FAIRCHILD

FCP4N60

N-Channel SuperFET[®] MOSFET

600 V, 3.9 A, 1.2 Ω

Features

- 650 V @ T_J = 150°C
- Typ. R_{DS(ON)} = 1.0 Ω
- Ultra Low Gate Charge (typ. Q_g = 12.8 nC)
- Low Effective Output Capacitance (typ. C_{oss}.eff = 32 pF)
- 100% Avalanche Tested
- RoHS Compliant

Applications

- LCD / LED / PDP TV and Monitor Lighting
- Solar Inverter
- AC-DC Power Supply

Description

SuperFET[®] MOSFET is Fairchild Semiconductor[®]'s first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

GDS

Absolute Maximum Ratings

Symbol		Parameter		FCP4N60	Unit V	
V _{DSS}	Drain-Source Volta	age		600		
I _D	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		3.9 2.5	A A	
I _{DM}	Drain Current	- Pulsed	(Note 1) 11.7		A	
V _{GSS}	Gate-Source voltage			± 30	V	
E _{AS}	Single Pulsed Ava	lanche Energy	y (Note 2) 128		mJ	
I _{AR}	Avalanche Current		anche Current (Note 1) 3.9		A	
E _{AR}	Repetitive Avalanche Energy		anche Energy (Note 1) 5.0		mJ	
dv/dt	Peak Diode Recovery dv/dt		Recovery dv/dt (Note 3) 4.5		V/ns	
P _D	Power Dissipation (T _C = 25°C) - Derate above 25°C			50 0.4	W W/°C	
T _{J,} T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	FCP4N60	Unit		
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	2.5	°C/W		
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	83	°C/W		

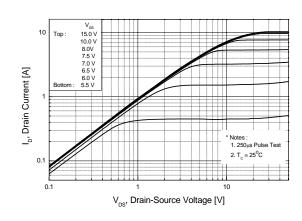
March 2013

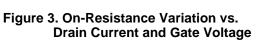
Packag	e Mark	ing and Order	ring In	formati	on					
Device Marking Device I		Pa	nckage Reel Size Tap		e Widt	h	Quantity			
FCP4N60 FCP4N60		тс	O-220				50			
Electric	al Cha		; = 25°C unle	ess otherwise no	ted					
Symbol		Parameter			Conditions		Min	Тур	Max	Unit
Off Charac	teristics									
BV_{DSS}	V _{DSS} Drain-Source Breakdown Voltage		$V_{GS} = 0V, I_D = 250\mu A, T_J = 25^{\circ}C$			600			V	
				$V_{GS} = 0V, I_D = 250\mu A, T_J = 150^{\circ}C$				650		V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient			$I_D = 250 \mu A$, Referenced to $25^{\circ}C$				0.6		V/∘C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage			V _{GS} = 0V, I _D = 3.9A				700		V
I _{DSS}	Zero Gate Voltage Drain Current		$V_{DS} = 600V, V_{GS} = 0V$ $V_{DS} = 480V, T_{C} = 125^{\circ}C$					1	μA	
								10	μA	
I _{GSSF}		Gate-Body Leakage Current, Forward			/, V _{DS} = 0V				100	nA
I _{GSSR}	Gate-Bod	Gate-Body Leakage Current, Reverse		$V_{GS} = -30V, V_{DS} = 0V$					-100	nA
On Charac				1			r	[-	r
V _{GS(th)}	Gate Thre	Gate Threshold Voltage			$V_{DS} = V_{GS}, I_D = 250 \mu A$				5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance			V _{GS} = 10V, I _D = 2.0A				1.0	1.2	Ω
9 _{FS}	Forward ⁻	Forward Transconductance			/, I _D = 2.0Α	(Note 4)		3.2		S
Dynamic O	Characteris	stics								
C _{iss}	Input Cap	pacitance		$V_{DS} = 25V, V_{GS} = 0V,$			415	540	pF	
C _{oss}	Output Capacitance		f = 1.0MHz			210	275	pF		
C _{rss}	Reverse Transfer Capacitance						19.5		pF	
C _{oss}	Output Capacitance		$V_{DS} = 480V, V_{GS} = 0V, f = 1.0MHz$				12	16	pF	
C _{oss} eff.	Effective	Effective Output Capacitance		$V_{DS} = 0V$	$V_{DS} = 0V$ to 400V, $V_{GS} = 0V$			32		pF
Switching	Character	istics								
t _{d(on)}	Turn-On Delay Time		$V_{DD} = 300V, I_D = 3.9A$				16	45	ns	
t _r	Turn-On I	Rise Time			$R_{G} = 25\Omega$			45	100	ns
t _{d(off)}	Turn-Off I	Delay Time						36	85	ns
t _f	Turn-Off I	Fall Time				(Note 4, 5)		30	70	ns
Qg	Total Gate	tal Gate Charge		V _{DS} = 480V, I _D = 3.9A			12.8	16.6	nC	
Q _{gs}	Gate-Sou	Irce Charge		V _{GS} = 10\	V _{GS} = 10V			2.4		nC
Q _{gd}	Gate-Dra	-Drain Charge		(Note 4, 5)				7.1		nC
-	rce Diode	Characteristics and	Maximun	n Ratings						
I _S	Maximum Continuous Drain-Source Dio			de Forward Current					3.9	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Fo			orward Current					11.7	Α
V _{SD}	Drain-Sou	urce Diode Forward V	oltage	$V_{GS} = 0V,$	I _S = 3.9A				1.4	V
t _{rr}	Reverse	Recovery Time	-	$V_{GS} = 0V,$	-			277		ns
Q _{rr}	Reverse	Recovery Charge		$dI_F/dt = 10$		(Note 4)		2.07		μC

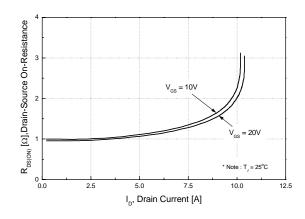
Notes:

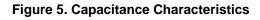
1. Repetitive Rating: Pulse width limited by maximum junction temperature

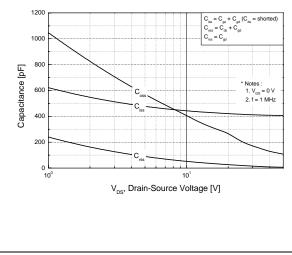
2. I_{AS} = 1.9A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}C$

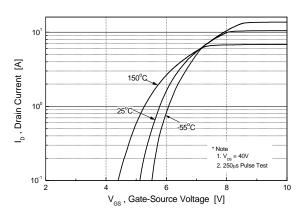

3. I_{SD} \leq 3.9A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C

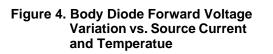

4. Pulse Test: Pulse width $\leq 300 \mu s,$ Duty Cycle $\leq 2\%$

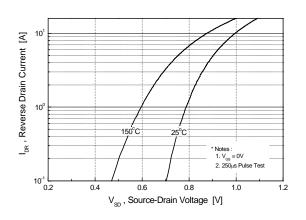

5. Essentially Independent of Operating Temperature Typical Characteristics

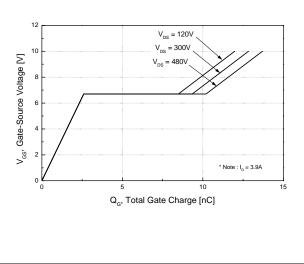

Typical Performance Characteristics Figure 1. On-Region Characteristics

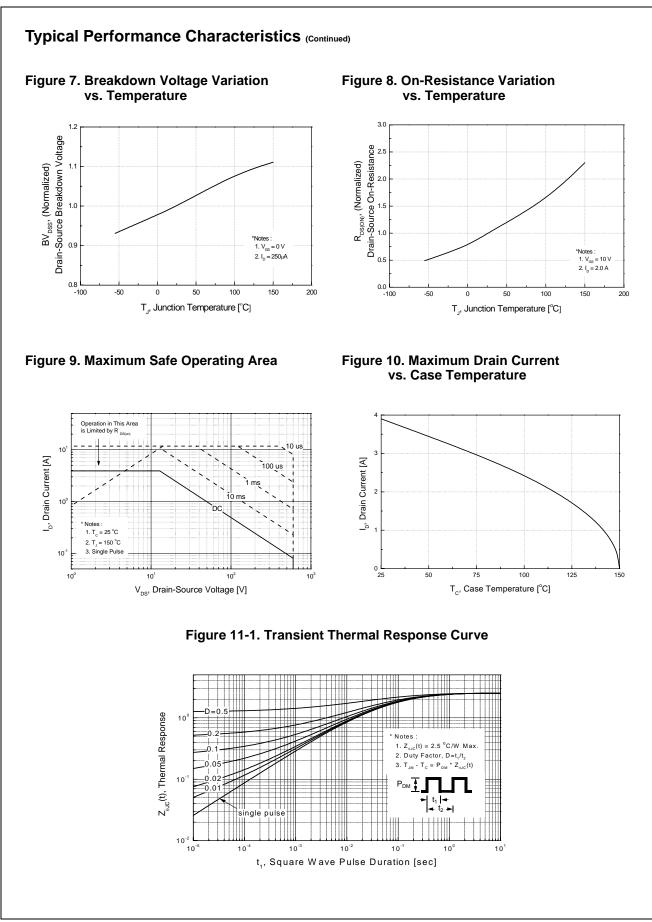

Figure 2. Transfer Characteristics

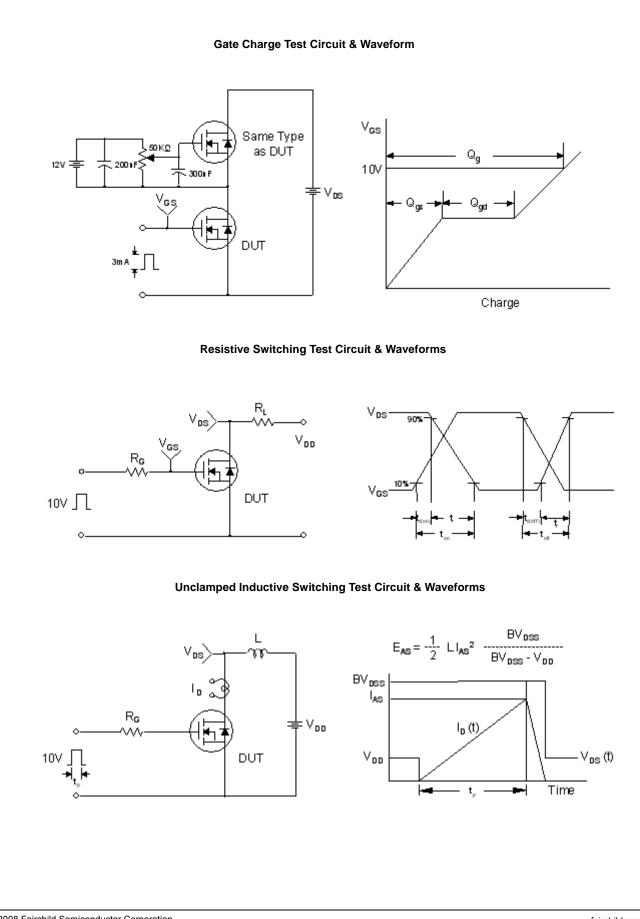


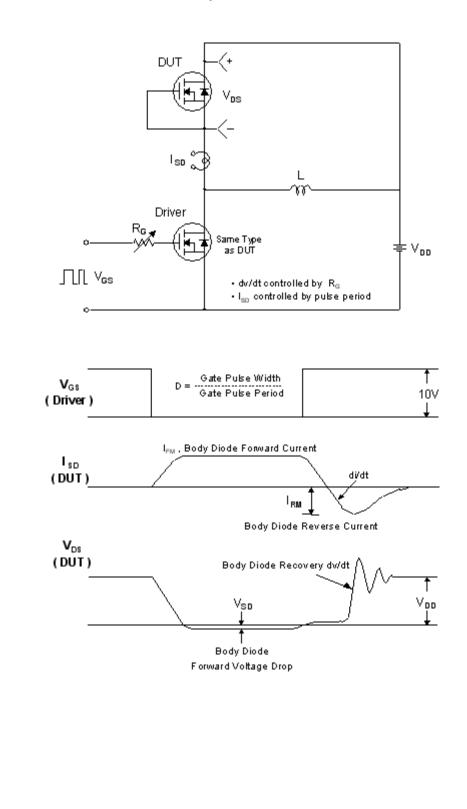


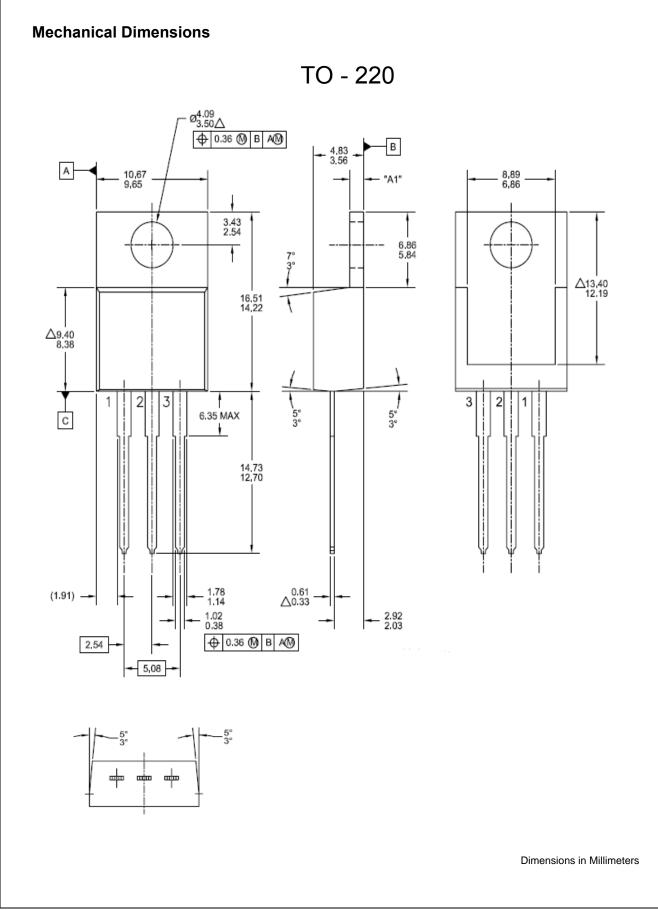












FCP4N60 N-Channel MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

()_®

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX[™] **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ **MICROCOUPLER™** MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR**[®]

FPS™

PowerTrench® PowerXS[™] Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 . SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

SYSTEM ®* GENERAL TinyBoost TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ **UHC**[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XST

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in

- Life support devices or systems are devices or systems which. (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition				
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				
	Formative / In Design First Production Full Production				