0.041	0.043
D2-3	1.00	1.05	1.10	0.039	0.041	0.043
D2-4	1.92	1.97	2.02	0.075	0.077	0.079
E2-1	3.43	3.48	3.53	0.135	0.137	0.139
E2-2	1.61	1.66	1.71	0.063	0.065	0.067
E2-3	1.43	1.48	1.53	0.056	0.058	0.060
ECN: T-08957-Rev. A, 29-Dec-08 DWG: 5983						

Notes

1. Use millimeters as the primary measurement.
2. Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
3. N is the number of terminals.

Nd is the number of terminals in X -direction and Ne is the number of terminals in Y -direction.
4. Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip.
5. The pin \#1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body.
6. Exact shape and size of this feature is optional.
7. Package warpage max. 0.08 mm .
8. Applied only for terminals.

Disclaimer

ALL PRODUCT, PRODU CT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or th eir behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, rep resentation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the appl ication or use of any product, (ii) any and all liability, in cluding without li mitation special, consequential or inc idental da mages, an d (iii) any a nd all implied war ranties, including warra nties of fi tness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products f or a particular applicati on. It is the customer's responsibility to validate th at a particu lar product with the properties descr ibed in the product specification is suitable for use in a par ticular application. Parameters provided in datasheets and/or specifications may vary in different ap plications and performance may vary over time. All operating par ameters, including typical pa rameters, must be validated for each customer application by the customer's technical experts. Produ ct specifications do not expand or othe rwise modi fy Vi shay's terms an d condit ions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not design ed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failu re of the Vishay product could result in personal injury or deat h. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed forsuch applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this docum ent or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertech nology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and rest rictions defi ned under Directive 2011/65/EU of Th e European Parliam ent and of the Cou ncil of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified asHalogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61 249-2-21 definition. We co nfirm that all the pr oducts identified as being compliant to IEC 6 1249-2-21 conform to JEDEC JS709A standards.

