

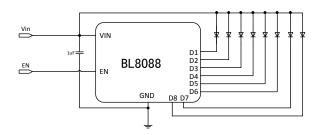
BL8088

8-Channel WLED Linear Driver

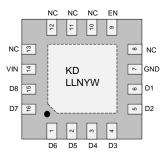
DESCRIPTION

The BL8088 is a CMOS based White/Blue LED driver with stand-alone capability. The driver is primarily designed for LED backlighting of LCD display powered by Li-ion battery. With its high efficiency, low standby current and wide range of input supply voltage, the BL8088 is suitable for applications such as portable device display and keypad backlighting. There are eight identical channels in BL8088, each of which can drive one LED by current rating of 20mA.

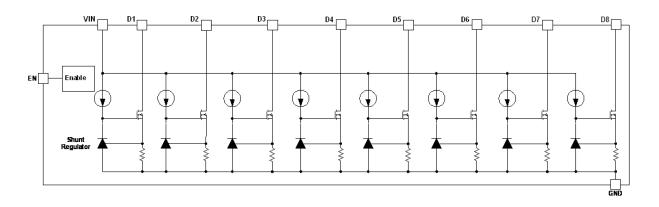
BL8088 is available with QFN 3X3-16 package


FEATURES

- 8-channel output
- 2.7 to 5.5V input range
- PWM dimming control, suggested 1KHz
- LED sink current of 20mA
- Independent current sink circuit for each LED output
- Low standby current
- High accuracy current match on each channel


APPLICATIONS

- LCD screen backlights driver
- Mobile phone, portable device keypad backlights driver


TYPICAL APPLICATION

PIN ASSIGNMENT

BLOCK DIAGRAM

MARKING INFORMATION

Product Classification BL8088CJKTR Marking NC NC NC EN 11 11 0 NC KC: Product Code KD LLNYW LL: LOT No. D8 ₩ KC N: FAB Code LLNYW D7 😕 ω D2 Y: Year No. W: Week No. D5 D4 D3 Top view

ORDERING INFORMATION

BL8088 1 2 3

Code	Description
1	Temperature & Rohs:
	C: -40~85°C, Pb Free Rohs Std.
2	Package type:
	JK: QFN 3X3 -16
3	Packing type:
	TR: Tape&Reel (Standard)

PIN DESCRIPTION

Name	Function Description
D1-D8	RGB or WLED Cathode Connection Pin
EN	Chip Enable and Dimming Control.
VIN	Power Supply
GND	Ground
NC	Not Connected

ABSOLUTE MAXIMUM RATING

Supply voltage	–0.3V to 7V		
Voltage of LEDn, EN pin	-0.3V to 7V		
Maximum Junction Temperature	125°C		
Operating Ambient Temperature Range	–40°C to 85°C		
Storage Temperature Range	–40°C to 150°C		
Lead Temperature (Soldering, 10 sec)	260°C		

Note: Exceed these limits to damage to the device.

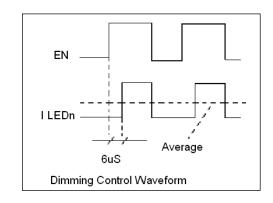
Note: Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

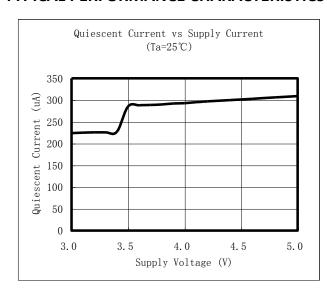
Items	MIN	MAX	Unit
Supply Voltage Range	2.7	5.5	V
Operating Temperature	-25	85	°C

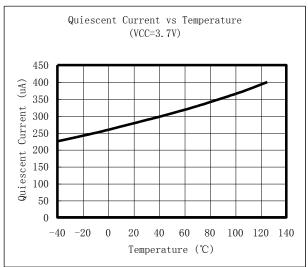
ELECTRICAL CHARACTERISTICS

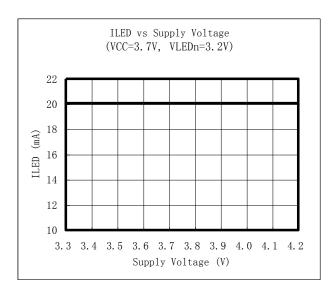
VCC=3.7V, Ta=25°C, No Load, Input: VEN=3.7V. (Unless otherwise noted)							
Symbols	Davidanastavia	Conditions		SPEC			
	Parameters	Conditions	MIN	TYP	MAX	Unit	
VIL	EN Pin "Low" Logic				0.4	V	
Vih	EN Pin "High" Logic		1.7			V	
lıL	EN Pin "Low" Input Current		-1			uA	
Іін	EN Pin "High" Input Current				1	uA	
VLEDL	LEDn Dropout Voltage			100		mV	
ILED	LEDn Sink Current		18	20	22	mA	
ILEDn	LEDn Sink Current Deviation		-5		5	%	
lα	Quiescent Current			500	800	uA	
Іѕтву	Standby Supply Current	VEN="0"		0.5		uA	

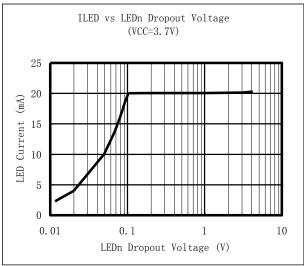

DETAILED DESCRIPTION

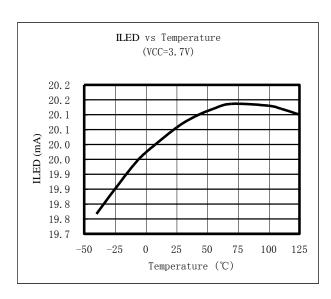
BL8088 works with a wide range of supply voltage, from 2.7V to 6V. The forward voltage of commercial white/blue LED is in the range of 2.9V to 3.5V at a current level of 20mA. Proper selection of the LED to match the supply voltage can fully utilize the Li-ion battery. For example, there is $1\% \sim 3\%$ power left in the Li-ion battery when its voltage reaches 3.275V. So a LED with a forward voltage value of 3.2V can use up to 99% of the battery power under normal working condition. When the voltage of the battery drops below 3.2V, the current through the LED (hence the brightness) starts to decrease.

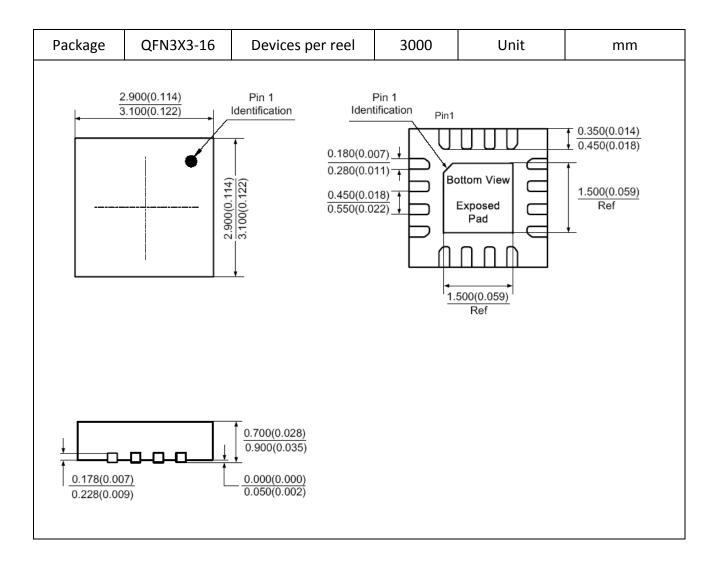

Due to its uniquely designed current regulator, BL8088 offers low output dropout and provide superior efficiency performance over standard Inductive boost type and capacitive charge pump type LED driver.


The EN pin controls the on/off state of the device. A high level state turns on the device and a low level turns off the device, results in the low off state current. This pin needs to be terminated since a floating level of the EN pin will cause the instability of the device.


The sink current has a constant value of 20mA. The brightness of the LED can be adjusted by controlling the duty cycle of the BL8088's LEDn output. This can be accomplished by applying a PWM signal to the EN pin. In BL8088, the internal power on sequence presents a delay time of 6us from EN pin to LEDn pin. Hence, in order to modulate the output of LEDn in every cycle normally, the width of dimming signal applied EN pin have to be no less than 6us. For example, when a dimming signal of 20KHz is applied, the minimum range of dimming is about 12%, that is, the average output current on each channel is 2.4mA.




TYPICAL PERFORMANCE CHARACTERISTICS



PACKAGE INFORMATION

