Preliminary Data Sheet, V0.9, April 2008

PMA7110

RF Transmitter IC with embedded 8051 Microcontroller, LF 125kHz ASK Receiver and FSK/ASK 315/434/868/915 MHz Transmitter

Sense & Control

Never stop thinking

Edition 2008-04-28 Published by Infineon Technologies AG, Am Campeon 1-12 85579 Neubiberg, Germany © Infineon Technologies AG 2008-04-28. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

RF Transmitter IC with embedded 8051 Microcontroller, LF 125kHz ASK Receiver and FSK/ASK 315/434/868/915 MHz Transmitter

Sense & Control

Never stop thinking

Revision History:2008-04-28

V0.9

Page 129	update typical value of transmit current consumption		
Page 132	Update RF characterization for D9 ~ D17		
Page 128, Page 141	Update flash code/data memory program temeprature and erase cycle: B4, O1, O2, O6 ~ O8.		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: sensors@infineon.com

1.1 Overview 9 1.2 Features 10 1.3 Applications 10 2 Functional Description 11 2.1 Pin Description 11 2.2 Functional Block Diagram 28 2.3 Operating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 33 2.3.2.2 RUN State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.5.1 Sensor Interfaces and Data Acquisition 41
1.2 Features 10 1.3 Applications 10 2 Functional Description 11 2.1 Pin Description 11 2.2 Functional Block Diagram 28 0perating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.5.1 Sensor Interfaces and Data Acquisition 41
1.3 Applications 10 2 Functional Description 11 2.1 Pin Description 11 2.2 Functional Block Diagram 28 2.3 Operating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.1 Sensor Interfaces and Data Acquisition 41 2.5.1.1 <t< td=""></t<>
2 Functional Description 11 2.1 Pin Description 11 2.2 Functional Block Diagram 28 2.3 Operating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.1 Sensor Interface 43 2.5.1.2 Two differe
2.1 Pin Description 11 2.2 Functional Block Diagram 28 2.3 Operating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 Tunctional Block Description 41 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.2 Two differential high sensitive interfaces to external Sensors 43 2.5.1.3 Interface to other signals
2.2 Functional Block Diagram 28 2.3 Operating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.2 Two differential high sensitive interfaces to external Sensors 43 2.5.1.3 Interface to other signals 44 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46 2.5.1.6 Battery Voltage Monitor
2.3 Operating Modes and States 29 2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 32 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.1 Sensor Interface 41 2.5.1.2 Two differential high sensitive interfaces to external Sensors 43 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46
2.3.1 Operating mode selection 29 2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.4.5 Functional Block Description 41 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.3 Interface to other signals 44 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46 2.5.1.4 Reference voltages 44 2.5.1.4
2.3.2 State Description 32 2.3.2.1 INIT State 32 2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.4.5 Functional Block Description 41 2.5.1 Sensor Interface and Data Acquisition 41 2.5.1.3 Interface to other signals 44 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46 2.5.1.4 Reference voltages 44 2.5.1.4 Reference voltages 44 2.5.1.5
2.3.2.1 INIT State
2.3.2.2 RUN State 33 2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.4.5 Functional Block Description 41 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.3 Interface to other signals 44 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46 2.5.1.6 Battery Voltage Monitor 46 2.5.2 Memory Organization and Special Function Registers (SFR) 47 2.5.2.1 ROM 48 2.5.2.3 RAM 51
2.3.2.3 IDLE State 33 2.3.2.4 POWER DOWN State 34 2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.4.5 Functional Block Description 41 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.1 Sensor Interface 41 2.5.1.2 Two differential high sensitive interfaces to external Sensors 43 2.5.1.3 Interface to other signals 44 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46 2.5.1.6 Battery Voltage Monitor 46 2.5.2 FLASH 49 2.5.2.1 ROM 48
2.3.2.4POWER DOWN State342.3.2.5THERMAL SHUTDOWN state342.3.2.6State Transitions352.3.2.7Status of PMA7110 Blocks in Different States372.4Fault protection402.4.1Watchdog Timer402.4.2VMIN Detector402.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.4.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.1Sensor Interface412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.3.2.5 THERMAL SHUTDOWN state 34 2.3.2.6 State Transitions 35 2.3.2.7 Status of PMA7110 Blocks in Different States 37 2.4 Fault protection 40 2.4.1 Watchdog Timer 40 2.4.2 VMIN Detector 40 2.4.3 FLASH Memory Checksum 40 2.4.4 ADC Measurement Overflow & Underflow 40 2.4.5 TMAX Detector 40 2.4.5 Functional Block Description 41 2.5.1 Sensor Interfaces and Data Acquisition 41 2.5.1.1 Sensor Interface 41 2.5.1.2 Two differential high sensitive interfaces to external Sensors 43 2.5.1.3 Interface to other signals 44 2.5.1.4 Reference voltages 44 2.5.1.5 Temperature Sensor 46 2.5.2 Memory Organization and Special Function Registers (SFR) 47 2.5.2.1 ROM 48 2.5.2.3 RAM 51
2.3.2.6State Transitions352.3.2.7Status of PMA7110 Blocks in Different States372.4Fault protection402.4.1Watchdog Timer402.4.2VMIN Detector402.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.4.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.1Sensor Interface and Data Acquisition412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.3.2.7Status of PMA7110 Blocks in Different States372.4Fault protection402.4.1Watchdog Timer402.4.2VMIN Detector402.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.4.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.1Sensor Interface412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.4Fault protection402.4.1Watchdog Timer402.4.2VMIN Detector402.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.4.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.1Sensor Interface412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.4.1Watchdog Timer402.4.2VMIN Detector402.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.4.2VMIN Detector402.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.4.3FLASH Memory Checksum402.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.4.4ADC Measurement Overflow & Underflow402.4.5TMAX Detector402.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.3RAM51
2.4.5TMAX Detector402.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.2Sensor Interface412.5.1.3Interface412.5.1.4Reference voltages432.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.5Functional Block Description412.5.1Sensor Interfaces and Data Acquisition412.5.1.1Sensor Interface412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.5.1Sensor Interfaces and Data Acquisition412.5.1.1Sensor Interface412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.5.1.1Sensor Interface412.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.5.1.2Two differential high sensitive interfaces to external Sensors432.5.1.3Interface to other signals442.5.1.4Reference voltages442.5.1.5Temperature Sensor462.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.5.1.3Interface to other signals
2.5.1.4 Reference voltages
2.5.1.5 Temperature Sensor 46 2.5.1.6 Battery Voltage Monitor 46 2.5.2 Memory Organization and Special Function Registers (SFR) 47 2.5.2.1 ROM 48 2.5.2.2 FLASH 49 2.5.2.3 RAM 51
2.5.1.6Battery Voltage Monitor462.5.2Memory Organization and Special Function Registers (SFR)472.5.2.1ROM482.5.2.2FLASH492.5.2.3RAM51
2.5.2 Memory Organization and Special Function Registers (SFR) 47 2.5.2.1 ROM 48 2.5.2.2 FLASH 49 2.5.2.3 RAM 51
2.5.2.1 ROM 48 2.5.2.2 FLASH 49 2.5.2.3 RAM 51
2.5.2.2 FLASH 49 2.5.2.3 RAM 51
2.5.2.3 RAM
2.5.2.4 Special Function Registers 51
2.5.3 Microcontroller 57
2.5.4 System Configuration Registers 58
2.5.5 General Purpose Registers (GPR) 61
2.5.6 System Controller
2.5.6.1 Wakeup Logic 62
2.5.6.2 Interval Timer

2.5.6.3	Interval Timer Calibration	69
2.5.7	Clock Controller	70
2.5.7.1	2 kHz RC LP Oscillator (Low Power)	71
2.5.7.2	12 MHz RC HF Oscillator (High Frequency)	71
2.5.7.3	Crystal Oscillator	71
2.5.8	Interrupt Sources on the <dev nameshort1=""></dev>	74
2.5.9	RF 315/434/868/915 MHz FSK/ASK Transmitter	78
2.5.9.1	Phase Locked Loop PLL	79
2.5.9.2	Power Amplifier PA	80
2.5.9.3	ASK Modulator	80
2.5.9.4	Voltage Controlled Oscillator (VCO)	80
2.5.9.5	Manchester/BiPhase Encoder with bit Rate Generator	81
2.5.10	LF Receiver	85
2.5.11	16Bit CRC (Cyclic Redundancy Check) Generator/Checker	86
2.5.12	Pseudo Random Number Generator	89
2.5.13	Timer Unit (Timer 0, Timer 1, Timer 2, Timer 3)	90
2.5.13.1	Basic Timer Configuration	90
2.5.13.2	General Operation Description Timer 0 and Timer 1	93
2.5.13.3	Timer Modes for Timer 2 and Timer 3	97
2.5.14	General Purpose Input/Output (GPIO)	105
2.5.14.1	Peripheral Port Basic Configuration	105
2.5.14.2	Spike Suppression on Input Pins	108
2.5.14.3	External Wakeup on PP1-PP4 and PP6-PP9	109
2.5.14.4	Alternative Port Functionality	109
2.5.15	I2C- Interface	111
2.5.15.1	Slave mode sequence	113
2.5.15.2	General call sequence	114
2.5.15.3	Master mode sequence	114
2.5.16	Serial Peripheral Interface SPI	114
2.5.17	PROGRAMMING mode Operation	117
2.5.17.1	FLASH Write Line	117
2.5.17.2	FLASH Erase	118
2.5.17.3	FLASH Check Erase Status	120
2.5.17.4	FLASH Read Line	121
2.5.17.5	FLASH Set Lockbyte 2	121
2.5.17.6	FLASH Set Lockbyte 3	121
2.5.17.7	Read Status	122
2.5.18	DEBUG mode Operation	123
2.5.18.1	Debug Special Function Registers	123
2.5.18.2	Debugging Facility	123
2.5.18.3	Debugger Commands	124
3	Reference	126

3.1	Electrical Data	126
3.1.1	Absolute Maximum Ratings	126
3.1.2	Operating Range	127
3.1.3	Product Characteristics	128
3.2	Reference SFR Registers	144
3.3	Reference Documents	157
4	Package Outlines	158

Product Description

1 Product Description

1.1 Overview

The PMA7110 is a low power wireless FSK/ASK Transmitter with embedded microcontroller, which offers a single chip solution for various industrial, consumer and automotive applications in frequency bands 315/434/868/915 MHz. With its highly integrated mixed signal peripherals, PMA7110 requires only few external components. The operating voltage range is 1.9 - 3.6 V.

The PMA7110 contains

- 8051 based microcontroller
- Advanced power control system to minimize power consumption
- RF transmitter
- LF receiver
- Multifunctional interface for external Sensors and embedded temperature and battery voltage sensor

Measurement via embedded temperature and voltage sensor, reading signal from analog inputs (e.g. from external analog sensor) are performed under software control, so that the microcontroller can format and prepare this data for the RF transmission.

An intelligent power control system enables the build of ultra low power applications by using powersaving modes.

The integrated microcontroller is instruction set compatible to the standard 8051 processor. It is equipped with various peripherals (e.g. a hardware Manchester/BiPhase Encoder/Decoder and CRC Generator/Checker) enabling an easy implementation of customer-specific applications.

The low power consumption FSK/ASK Transmitter for 315/434/868/915 MHz frequency bands contains a fully integrated VCO, a PLL synthesizer, an ASK/ FSK modulator and an efficient power amplifier. Fine tuning of the center frequency can be done by an on-chip capacitor bank.

To store the microcontroller application program code and its unique ID-Number, an onchip FLASH memory is integrated. Additional ROM storage is provided for the ROM library functions covering standard tasks required by various applications.

Product Description

1.2 Features

- Supply voltage range from 1.9 V up to 3.6 V
- Operating temperature range -40 to +85 °C
- Low supply current
- Temperature sensor
- Battery voltage measurement
- Integrated RF- transmitter for ISM band 315/434/868/915 MHz
- Selectable transmit power 5/8/10 dBm into 50 Ohm load
- · Transmit data rates up to 32kbit/s or 64kchips/s in manchester code
- FSK/ASK modulation capability
- Frequency deviation up to 100 kHz in FSK mode
- Fully integrated VCO and PLL synthesizer
- Crystal oscillator tuning on chip
- LF receiver with input signal amplitude of min. 0.25 mVpp
- LF receiver data rate from 2000 bit up to 4000 bit (Manchester/BiPhase coded)
- 8051 instruction set compatible microcontroller (cycle-optimized)
- 6 kbyte Flash Code and 2x128 bytes flash data memory (for user-application like EEPROM emulation)
- 12 kbyte ROM (for ROM library functions)
- 256 bytes RAM (128 bytes configurable to keep content in Power Down mode), 16 bytes XData memory (supplied in PowerDown)
- I²C bus interface
- SPI bus interface
- 10 free programmable bidirectional GPIO pins with on chip pull-up/down resistors
- 4 independent 16 bit timers
- 10bit ADC with 3 pair differential channels (e.g. as IO for external sensors)
- Wakeup from POWER DOWN state using the Interval Timer, the LF receiver or external wakeup sources connected via a GPIO
- · Manchester/BiPhase encoder and decoder
- Hardware CRC generator
- Pseudo Random Number Generator
- · Watchdog timer
- on chip debugging via I²C interface

Note:In PMA7110 the Thermal Shout down function is not used.

1.3 Applications

- · Remote control systems for industrial and consumer applications
- Security- and Alarm-systems
- Home automation systems
- Automatic meter reading
- Active Tagging

2 Functional Description

2.1 Pin Description

Figure 1 Pin-out of PMA7110 in TSSOP38 package

Pin	Name	Туре	Description	Comments
1	VDD(sens.)	Supply	Sensor positive supply	same voltage as chip analog supply
2	V1N(sens.)	Analog	Channel1, negative sensor input	output of wheatstone bridge sensor
3	VM1(sens.)	Supply	Sensor negative supply	same voltage as chip GND
4	V1P(sens.)	Analog	Channel1, positive sensor input	output of wheatstone bridge sensor
5	GNDB	Supply	Ground	
6	GNDA	Supply	Ground	
7	VBat	Supply	Battery supply voltage	
8	PGND	Supply	RF transmitter ground	
9	PA	Analog	RF transmitter output	
10	GND	Analog	Ground	
11	PP2/WU1/ TXDATAOut	Digital	GPIO, External wakeup source, Serial output of Manchester/Biphase encoded data	internal pullup/pulldown switchable
12	PP1/WU0/ I2C_SDA/ OPMode2	Digital	GPIO, External wakeup source, I2C bus interface data, Select operation mode	internal pullup/pulldown switchable
13	PP0/ I2C_SCL/ OPMode1	Digital	GPIO, I2C bus interface clock, Select operation mode	internal pullup/pulldown switchable
14	PP3/SPI_CS/ WU2	Digital	GPIO, SPI bus interface chip select, External wakeup source	internal pullup/pulldown switchable
15	PP4/WU3 /SPI_MISO	Digital	GPIO, SPI bus interface master in slave out, External wakeup source	internal pullup/pulldown switchable
16	PP5/ SPI_MOSI	Digital	GPIO, SPI bus interface master out slave in	internal pullup/pulldown switchable
17	PP6/WU4 /SPI_Clk	Digital	GPIO, SPI bus interface clock, External wakeup source	internal pullup/pulldown switchable

Table 1 Pin Description

Pin	Name	Туре	Description	Comments
18	xReset	Digital	External reset	low active
19	PP7/WU5 /Ext_Int1	Digital	GPIO, External wakeup source	internal pullup/pulldown switchable
20	PP8/WU6	Digital	GPIO, External wakeup source	internal pullup/pulldown switchable
21	PP9/WU7 /Ext_Int1	Digital	GPIO, External wakeup source, External Interrupt source	internal pullup/pulldown switchable
22	MSE	Digital	Mode select enable	high active, set to GND in normal mode
23	TME	Digital	Test mode enable	high active, set to GND in normal mode
24	XTALCAP	Analog	Crystal oscillator load capacitance	
25	XTAL/SCLK	Analog	Crystal oscillator input, External reference clock	
26	XGND	Supply	Crystal oscillator ground	
27	AMUX1	Analog	additional differential ADC standard input1 for external sensor	connect to GND if not use
28	AMUX2	Analog	additional differential ADC standard input2 for external sensor	connect to GND if not use
29	XLF	Analog	Differential LF receiver Input2	
30	LF	Analog	Differential LF receiver Input1	
31	VReg	Supply	Internal voltage regulator output	connect to decoupling capacitor (C _{BCAP} =100nF)
32	VDDD	Supply	Digital supply	
33	VDDA	Supply	Analog supply	
34	GNDC	Supply	Ground	
35	RD(sens.)	Analog		use only by having diagnostic resistor on sensor bridge, otherwise none connection

Table 1Pin Description

Pin	Name	Туре	Description	Comments
36	V2P(sens.)	Analog	Channel2, positive sensor input	output of wheatstone bridge sensor
37	VM2(sens.)	Supply	Sensor negative supply	same voltage as chip GND
38	V2N(sens.)	Analog	Channel2, negative sensor input	output of wheatstone bridge sensor

Table 1Pin Description

Table 2 Pin I/O equivalent schematics

Pin No.	PAD name	Equivalent I/O Schematic	Function
34	GNDC		Ground
35	RD (sens.)		Connect to diagnostic resister on sensor bridge, otherwise no connection
36	V2P (sens.)		Channel 2 Positve Signal

Pin No.	PAD name	Equivalent I/O Schematic	Function
37	VM2 (sens.)		Channel 2 Negative Supply
38	V2N (sens.)		Channel 2 Negative Signal

2.2 Functional Block Diagram

Figure 2 PMA7110 Block Diagram

2.3 Operating Modes and States

The PMA7110 can be operated in four different operating modes.

- NORMAL mode
- PROGRAMMING mode
- DEBUG mode
- (internal production TEST mode)

2.3.1 Operating mode selection

Figure 3 Operating mode selection of the PMA7110 after Reset

The Mode Select is entered after the System Reset expires and SCAN Test mode is not selected. The levels on the the I/O pins PP0 and PP1 are latched by the System controller and read by the operating system to determine the mode of operation of the device according to **Table 3 "Operating mode selection after Reset" on Page 30**. Therefore also the status of MSE and Lockbyte II from the FLASH are checked. The

MSE, PP0 and PP1 levels must not change after reset release during the whole t_{MODE} period (see Figure 5 "Power On Reset - operating mode selection" on Page 32).

тме	MSE	Lock byte ll	PP0	PP1	Operating mode	Devicecontrol	Hardware restrictions
1 ^{3.)}	x	x	x	x	SCAN	external Test machine	n.a.
0	0	x	x	x	NORMAL	CPU executing from 4000h	Flash write disabled ²⁾
0	1	x	0	0	TEST	TEST mode handler	None
0	1	not set	0	1	PROGRAMMING	PROGRAM mode handler	None
0	1	set	0	1	NORMAL	CPU executing from 4000h	Flash write disabled ^{2.)}
0	1	not set	1	0	DEBUG	DEBUG mode handler	Flash write disabled ^{2.)}
0	1	set	1	0	NORMAL	CPU executing from 4000h	Flash write disabled ^{2.)}
0	1	x	1	1	NORMAL	CPU executing from 4000h	Flash write disabled ^{2.)}

 Table 3
 Operating mode selection after Reset

1.) Flash protection is done by hardware. In these modes setting the SFR bits FCS.3 [PROG] and FCS.2 [ERASE] is not possible.

2.) Flash programming and erasing is only possible via ROM Library functions.

3.) Whenever TME is set to high the current mode is left immediately and SCAN Test Mode is entered, regardless if there is a reset or not.

Figure 4 NORMAL Mode - State transistion diagram

For low power consumption and safety reasons the PMA7110 supports different operating states - *RUN* state, *IDLE* state and *POWER DOWN* mode and Thermal shutdown state. The device operation in these states is described below.

Transitions between these states are either application software controlled or managed automatically by the system controller.

- PDWN: Powerdown (CPU & Peripherrals stopped)
- IDLE: CPU clock stopped, peripherals are still running

Figure 5 Power On Reset - operating mode selection

During the time t_{MODE} , the levels of PP0, PP1 and MSE are read, and being determined the operation mode of the device according to **Table 3 "Operating mode selection after Reset" on Page 30**. The levels on these pins must be stable during the whole t_{MODE} period.

The PMA7110's Power On Reset circuit is activated if Vreg rises above V_{POR}. The internal blocks are held in Reset state until Vreg has risen above V_{THR}.

When this Reset state is released, a further time of t_{MODE} is needed for reading the levels on PP0, PP1 and MSE. After t_{MODE} has elapsed, the device starts operation in the selected mode.

Note: See **"Power On Reset" on Page 138** for details on Power On Reset characteristics.

2.3.2 State Description

2.3.2.1 INIT State

This is a transient state which is entered when the settings of PP0, PP1, MSE, TSE and the Lockbyte II lead to Normal Mode (please refer to **Table 3 "Operating mode selection after Reset" on Page 30**). In this state, the SFRs which are not located in the System controller get reset and the ROM routines initializes the system to its default

values. Then the application Program in Flash is started at 4000h and the device enters RUN state.

2.3.2.2 RUN State

In RUN state the CPU8051 executes programs stored in ROM or FLASH memory. Peripherals are on or off according to the application program. The watchdog (WD) is active and automatically cleared when entering RUN state on a Wakeup event. The CPU clock frequency is selectable by software. All Wakeup events are ignored in RUN state but the corresponding flags get set and can be read and cleared.

2.3.2.3 IDLE State

In IDLE state, the CPU8051 clock is disabled but Peripherals (Timers, ADC, RF-TX, SPI, I²C Interface and Manchester/Biphase Coder) continues normal operation. If a resume condition occurs the RUN state is reentered immediatelly. The watchdog (WD) is active and reset automatically when entering IDLE state. All wakeups are ignored in IDLE state but the corresponding flags are set if a wakeup occurs and can be evaluated once the device returns to the RUN state.

In case of a Peripheral requests, an interrupt or an External Interrupt occurs the IDLE state is left for RUN state, the Interrupt service routine is executed and on the next RETI (return from interrupt) instruction the IDLE State is re-entered in case no Resume event has occured in between.

Resume events:

The resume source can be identified by reading REF. Resume events may occur on following events:

- RF transmitter buffer empty.
- RF transmission finished.
- LF receiver buffer full.
- Timer 2 underflow.
- A/D conversion finished.
- RC-LP-Oscillator calibration finished.
- Clock change from RC-HF-Oscillator to Crystal-Oscillator finished.

Interrupt requests:

Interrupts during IDLE state may be requested by embedded peripherals or external events.

- External (Pin) Interrupt 0/1
- Timer 0/1/2/3

Preliminary Data Sheet

- I2C Interface
- · SPI Interface
- LF Receiver
- RF Encoder

2.3.2.4 POWER DOWN State

In POWER DOWN state the CPU8051 and its peripherals are powered down. The system controller, its SFRs, the XData memory and optional the lower 128 byte internal RAM are kept powered. The LF receiver will be switched on periodically if the LF on/off timer is enabled. Wakeup flags are cleared automatically when going to POWER DOWN or THERMAL SHUTDOWN.

Wakeup Events:

A wakeup event occurs when a peripheral or external source causes the system to power up again. The wakeup source can be identified by reading SFRs WUF and ExtWUF. Wakeup Events may occur on following events:

- At least one of the External Wakeup Pins changed its state to the configured one
- Interval Timer underflow occured
- LF receiver carrier detected
- LF receiver pattern matched
- LF receiver sync matched
- · Watchdog timer elapsed

2.3.2.5 THERMAL SHUTDOWN state

In THERMAL SHUTDOWN state, only the TMAX circuit can provide a wakeup event. All other wakeup sources are disabled. The device will remain in this state until the temperature falls below the T_{REL} threshold (see "Functional Block Description" on Page 41 for details).

2.3.2.6 State Transitions

With reference to **Figure 4 "NORMAL Mode - State transistion diagram" on Page 31**, the following state transitions can occur:

Table 4 State Transitions in NORMAL mode

State transition	Description
RUN state => IDLE state (IFLG)	The application program can set SFR bit CFG0.5[IDLE] ¹⁾ to enter IDLE state. Note that the next opcode should be a <i>NOP</i> instruction. (see Table 11 "SFR Address F8_H: CFG0 - Configuration Register 0" on Page 58) Note: If no peripheral that can create a RESUME event is active, IDLE state will not be entered and the application will continue operation.
IDLE state => RUN state (RS, IRQ)	RS: A peripheral unit (Timer 2, ADC, RF transmitter, LF receiver, System Clock source switch) creates a resume event. The application continues with the instruction after the Idle bit setting (see Table 20 "SFR Address D1 _H : REF - <u>Resume Event Flag Register" on Page 67</u>). IRQ: An interrupt occurs. This interrupt allows the immediate execution of the interrupt service routine. With the return from interrupt instruction the device returns to IDLE state if no resume event has been generated in between.
IDLE state => INIT state (WD) RUN state => INIT state (WD)	Overflow of the watchdog timer. The application will restart by initialization of the SFRs that are located outside the SFR Container. No Mode selection is possible, the Normal Mode is not left. The watchdog wakeup may be identified by Table 18 "SFR Address COH: WUF - Wakeup Flag Register" on Page 65
RUN state =>THERMAL SHUDOWN state (TE)	The application should enter Thermal Shutdown state whenever it detects that the specified operating temperature maximum of 125°C has been overreached to avoid malfunction of the device. This is done by setting the CFG0.6 [TSHDWN]. Alternatively this can be done via ROM library function. Note: If the temperature is below the TMAX threshold the device immediately generates a WU event and re-initializes the system
RUN state => POWER DOWN state (PDWN)	Entering this state is always software controlled by setting CFG0.7[PDWN]. The application program can call a ROM Library function to enter POWER DOWN state whenever needed.

State transition	Description
THERMAL SHUTDOWN state => RUN state (WU)	The TMAX circuit generates a wakeup event when the temperature falls below TMAX threshold.
POWER DOWN state => RUN state (WU)	A wakeup event will restart the application and set the SFR WUF resp. ExtWUF accordingly. The Watchdog timer is re- initialized (see Table 19 "SFR Address F1H: ExtWUF - Wakeup Flag Register 2" on Page 65). Wakeup duration from <i>POWER DOWN</i> mode to <i>RUN</i> state typically lasts 1410 μ s. The time is the sum for the power supply to get stable (100 μ s), the startup time of the oscillator (1150 μ s) and the time for the operating system to get initialized (160 μ s @12MHz CPU8051 clock).
INIT state => RUN state	This state change is initiated automatically by the system controller as soon as INIT state is finished.

1) ¹⁾ Note: It is mandatory that the instruction setting the CFG0.5[IDLE] is followed by a NOP instruction.

2.3.2.7 Status of PMA7110 Blocks in Different States

Depending of the actual state in NORMAL mode the internal blocks of the PMA7110 are active, inactive or have no supply to reduce power consumption. The next table gives an overview over the different blocks in the different device states.

Table 5 Status of important PMA7110 blocks in different states

Peripheral unit	RUN state	IDLE state	POWER DOWN state	THERMAL SHUTDOWN state
Power on reset	active	active	active	active
Brown-out detector	active	active	inactive power down	inactive power down
Power supply - Low drop voltage regulator	active	active	inactive power down (Remark: can be enabled by LF-RX)	inactive power down
Low power voltage supply	active	active	active	active
System controller	active	active	active	active
Wakeup Logic	active	active	active	active
CPU8051	active	inactive	no supply	no supply
Non-volatile SFRs (System Controller)	active	inactive content not lost	inactive content not lost	inactive content not lost
Peripheral core SFR's	active	inactive content not lost	no supply - content lost	no supply - content lost
Manchester/Biphase Coder, Timer	software selectable	software selectable	no supply	no supply
Pheripheral modules - CRC, MFLSR	software selectable	inactive	no supply	no supply
Peripheral modules -I2C, SPI, ADC	software selectable	software selectable	no supply	no supply
Watchdog	active	active	no supply	no supply

Peripheral unit	RUN state	IDLE state	POWER DOWN state	THERMAL SHUTDOWN state
RAM Lower 128Bytes	active	inactive content not lost	selectable power down (content lost) or inactive (content not lost)	selectable power down (content lost) or inactive (content not lost)
RAM Upper 128Bytes	active	inactive content not lost	no supply - content lost	no supply - content lost
XData 16 bytes	active	inactive content not lost	inactive content not lost	inactive content not lost
FLASH memory	active	inactive content not lost	no supply content not lost	no supply content not lost
ROM	active	inactive	no supply content not lost	no supply content not lost
Crystal oscillator	software selectable	software selectable	inactive power down	inactive power down
2kHz RC-Oscillator	active	active	active	inactive power down
12MHz RC-HF-Oscillator	software selectable	software selectable	power down (Remark: can be enabled by LF-RX)	power down
Interval timer	active	active	active	inactive
LF Receiver	software selectable	software selectable	software selectable	inactive power down
RF Transmitter	software selectable	software selectable	inactive power down	inactive power down

Peripheral unit	RUN state	IDLE state	POWER DOWN state	THERMAL SHUTDOWN state
Vmin Detector	software selectable	software selectable	no supply	inactive power down

Note: **active**: block is powered, is active and keeps its register contents. Power consumption is high

inactive: block is powered, cannot be used, but keeps its register contents. Power consumtion is low

no supply: block is not powered, connot be used and all register content is lost. Power consumption is zero

2.4 Fault protection

The PMA7110 features multiple fault protections which prevent the application from unexpected behavior and deadlocks. This chapter gives a brief overview of the available fault protections. Detailed explanation of the usage can be found later in this document and in [1] "Reference SFR Registers" on Page 144.

2.4.1 Watchdog Timer

For operation security a watchdog timer is available to avoid application deadlocks. The watchdog timer must be reset periodically by the microcontroller, otherwise the timer generates a software reset and forces a restart of PMA7110 program execution.

The watchdog timer duration is fixed to nominal 1 second. The accuracy depends on the accuracy of the 2 kHz RC LP Oscillator which is used to clock the watchdog timer.

Setting SFR bit CFG2.1[WDRES] resets the watchdog timer (see Table 13 "SFR Address D8_H: CFG2 - Configuration Register 2" on Page 60).

2.4.2 VMIN Detector

This circuit will detect if the supply voltage is below the minimum value required to guarantee the measurement accuracy. The ROM library functions which perform measurements will return the VMIN status in a statusbyte with the measurement result.

2.4.3 FLASH Memory Checksum

A CRC checksum is stored in the FLASH memory, and can be recalculated and checked by the application program for verification of program code if needed.

Flash bit FCSP.7[ECCErr]: If a single bit error in the Flash memory occurs it is corrected by the Flash internal Error Correction Coder, as an indication the FCSP.7[ECCErr] bit is set. (see **Table 101 "SFR Address E9_H: FCSP- Flash Control Register - Sector Protection Control" on Page 146** in "**Reference SFR Registers**" on **Page 144**)

2.4.4 ADC Measurement Overflow & Underflow

The ROM Library functions which perform measurements will return the over/underflow status in a statusbyte with the measurement result.

2.4.5 TMAX Detector

The TMAX detector is used to wakeup the PMA7110 from THERMAL SHUTDOWN state if the ambient temperature falls below the trigger level $\rm T_{REL}.$

Entering THERMAL SHUTDOWN state can be initiated by a ROM Library function described in [1] "Reference Documents" on Page 157.

2.5 Functional Block Description

2.5.1 Sensor Interfaces and Data Acquisition

The PMA7110 has two internal sensors, two high sensitive differential analog interfaces 4 programmable gainfactors (from 76+-20%, 60+-20%, 50+-20% and 38+-20%) and one standard differential analog interface (gainfactor 1) to acquire environmental data:

- Temperature Sensor
- Battery Voltage Monitoring
- external data through analog interface

The analog data is aquired and digitalized by the internal 10 Bit ADC. Measurement routines for acquiring data are available within the ROM library functions that are described in [1] "Reference Documents" on Page 157.

2.5.1.1 Sensor Interface

Figure 6 Block diagram Sensor Interface

The sensor interface connects to the external sensors and to the internal (on-chip) temperature and battery voltage sensors.

All signal channels can be configured for differential or single-ended operation. Differential operation is only recommended for signals where the common-mode voltage is stable, while the positive and negative signal voltages vary symmetrically around the common-mode voltage.

The input multiplexer selects one channel for the input signal and one channel for the reference voltage to the ADC. Any channel can be selected as reference, except channels 6 and 7, which are specially adapted to the low level signals from external sensors.

2.5.1.2 Two differential high sensitive interfaces to external Sensors

Differential high sensitive sensor interface 1((Channel 6)

V1P/V1N is the positve/negative differential voltage inputs of the first sensor bridge.

Differential high sensitive sensor interface 2 (Channel 7)

V2P/V2N is the positve/negative differential voltage inputs of the second sensor bridge.

Channel gain selection

The SFR Bit ADCC1.5-4 [GAIN1-0] gain factor selection allows the selection of the sensitivity of the analog input channels 6 and 7. The gain is one for all other input channels (see Table 6).

Gain factor (gain)	Channel ADCM.CS2-0	GAIN1	GAIN0
76 +/- 20%	11X	0	0
60 +/- 20%	11X	0	1
50 +/- 20%	- 20% 11X 1		0
38 +/- 20%	11X	1	1
1	others	0	0
1	others	0	1
1	others	1	0
1	others	1	1

Table 6 Selection of the gain factor

Sensor Excitation

The two sensor bridges have a common positive supply which is always connected. When a sensor bridge is to be activated, its negative supply is pulled to ground by pad VM1 or VM2 for VMP or VMA. Otherwise, it is disconnected. In this way the power of a connected bridge can be supplied.

These two sensor interfaces are very adapted piezoresistive Wheatstone bridge sensors, whose output signal is differential and ratiometric (proportional to the bridge excitation voltage). The electrical configuration is shown as a example in figure below.

Figure 7 Wheatstone bridge sensor

2.5.1.3 Interface to other signals

Battery voltage Interface (Channel 0)

The positive input to the battery voltage signal is derived by dividing voltage V_{Bat} by 3.5. The negative input is connected to GND. The battery voltage is converted with a resolution of approximately 4.1mV, using channel 3 as reference.

Temperature Sensor Interface (Channel 1)

The temperature signal to the ADC is a single ended signal, with the PTAT voltage between 500 and 1100 mV. The temperature sensor signal is digitized with a resolution of approximately 0.5°C, using channel 3 as reference.

Standard sensor Interface (Channel 2)

The positive input signal is available at AMUX1, and the negative input at AMUX2.

2.5.1.4 Reference voltages

When channel 6 or 7 is selected as input to the ADC, and the negative external sensor supply is identical to the negative supply of ADC, this negative supply should be selected by the multiplexer as reference voltage on channel 5.

If the negative external sensor supply (which should be used as reference voltage to external sensor) is not identical to the negative supply of ADC, it should be connected to the Channel 2 so that it can be selected by multiplexer as reference voltage for channel 6 or 7. But the supply voltage of the external sensor must always be within the range GND to V_{BATT}

Figure 8 External Sensor use channel 2 as reference voltage

Additional 3 channels on ADC input multiplexer carry voltages which are intended as reference voltages for the converter:

BANDGAP Reference (Channel 3)

This reference is a nominal voltage of 1210 mV. It is intended as reference for the temperature and V_{Bat} measurements.

VREG Reference (Channel 4)

This reference is the V_{REG} voltage. This is the largest allowable input voltage to the ADC, and is meant as reference for the test signal, to allow as large test signal as possible.

BRIDGE SUPPLY Reference (Channel 5)

When channel 6 or 7 is selected as input to the ADC, the reference voltage is the bridge supply voltage. A multiplexer selects the appropriate negative bridge supply.

2.5.1.5 Temperature Sensor

Temperature measurement is performed by a dedicated ROM library function. See **"Temperature Sensor Characteristics" on Page 128** for the sensor specification.

2.5.1.6 Battery Voltage Monitor

Battery Voltage measurement is performed by a dedicated ROM library function. See **"Battery Sensor Characteristics" on Page 128** for the sensor specification.

0xFF

0x80

0x7F

0x00

0x0F

0x00

Functional Description

SFR

Direct

addressing

Data

memory

Optional battery buffered

Data RAM

Xdata

memory

Battery buffered Data RAM

accessible with

movx

Data

Indirect

addressing

2.5.2 Memory Organization and Special Function Registers (SFR)

Figure 9 Memory map

The following memory blocks are implemented:

- 12 kByte ROM Memory
- 3 Byte SFR mapped Code Memory
- 6 kByte Flash Code Memory
- 2x128 Bytes FLASH User Data Memory
- 128 Bytes Flash Configuration, ID and Reference cells
- 2 x 128 Byte Data RAM / thereof 128 bytes battery buffered optionally
- 16 bytes battery buffered XData RAM

2.5.2.1 ROM

A 12 kB ROM memory is located in address range 0000_H to 2FFF_H.

ROM library functions and Reset/Wakeup Handlers

The ROM contains the reset handler, the wakeup handler and the ROM Library functions (see [1] "Reference SFR Registers" on Page 144).

A hardware mechanism is implemented to prevent direct jumping into the ROM area, thus access to the ROM library functions is granted via a vector table at the bottom of the ROM address space.

ROM protection

To protect the ROM code against readout a hardware mechanism is implemented, thus a read operation from the ROM in the protected address area returns zero.

2.5.2.2 FLASH

FLASH Organization

The FLASH is divided into five sectors. Each sector can be erased and written individually (Bytewise erasing and writing is not possible).

- 4000_H -- 577F_H (6016 Bytes) code sector (sector 0): This sector contains the Code sector for the application program.
- 5780_H -- 587F_H (2x128 Bytes) User Data sector I + User Data sector II (sector 1 + sector 2): These two sectors contain the User Data Sector which can store individual device configuration data. It also contains the crystal frequency which is needed for the ROM Library functions.
- 5880_H -- 58BF_H (64 Bytes) configuration sector (sector 3): This sector contains the FLASH configuration sector for FLASH driver parameters.
- 58C0_H -- 58FF_H (64 Bytes) reference cells sector (sector 4): This sector contains the reference current generator cells for FLASH reading.

FLASH protection

Write and erase operations on the Flash Code Sector are only allowed in PROGRAMMING mode. To protect the FLASH against unauthorized access three lockbytes can be set:

• Lockbyte 1: Address 0x58FF (Top address of Flash Configuration + Reference Cells Sector).

This is written in the end of production test. Whenever the Resethandler detects this value the FCSP.0[ConfLock] gets set and the Reference Cells Sector, Flash Configuration Sector are irreversibly switched to read-only.

- Lockbyte 2: Address 0x577F (Top address of the Code Sector). This byte is written (also a ROM CRC) by the Programmer together with the Code download. When the Resethandler detects this byte it sets the FCSP.1[CodeLCK]. In addition the Debug Mode, Programming Mode and Test Mode are no longer accessible. Their pin settings lead to Normal Mode and reduced TM wherein the CRC can be checked (pass/fail) and the whole Flash can be erased to reset the chip to shipping state. This Lockbyte has to be set during programming the Code Sector to protect application code against undesired read-out.
- Lockbyte 3: Address 0x587F (Top address of the User Data Sector I and User Data Sector II).

There is a ROM Library function for setting this byte. (Therefore the data in the User

Data Sector have to be captured into RAM, the Lockbyte added, the whole sector erased (Flash!) and re-written. Whenever the Resethandler detects this value DSR.0[FlashLCK] gets set. When not written together with the Code Sector the User Data Sector is planned to be written in Normal Mode (from the Customer) using ROM Library functions. There is a HW mechanism that blocks access to the Flash Registers when operating from the Flash (not ROM). In this way, the usage of ROM Library functions is guaranteed, they ensure several important details not to damage the chip. If Lockbyte 3 is set without setting Lockbyte 2, this byte shows no effect and will result a unlocked FLASH. How to set Lockbyte 3 is described in "FLASH Set Lockbyte 3" on Page 121.

2.5.2.3 RAM

The RAM is available as data storage for the application program. ROM library functions may use some RAM locations for passing parameters and internal calculations. The RAM area which is used for the ROM library functions is specified in [1] "**Reference Documents**" on Page 157.

The RAM is always powered in RUN state and IDLE state.

The upper 128 bytes of RAM are always switched off in POWER DOWN state and THERMAL SHUTDOWN state and lose their contents in these states.

SFR bit CFG2.4[PDLMB] determines if the lower 128 bytes of RAM are powered during POWER DOWN state and THERMAL SHUTDOWN state.

If not powered in these states, this RAM loses the content, otherwise it can be used as battery buffered storage beyond a POWER DOWN period.

Note: The RAM is not reset at a System Reset. After a Brown Out Reset this feature can be used to possibly recover data from RAM.

After Power On Reset the RAM is not initialized, thus it contains random data. The application has to initialize the RAM if needed.

2.5.2.4 Special Function Registers

Special Function Registers are used to control and monitor the state of the PMA7110 and its peripherals. The following table shows the naming convention for the SFR descriptions that are used throughout this document.

Figure 10 Naming convention for Register descriptions

Note: If a single bit or the whole byte value is declared as unchanged, it keeps its state even during POWER DOWN state or THERMAL SHUTDOWN state.

 Table 7 "SFR Special Function Register Address Overview" on Page 53 shows all available registers of the PMA7110.

Note: All SFRs that are listed in Table 7 "SFR Special Function Register Address Overview" on Page 53 but not in Table 8 "Status of SFR Registers in

POWER DOWN state" on Page 53 should not be changed by the application since they could be damaged irreversibly. These are handled automatically by the ROM Library functions if needed.

Addr	Register	Addr	Register	Addr	Register	Addr	Register	Addr	Register	Addr	Register	Addr	Register	Addr	Register
F8	CFG0	F9	LFRXC	FA		FB		FC		FD		FE		FF	
F0	в	F1	EXTWUF	F2	EXTWUM	F3	SPIB	F4	SPIC	F5	SPID	F6	SPIM	F7	SPIS
E8	CFG1	E9	FCSP	EA	FCS	EB	P3DIR	EC	P3IN	ED	P3SENS	EE	RFC	EF	LBD
E0	ACC	E1	FCPP0	E2	FCPP1	E3	FCSERM	E4	FCTKAS	E5	FCSS	E6	RFS	E7	RFENC
D8	CFG2	D9	DSR	DA	ADCOFF	DB	ADCC0	DC	ADCC1	DD	ADWBC	DE	RFVCO	DF	RFFSLD
D0	PSW	D1	REF	D2	ADCM	D3	ADCS	D4	ADCDL	D5	ADCDH	D6	OSCCONF	D7	RFFSPLL
C8	TCON2	C9	TMOD2	CA	TL3	СВ	тнз	сс	TL2	CD	TH2	CE	LFP1L	CF	LFP1H
CO	WUF	C1	WUM	C2	XTCFG	C3	XTAL1	C4	XTAL0	C5	LFOOTP	C6	LFOOT	C7	LFPCFG
B8	IP	B9	DIVIC	ва	ITPL	BB	ITPH	вс	ITPR	BD	тмах	BE	LFPOL	BF	LFPOH
В0	P3Out	B1	I2CB	B2	LFCDFIt	B3	LFDIV0	B4	LFDIV1	B5	LFCDM	B6	LFRX1	B7	LFRX0
A8	IE	A9	CRCC	AA	CRCD	AB	RNGD	AC	CRC0	AD	CRC1	AE	RFTX	AF	LFSYNCFG
A0	P2 (reserved)	A1	P2Dir (reserved)	A2	12CC	A3	I2CM	A4	LFRXS	A5	LFRXD	A6	LFSYN0	A7	LFSYN1
98	SCON (reserved)	99	SBUF (reserved)	9A	I2CD	9B	I2CS	9C	DBCL1	9D	DBCH1	9E	DBTL1	9F	DBTH1
90	P10UT	91	P1DIR	92	P1IN	93	P1SENS	94	DBCL0	95	DBCH0	96	DBTL0	97	DBTH0
88	TCON	89	TMOD	8A	TL0	8B	TL1	8C	тно	8D	TH1	8E	RFD	8F	IRQFR
80	P0 (reserved)	81	SP	82	DPL	83	DPH	84	MMR0	85	MMR1	86	MMR2	87	PCON

Table 7 SFR Special Function Register Address Overview

The following tabe shows which SFRs keep their content in POWER DOWN state and *THERMAL SHUTDOWN state* and gives a reference to the page within this document where a detailed description can be found.

Table 8 Status of SFR Registers in POWER DOWN state

SFR (Abbr.)	Addr	Register description	POWER	SUPPLY	Description
		-	VDDD	VDDC Note:	Page
ACC	0xE0	Accumulator		n	Page 57
ADCC0	0xDB	ADC Configuration Register 0		n	Page 144
ADCC1	0xDC	ADC Configuration Register 1		n	Page 144
ADCDL	0xD4	ADC Result Register (low byte)		n	Page 151
ADCDH	0xD5	ADC Result Register (high byte)		n	Page 151.
ADCM	0xD2	ADC Mode Register		n	Page 145.
ADCOFF	0xDA	ADC Input Offset c-network configuration		n	Page 145.
ADCS	0xD3	ADC Status Register		n	Page 146.
ADWBC	0xDD	AD WBC Wire Bond Check		n	Page 146.
в	0xF0	Register B		n	Page 57.
CFG0	0xF8	Configuration Register 0	n		Page 58
CFG1	0xE8	Configuration Register 1	n		Page 59
CFG2	0xD8	Configuration Register 2	n		Page 60
CRCC	0xA9	CRC Control Register		n	Page 87
CRCD	0xAA	CRC Data Register		n	Page 151
CRC0	0xAC	CRC Shift Register (low byte)		n	Page 151
CRC1	0xAD	CRC Shift Register (high byte)		n	Page 152

SFR (Abbr.)	Addr	Register description	POWER	SUPPLY	Description
. ,			VDDD	VDDC Note:	Page
DBCL0	0x94	CPU Debug Compare Register 0 (low)		n	Page 152
DBCH0	0x95	CPU Debug Compare Register 0 (high)		n	Page 152
DBTL0	0x96	CPU Debug Target Register 0 (low)		n	Page 152
DBTH0	0x97	CPU Debug Target Register 0 (high)		n	Page 152
DBCL1	0x9C	CPU Debug Compare Register 1 (low)		n	Page 152
DBCH1	0x9D	CPU Debug Compare Register 1 (high)		n	Page 152
DBTL1	0x9E	CPU Debug Target Register 1 (low)		n	Page 153
DBTH1	0x9F	CPU Debug Target Register 1 (high)		n	Page 153
DIVIC	0xB9	Internal Clock Divider	n		Page 71
DPL	0x82	Data Pointer (low)		n	Page 57
DPH	0x83	Data Pointer (high)		n	Page 57
DSR	0xD9	Diagnosis and Status Register		n	Page 60
ExtWUF	0xF1	Wakeup Flag Register 2	n		Page 65
ExtWUM	0xF2	Wakeup Mask Register 2	n		Page 65
FCSP	0xE9	Flash Control Register - Sector Protection Control		n	Page 146
FCS	0xEA	Flash Control Register - Status Mode		n	Page 147.
FCPP0	0xE1	Flash Charge Pumps Power Control Register 0		n	Page 147
FCPP1	0xE2	Flash Charge Pumps Power Control Register 1		n	Page 147
FCSERM	0xE3	Flash Sector Erase and Read Margin Select Register		n	Page 148.
FCTKAS	0xE4	Flash Tkill and Analog Output Select Register		n	Page 153
FCSS	0xE5	Flash Control Register for Single-Step Mode		n	Page 154
12CB	0xB1	I2C Baudrate Register		n	Page 112
12CC	0xA2	I2C Control Register		n	Page 111
I2CD	0x9A	I2C Data Register		n	Page 112
12CM	0xA3	I2C Mode Register		n	Page 113
12CS	0x9B	I2C Status Register		n	Page 112
IE	0xA8	Interrupt Enable Register		n	Page 76
IP	0xB8	Interrupt Priority Register		n	Page 77
IRQFR	0x8F	Interrupt Request Flag Register (for extended interrupts)		n	Page 77
ITPL	0xBA	Interval Timer Precounter Register (Low Byte)	n		Page 69
ІТРН	0xBB	Interval Timer Precounter Register (High Byte)	n		Page 69
ITPR	0xBC	Interval Timer Period Register	n		Page 68
LBD	0xEF	Low Battery Detector Control		n	Page 154
LFCDFit	0xB2	t.b.d	n		t.b.d
LFCDM	0xB5	t.b.d	n		t.b.d
LFDIV0	0xB3	t.b.d	n		t.b.d
LFDIV1	0xB4	t.b.d	n		t.b.d
LFOOT	0xC6	t.b.d	n		t.b.d
LFOOTP	0xC5	t.b.d	n		t.b.d
LFPCFG	0xC7	t.b.d	n		t.b.d
LFPOL	0xBE	t.b.d	n		t.b.d
LFP0H	0xBF	t.b.d	n		t.b.d
LFP1L	0xCE	t.b.d	n		t.b.d

SFR (Abbr.)	Addr	Register description	POWER	POWER SUPPLY	
			VDDD	VDDC Note:	Page
LFP1H	0xCF	t.b.d	n		t.b.d
LFRX0	0xB7	t.b.d	n		t.b.d
LFRX1	0xB6	t.b.d	n		t.b.d
LFRXC	0xF9	t.b.d	n		t.b.d.
LFRXD	0xA5	t.b.d	n		t.b.d
LFRXS	0xA4	t.b.d	n		t.b.d.
LFSYNCFG	0xAF	t.b.d	n		t.b.d.
LFSYN0	0xA6	t.b.d	n		t.b.d
LFSYN1	0xA7	t.b.d	n		t.b.d
MMR0	0x84	Memory Mapped Register 0		n	Page 148
MMR1	0x85	Memory Mapped Register 1		n	Page 148
MMR2	0x86	Memory Mapped Register 2		n	Page 150
OSCCONF	0xD6	RC HF Oscillator Configuration Register	n		Page 155
P0 (reserved)	0x80	IO-Port 0 Data Register			n.u.
P1DIR	0x91	IO-Port 1 Direction Register	n		Page 106
P1IN	0x92	IO-Port 1 Data IN Register	n		Page 107
P10UT	0x90	IO-Port 1 Data OUT Register	n		Page 106
P1SENS	0x93	IO-Port 1 Sensitivity Register	n		Page 107
P3DIR	0xEB	IO-Port 3 Direction Register	n		Page 106
P3IN	0xEC	IO-Port 3 Data IN Register	n		Page 107
P3OUT	0xB0	IO-Port 3 Data OUT Register	n		Page 106.
P3SENS	0xED	IO-Port 3 Sensitivity Register	n		Page 107
P2 (reserved)	0xA0	IO-Port 2 Data Register			n.u.
P2Dir (reserved)	0xA1	IO-Port 2 Direction Register			n.u.
PCON (reserved)	0x87	Power Control Register			n.u.
PSW	0xD0	Program Status Word		n	Page 57
REF	0xD1	Resume Event Flag Register		n	Page 67
RFC	0xEE	RF-Transmitter Control Register	n		Page 79
RFD	0x8E	RF-Encoder Tx Data Register		n	Page 82
RFENC	0xE7	RF-Encoder Tx Control Register		n	Page 82
RFFSPLL	0xD7	RF-Frequency Synthesizer PLL Configuration	n		Page 155.
RFS	0xE6	RF-Encoder Tx Status Register		n	Page 84
RFFSLD	0xDF	RF-Frequency Synthesizer Lock Detector Configuration	n		Page 151
RFTX	0xAE	RF-Transmitter Configuration Register	n		Page 79
RFVCO	0xDE	RF-Frequency Synthesizer VCO Configuration	n		Page 151
RNGD	0xAB	RNG Data Register	n		Page 89
SBUF (reserved)	0x99	Serial Interface Buffer			n.u.
SCON (reserved)	0x98	Serial Interface Control Register			n.u.
SP	0x81	Stack Pointer		n	Page 149.
SPIB	0xF3	SPI Baudrate Register (11 Bit cascaded register)		n	Page 117
SPIC	0xF4	SPI Control Register		n	Page 115
SPID	0xF5	SPI Data Register		n	Page 116
SPIM	0xF6	SPI Mode Register		n	Page 116

SFR (Abbr.)	Addr	Register description	POWE	POWER SUPPLY		
. ,		- ·	VDDD	VDDC Note:	Page	
SPIS	0xF7	SPI Status Register		n	Page 116	
TCON	0x88	Timer Control Register (Timer 0/1)		n	Page 92	
TCON2	0xC8	Timer Control Register 2 (Timer 2/3)		n	Page 93	
тно	0x8C	Timer 0 Register High Byte		n	Page 150	
тн1	0x8D	Timer 1 Register High Byte		n	Page 149	
TH2	0xCD	Timer 2 Register High Byte		n	Page 150	
тнз	0xCB	Timer 3 Register High Byte		n	Page 150	
TLO	0x8A	Timer 0 Register Low Byte		n	Page 150	
TL1	0x8B	Timer 1 Register Low Byte		n	Page 150	
TL2	0xCC	Timer 2 Register Low Byte		n	Page 150	
TL3	0xCA	Timer 3 Register Low Byte		n	Page 150	
тмор	0x89	Timer Mode Register		n	Page 90	
TMOD2	0xC9	Timer Mode Register 2 (Timer 2/3)		n	Page 91	
ТМАХ	0xBD	TMAX Detector Control	n		Page 156	
WUF	0xC0	Wakeup Flag Register	n		Page 65	
wuм	0xC1	Wakeup Mask Register	n		Page 64	
XTAL0	0xC4	XTAL Frequency Register (FSKLOW)	n		Page 73	
XTAL1	0xC3	XTAL Frequency Register (FSKHIGH/ASK)	n		Page 73	
ХТСЕВ	0xC2	XTAL Configuration Register		n	Page 72	
Note: Powe	er Supply V	/DDC switched off during POWER DOWN	state Register v	alue will be los	t.	

2.5.3 Microcontroller

Central part of the PMA7110 is an CPU8051 instruction set compatible microcontroller. The CPU8051 offers an 8-bit datapath, an interrupt controller, several addressing modes (direct, register, register indirect, bit direct), and accesses peripheral components using Special Function Registers (SFR). The architecture of the CPU8051 is well known and not part of this discription. However some of the features are not needed or adapted to special product requirements. These features are described herein in detail.

The CPU8051 incorporates basic core internal registers. Accumulator (ACC), Register B (B) and Program Status Word (PSW) are bitaddressable registers used to perform arithmetical and logical operations. Stack Pointer (SP) and Data Pointer (DPL/DPH) are included to allow basic programming structures.

SFR (Abbr)	Addr	Access	Default Value	Register		
ACC	E0 _H	rw	00н/00н	Accumulator		
В	F0⊦	rw	00н/00н	Register B		
DPL	82 _∺	rw	00н/00н	Data Pointer (low)		
DPH	83 _∺	rw	00н/00н	Data Pointer (high)		
PSW	D0 _H	rw	00н/00н	Program Status Word		
SP	81 _∺	rw	00н/00н	Stack Pointer		

Table 9 8051 basic SFRs

SFR PSW holds the result of basic arithmetic operations.

Table 10SFR Address D0_H: PSW - Program Status Word

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
СҮ	AC	F0	RS1	RS0	ov	F1	Р	
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	r 0/0	
СҮ		Carry Bit; se 0x00/0xFF (Carry Bit; set to '1' if accumulator changes signed number range through 0x00/0xFF (unsigned range overflow)					
AC		Auxillary Ca	Auxillary Carry Bit; carry-out for BCD operations.					
F0		General Purpose Bit 0; may be freely used by the application						
RS1		Register Bar	nk Select; bit 1				-	
RS0		Register Bar	nk Select; bit 0					
OV		Overflow Bit with arithme	; set to '1' if acc tic operations	u changes sig (signed range	gned number overflow)	range throug	h 0x80/0x7F	
F1		Gereral Purp	oose Bit 1; ma	y be freely us	ed by the app	olication		
Р		reflects the r number of 1	number of 1s ir s)	n the accumu	ator (set to '	1' if accu cont	ains an odd	

2.5.4 System Configuration Registers

The system configuration registers can be used for:

- Initiating state transitions
- System software reset
- Enabling or disabling peripherals
- · Monitoring the operation mode, the system state and peripherals

Table 11SFR Address F8_H: CFG0 - Configuration Register 0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDWN	TSHDWN	IDLE	n.u.	FTM	n.u.	n.u.	CLKSel0
rw 0/0	rw 0/0	rw 0/0	r 0/0	rw u/0	r 0/0	r 0/0	rw 0/0
PDWN		POWER DO If set to '1' I This bit is a Note: Enter not recomn	OWN state by software utomatically ing POWER nended to se	the POWER reset to '0' b DOWN state et this bit mar	DOWN state in the system the is handled by the bually.	s entered; controller afte ⁄ a ROM Libra	er a wakeup. ary function. It is
TSHDWN		THERMAL SHUTDOWN state If set to '1' by software the THERMAL SHUTDOWN state is entered; This bit is automatically reset to '0' by the system controller after wakeup. Note: Entering THERMAL SHUTDOWN state is handled by a ROM Library function. It is not recommended to set this bit manually.					
IDLE		IDLE state If set to '1' I This bit is a occurred.	by software utomatically	the IDLE stat reset to '0' by	e is entered; the system co	ontroller after	a resume event
FTM		only used for	or internal p	roduction test	t mode, don't	care for appli	cation
CLKSel0		Systemcloc 1: Select cr 0: Select 12 Note: Chan recommend	k Source Se ystal oscilla 2MHz RC H ging the sys ded to set th	elect tor clock F Oscillator stemclock is h is bit manual	andled by a R ly.	ROM Library f	unction. It is not

Table 12 SFR Address E8_H: CFG1 - Configuration Register 1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 1	Bit 0	
PMWEn	I2CEn		RfTXPEn	ADWBEn	SPIEn	ITInit	ITEn	
rw 0/0	rw 0/0	r 0/0	r 0/0 rw u/0 rw 0/0 rw 0/0 r 0/0					
PMWEn		Program PROGRA 0: No writ 1: Write a Note: Thi applicatio	Memory Write E MMING mode: te access to FL/ access to FLASI is bit is under co on.	Enable. This b ASH program H program me Introl of ROM	it is only use memory emory is allo <i>library funct</i>	ed for wed ions. Don't c	care for	
I2CEn		l ² C Enab 1: l ² C bel 0: Keeps	le navior on PINs I standard I/O-Po	PP1/SCL and ort functionalit	PP2/SDA is	enabled		
RfTXPEn		Transmitt 1: The tra 0: GPIO I	ter Data Port Ou ansmission data port functionality	it Enable is strobed on / is provided.	port PP2/T	XData		
ADWBEn		ADC Cor This is ur Don't cha	iversion ENable ider control of R inge this bit by t	COM library fu he applicatior	nctions. n manually.			
ITInit		Interval T This bit is ITPR reg This bit is	imer Initializatio 3 '1' as long as t ister. 3 automatically o	on active he Interval-Tin cleared after in	mer is config	jured with th	e content of the	
ITEn		Intervaltir	ner ENable (Te	st-, Debug-, P	rogmode or	ıly)		

Table 13	SFR Address D8 _H : CFG2	- Configuration Register 2
----------	------------------------------------	----------------------------

Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1	Bit 0					
EnHFBYP	n.u.	n.u.	n.u. PDLMB PDADC n.u. WDRES						
rw 0/0	r 0/0	r 0/0	rw u/1 rw 1/1 r 0/0 cw 0/0 cw						
EnHFBYP		Enable RF	Vreg-HF byp	ass					
PDLMB		Power down 1: the lower THERMA 0: the lower	n RAM lower 128 byte RA L SHUTDO memory blo	Memory Bloo AM is powered WN state ock is always p	ck (00 _H - 7F _H d down in P ^H powered.	_H) OWER DOWN	state or		
PDADC		Power down 1: ADC no s 0: ADC acti Note: This b recommend	n ADC supply ve bit is handled led to chang	l by the ROM e this bit man	Library func ually.	ctions automati	cally. It is not		
WDRES		Reset Watc	hdog counte	er to 0					
RESET		Reset Syste	em (Software	e Reset)					

Table 14 SFR Address D9_H: DSR -Diagnosis and System Status Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCLK	ТМАХ	OpMODE1	OpMODE0	FlashCP1	FlaschCP0	WUP	FlashLCK
r 0/0	r x/x	rx/x ru/x ru/x r0/0 r0/0 rx/0 r					rmw u/0
SCLK		Status Flag i 1: Crystal Os 0: 12 MHz R	ndicating the oscillator clock C HF Oscillator	current syster	nclock.		
ТМАХ		TMAX Detec 1: Temperatu 0: Temperatu This bit shou THERMAL S Note: Enterin ROM Library	tor Status Bit ure < TMAX ure > TMAX Id be polled by SHUTDOWN s or <i>THERMAL</i> of function. It is	y the applicat tate SHUTDOWN not needed to	ion before en ' state is hanc o evaluate thi	tering dled by a is bit manuall	у.
OpMODE0-1		These bits in 11b: NORM/ 10b: PROGF 01b: DEBUG 00b: internal	idicate the curr AL mode RAMMING mo 6 mode productionTE	rent operatior de ST mode	n mode		
FLASHCP1		Only used fo	r internal prod	uction test m	ode, don't ca	re for applicat	tion
FLASHCP0		Only used fo	r internal prod	uction test m	ode, don't ca	re for applicat	tion
WUP		Wakeup pen	ding				
FLASHLCK		Flash Lock (I It is set to '1'	0=full Flash-Sl by SW if Cont	FR access, 1: fig-Magic-Nur	=restricted wr	rite access) ted. Self-hold	ling when '1'!

2.5.5 General Purpose Registers (GPR)

In PMA7110, XData Memory GPR1 - GPRF are used In NORMAL-, Debug- and Programming Mode as 16 GPR-General Purpose Register, which can be used by the application to store data beyond a POWER DOWN state period. They consume low leakage current compared to the whole lower memory block by storing low amounts of data. They can also be used as Testmode-Registers in Functional Testmode for building blocks and Test-Hardware, but they are not reseted in these modes to allow data retention even after Brown-out.

SFR (Abbr)	Addr	Register
GPR0	0x00 XDATA	General Purpose Register 0
GPR1	0x01 XDATA	General Purpose Register 1
GPR2	0x02 XDATA	General Purpose Register 2
GPR3	0x03 XDATA	General Purpose Register 3
GPR4	0x04 XDATA	General Purpose Register 4
GPR5	0x05 XDATA	General Purpose Register 5
GPR6	0x06 XDATA	General Purpose Register 6
GPR7	0x07 XDATA	General Purpose Register 7
GPR8	0x08 XDATA	General Purpose Register 8
GPR9	0x09 XDATA	General Purpose Register 9
GPRA	0x0A XDATA	General Purpose Register 10
GPRB	0x0B XDATA	General Purpose Register 11
GPRC	0x0C XDATA	General Purpose Register 12
GPRD	0x0D XDATA	General Purpose Register 13
GPRE	0x0E XDATA	General Purpose Register 14
GPRF	0x0F XDATA	General Purpose Register 15

Table 15 GPR Registers

Note: The GPRs are in the XData area and therefore not reset on a System Reset. After a Brownout Reset this feature can be used to possibly recover data from RAM. After Power On Reset the GPR Registers are not initialzed, thus they contain random data. The application has to initialize the GPR Registers if needed.

2.5.6 System Controller

While the microcontroller controls PMA7110 in RUN state, the system controller takes over control in POWER DOWN state, IDLE state and THERMAL SHUTDOWN state.

The system controller handles the system clock, wakeup events, and system resets.

Figure 11 Block diagram of the system controller

2.5.6.1 Wakeup Logic

One of the key elements within the system controller is the wakeup logic, which is responsible for transitions from POWER DOWN state to RUN state via INIT state. The wakeup logic is clocked by the 2 kHz RC LP Oscillator, thus the wakeup logic is fully functional even when all other clock sources (12 MHz RC HF Oscillator and crystal oscillator) are switched off.

The difference between Reset and Wakeup:

- Reset Either via Software Reset, Brownout or Reset pin, the digital circuit is reset. Program execution starts at address 0000_H to perform reset initialization routines (including operation mode selection) and will jump to the FLASH at address 4000_H in Normal Mode to execute the application program.
- Wakeup Only the program counter of the microcontroller and its peripheral units are reset. Program Execution starts at address 0000_H to perform wakeup initialization routines (for evaluating the wakeup source) and jumps to the FLASH at 4000_H to execute the application program.

Wakeup Event Handling

Whenever a wakeup event occurs, the PMA7110 leaves POWER DOWN state and enters RUN state to execute the application code. This transition can be initiated from various sources. The wakeup source can be identified by reading SFR WUF and SFR ExtWUF.

A wakeup source can be enabled or disabled by setting the appropriate bits in SFR WUM and SFR ExtWUM. For security reasons the Interval Timer wakeup cannot be masked and the Interval Timer can not be disabled. The Watchdog, which is only active in RUN and Idle State can not be masked.

SFR WUF and SFR ExtWUF are read-only, thus no set/clear operations are possible. The wakeup source (except the Watchdog) is available during the whole RUN state. If an additional Wakeup event occurs during Run State, the appropriate flag will be set, but the device won't be forced through Init state.

It won't be cleared until POWER DOWN state is entered again.

Table 16 SFR Address C1_H: WUM - Wakeup Mask RegisterM

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1 E	Bit 0	
MWDOG	МТМАХ	MLFCD	MLFSY	MLFPM1	MLFPM0	n.u.	мітім	
rw u/1	rw u/1	rw u/1 rw u/1 rw u/1 rw u/1 rw u/1						
MWDOG		Mask Wate Watchdog This bit is e don't care	chdog Wakeup Wakeup is no only used for i for application	o t maskable in nternal produc	NORMAL mode	de e,Debug- and	l Prog. mode.	
MTMAX		Mask TMA TMAX Wal This bit is o don't care	X Wakeup keup is not ma only used for i for application	askable in NOF nternal produc	RMAL mode tion test mode	e,Debug- and	l Prog. mode.	
MLFCD		Mask LF re 0: no Mask 1: Mask (d	eceiver Carrier (enable wake isable wakeup	r detect eup source) o source)				
MLFSY		Mask LF re 0: no Mask 1: Mask (d	eceiver Sync r (enable wake isable wakeup	natch eup source) o source)				
MLFPM1		Mask LF re 0: no Mask 1: Mask (d	eceiver Patteri (enable wake isable wakeup	n 1 match eup source) o source)				
MLFPM0		Mask LF re 0: no Mask 1: Mask (d	eceiver Patteri (enable wake isable wakeup	n 0 match eup source) o source)				
ІТІМ		Mask Inter Interval Tir This bit is d	val Timer Wał ner Wakeup is only used for i	keup s not maskable nternal produc	e in NORMAL tion test mode	mode e, don't care	for application	

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MEXTWU7	MEXTWU6	MEXTWU5	MEXTWU4	MEXTWU3	MEXTWU2	MEXTWU1	MEXTWU0
rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1
MEXTWU7		Mask Extern	al Wakeup 7				
MEXTWU6		Mask Extern	al Wakeup 6				
MEXTWU5		Mask Extern	al Wakeup 5				
MEXTWU4		Mask Extern	al Wakeup 4				
MEXTWU3		Mask Extern	al Wakeup 3				
MEXTWU2		Mask Extern	al Wakeup 2				
MEXTWU1		Mask Extern	al Wakeup 1				
MEXTWU0		Mask Extern	al Wakeup 0				

Table 17 SFR Address F2_H: ExtWUM - Wakeup Mask Register 2

Table 18 SFR Address C0_H: WUF - Wakeup Flag Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDOG	тми	LFCD	LFSY	LFPM1	LFPM0	n.u.	ІТІМ
rc x/0	rc x/0	rc x/0	rc x/0	rc x/0	rc x/0	r 0/0	rc x/0
WDOG		Watchdog	Wakeup				·
тми		TMAX Un	derflow Wake	up			
LFCD		LF receive	er Carrier Wak	eup			
LFSY		LF receive	er Sync match	Wakeup			
LFPM1		LF receive	er Pattern 1 m	atch Wakeup			
LFPM0		LF receive	er Pattern 0 m	atch Wakeup			
ІТІМ		Interval Ti	mer Wakeup				

Table 19 SFR Address F1_H: ExtWUF - Wakeup Flag Register 2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXTWU7	EXTWU6	EXTWU5	EXTWU4	EXTWU3	EXTWU2	EXTWU1	EXTWU0
r x/0	r x/0	r x/0	r x/0	r x/0	r x/0	r x/0	r x/0
EXTWU7		External Wa	akeup 7				
EXTWU6		External Wa	akeup 6				
EXTWU5		External Wa	akeup 5				
EXTWU4		External Wa	akeup 4				
EXTWU3		External Wa	akeup 3				

EXTWU2	External Wakeup 2	
EXTWU1	External Wakeup 1	
EXTWU0	External Wakeup 0	

Watchdog Wakeup

A watchdog wakeup occurs after the watchdog timer has elapsed. See "Watchdog Timer" on Page 40 for details about the watchdog timer.

TMAX Wakeup

A TMAX wakeup occurs only if the device was in THERMAL SHUTDOWN state and the temperature falls below the threshold temperature T_{REL} .

See "Functional Block Description" on Page 41 for details about the TMAX wakeup.

LF Receiver Wakeup Event

The LF receiver wakeup can be enabled by setting either:

- SFR bit WUM.5 [LFCD] or
- SFR bit WUM.4 [LFSY] or
- SFR bit WUM.3[LFPM1] and/or SFR bitWUM.2 [LFPM0]

The wakeup source can be read in the SFR WUF.

Note: The LF receiver has to be configured appropriate for the particular wakeup modes. See "LF Receiver" on Page 85 for details.

External Wakeup Event

I/O Port PP1-PP4 and PP6-PP9 can be configured to wakeup the PMA7110 from POWER DOWN state by an external source.

Note: PP1-PP4 and PP6-PP9 have to be configured according to "External Wakeup on PP1-PP4 and PP6-PP9" on Page 109 for this feature.

Interval Timer Wakeup Event

When the Interval Timer elapses, a wakeup event is generated and POWER DOWN state is left. The wakeup can be identified by the application software reading SFR bit WUF.0[ITIM].

The Interval Timer is reloaded automatically with actual values from register ITPR and immediately restarted, so the Interval Timer is even working in RUN state.

Note: The Interval Timer is not maskable, so the application will get Interval Timer wakeup events periodically. If these Wakeup events occur during Run state, they will set the appropriate Flag but not force the device through Init state.

IDLE state and Resume Event Handling

If switched to IDLE state by setting SFR bit CFG0.5 [IDLE], the systemclock to the microcontoller is gated off.

Note: IDLE state will only be entered if one of the units providing a resume event is enabled and active. Otherwise the system will continue executing code in RUN state without entering IDLE state.

Only few peripherial components are still active in IDLE state. The watchdog is active and will be initialized automatically before entering IDLE state, thus IDLE state has a maximum duration of approx. 1 second before a watchdog wakeup occurs.

The systemclock to the microcontroller is re-enabled when a resume event occurs.

The program code continues working where it was suspended. SFR bit CFG0.5[IDLE] is automatically cleared after a resume event. The resume event source is available in SFR REF.

The Idle State will be left in case an interrupt event occurrs. After completion of the Interrupt service the Idle State will be re-entered in case no resume event is pending.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
REXTG	n.u.	READC	RELFO	RERFU	RERFF	RERC	RET2
rc 0/0	0/0	rc 0/0	rc 0/0	rc 0/0	rc 0/0	rc 0/0	rc 0/0
REXTG		Systemclock of The PMA7110 crystal delay t in <i>Table</i> 26 "S	changed to cry) can be put ir ime the REXT SFR Address	vstal nto IDLE state o G Flag is set. (C2 _H : XTCFG -	during crystal st see also SFR X Crystal Config	artup. After ex TCFG.2-0 Bit g Register" o	piring of the XTDLY[2-0] n Page 72).
READC		ADC conversi	on complete (this bit is unde	r control of ROM	/I Library funct	ions
RELFO		LF receiver bu	Iffer full				
RERFU		RF transmit b	uffer empty				
RERFF		RF transmissi	on finished				
RERC		2 kHz RC LP	Oscillator calil	pration complet	te		
RET2		Timer 2 under	flow				

Table 20 SFR Address D1_H: REF - Resume Event Flag Register

2.5.6.2 Interval Timer

Figure 12 Interval Timer Block Diagram

The Interval Timer is responsible to wakeup the PMA7110 from the POWER DOWN state after a predefined time interval. It is clocked by the 2kHz RC LP Oscillator and incorporates two dividers:

- Precounter: can be calibrated to the systemclock and represents the timebase.
- Postcounter: configures the Interval Timer duration. It can be set from 1-256_{dec}.

Timing accuracy can be ensured by using a ROM library function which calibrates the precounter towards the accurate systemclock. See [1] "Reference Documents" on Page 157.

The Interval Timer duration is determined by the SFR ITPR. This value is calculated by using the following equation:

Intervaltimeriod[s] =
$$\frac{\text{precounter}}{f_{2kHzRCLPOscillator}\left[\frac{1}{s}\right]} \bullet \text{postcounter}$$

The Postcounter (ITPR) is an 8 bit register. The maximum interval duration corresponds to 00_{H} (multiplication with 256_{dec}).

 01_{H} up to FF_H corresponds to a multiplication with 1_{dec} up to 255_{dec} .

Note: After writing SFR ITPR some clock cyles are needed to activate the new setting. SFR bit CFG1.1[ITInit] is cleared automatically when the new setting is activated.

Table 21 SFR Address BC _H ITPR - Interval Timer Period Reg

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ITPR.7	ITPR.6	ITPR.5	ITPR.4	ITPR.3	ITPR.2	ITPR.1	ITPR.0
rw u/0	rw u/1						

2.5.6.3 Interval Timer Calibration

Calibration is done by counting clock cycles from the crystal oscillator or the 12MHz RC HF Oscillator (depending on the current systemclock) during one 2kHz RC LP Oscillator period. The calibration is performed automatically by a ROM library function (see [1] "Reference Documents" on Page 157).

Note: If the crystal oscillator should be used for the calibration, the crystal frequency has to be stored in the FLASH User Data Sector.

Table 22 SFR Address BA_H: ITPL- Interval Timer Precounter (Low Byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ITP.7	ITP.6	ITP.5	ITP.4	ITP.3	ITP.2	ITP.1	ITP.0
rw u/1	rw u/1	rw u/1	rw u/0	rw u/1	rw u/0	rw u/0	rw u/0

Table 23 SFR Address BB_H: ITPH- Interal Timer Precounter (High Byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	n.u.	ITP.11	ITP.10	ITP.9	ITP.8
0/0	0/0	0/0	0/0	rw u/0	rw u/0	rw u/1	rw u/1

Note: These SFRs can be modified manually as well for using other (uncalibrated) precounter values.

2.5.7 Clock Controller

The Clock Controller for internal clock managment is part of the system controller.

The PMA7110 always starts up using the 12 MHz RC HF Oscillator to provide minimum startup time and minimum current consumption. Changing the systemclock from the 12 MHz RC HF Oscillator to the crystal (e.g. for RF Transmisssion) is performed automatically by a ROM library function (see [1] "Reference Documents" on Page 157). If the crystal is selected as systemclock, the 12 MHz RC HF Oscillator is automatically powered down.

Note: Since the external crystal needs some startup time, a 3 bit delay timer is integrated to delay the clock switching. Dependent on the used crystal the SFR bits XTCFG.2-0 [XTDLY2-0] can be set to delay from typ. 0μs up to 1750μs in 250μs steps.(see Table 26 "SFR Address C2_H: XTCFG - Crystal Config Register" on Page 72).

The following figure shows which clocks are used for which PMA7110 blocks. Details about the individual blocks can be found in the appropriate chapters of this document

Figure 13 PMA7110 Clock Concept

Preliminary Data Sheet

PMA7110 Internal Clock Divider

For power saving it is possible to enable the internal clock divider, to reduce the systemclock by a prescaled factor. If SFR DIVIC is set to $00_{\rm H}$ (default) the divider is disabled.

Table 24 SFR Address B9_H: DIVIC - Internal Clock Divider

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	DIVIC1	DIVIC0		
0/0	0/0	0/0	0/0	0/0	0/0	rw u/0	rw u/0		
DIVIC1-0		"Internal Clocl 11b: Divide by 10b: Divide by 01b: Divide by 00b: Divide by	Internal Clock Divider" 11b: Divide by 64 10b: Divide by 16 01b: Divide by 4 00b: Divide by 1						

2.5.7.1 2 kHz RC LP Oscillator (Low Power)

The 2 kHz RC LP Oscillator stays active even in POWER DOWN state. The typical frequency of the oscillator is 2kHz.

2.5.7.2 12 MHz RC HF Oscillator (High Frequency)

The 12 MHz RC HF Oscillator runs at typ. 12MHz. It is used as the default clock source for the PMA7110 in RUN state and is calibrated in the Infineon production site.

2.5.7.3 Crystal Oscillator

The crystal oscillator is a Negative Impedance Converter (NIC) oscillator with a crystal operating in series resonance. The nominal crystal operating frequencies are between 18MHz and 20MHz depending on the RF-band used.

Table 25 Formulas for Crystal selection dependent of RF- Bands

868MHz, 915MHz.....
$$f_{xtal} = f_{RF} \cdot \frac{1}{48}$$

434MHz..... $f_{xtal} = f_{RF} \cdot \frac{2}{48}$
315MHz..... $f_{xtal} = f_{RF} \cdot \frac{3}{48}$

Crystal startup time adjustment for different crystals is possible in steps of 250µs by using the SFR bits XTCFG.2-0 [XTDLY2-0].

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	n.u.	n.u.	XTDLY2	XTDLY1	XTDLY0
0/0	0/0	0/0	0/0	0/0	rw u/0	rw u/1	rw u/1
XTDLY2-0		Crystal D delay tim 111b: typ 110b: typ 101b: typ 011b: typ 011b: typ 001b: typ 000b: typ	Delay Timer le in steps of 2 D. 1750µs D. 1250µs D. 1250µs D. 1000µs D. 750µs D. 750µs D. 250µs D. 250µs D. 0µs	:50μs @ typ. 2	: kHz RC LP Osci	llator clcok = 2	kHz

Table 26 SFR Address C2_H: XTCFG - Crystal Config Register

Frequency pulling from the nominal crystal frequency can be achieved by the internal capacitor banks. This can be used for fine tuning the ASK carrier frequency and the lower and upper modulation frequencies for FSK modulation. Thus, frequency errors due to crystal or component tolerances can be trimmed away.

Figure 14 Crystal Oscillator and FSK-Modulator Block Diagram

The SFRs SFR XTAL0 and SFR XTAL1 allow the trimming of the crystal frequency in a broad range.

Table 27 SFR Address C4_H: XTAL0 - XTALConfiguration Register (FSKLOW)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSKLOW7	FSKLOW6	FSKLOW5	FSKLOW4	FSKLOW3	FSKLOW2	FSKLOW1	FSKLOW0
w u/1	w u/1	w u/1	w u/1	w u/1	w u/1	w u/1	w u/1
FSKLOW7-0		FSK Low Fre Capacitor se RFTX.5==0[equency elect for lower ASKFSK].	FSK modulatio	on frequency if	RFENC.3==0	I[TXDD] and if
		The capacitor array is binary weighted from FSKLOW7 = 20pF (MSB) FSKLOW0 = 156fF (LSB)					

Table 28 SFR Address C3_H: XTAL1-XTAL Config. Register (FSKHIGH/ASK)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSKHASK7	FSKHASK6	FSKHASK5	FSKHASK4	FSKHASK3	FSKHASK2	FSKHASK1	FSKHASK0
w u/1	w u/1	w u/1	w u/1	w u/1	w u/1	w u/1	w u/1
FSKHASK7-0		FSK High Fre Capacitor sele if RFTX.5==0 RFTX.5==1[A The capacitor FSKHASK7 = FSKHASK0 =	quency / ASK ect for upper F [ASKFSK] or / SKFSK]. array is binar 20pF (MSB) 156fF (LSB).	Centre Frequ SK modulation ASK center fre y weighted fro down to	ency n frequency if f quency fine tu m	RFENC.3===1 ning capacitor	[TXDD] and select if

2.5.8 Interrupt Sources on the <Dev_NameShort1>

Similar to the CPU8051 the <Dev_NameShort1> supports interrupt events of several sources which are listed below.

When an interrupt occurs the PC is automatically set to the Vector assigned to the Interrupt source. From there the vector is forwarded via LJMP instruction into the Flash area and the offset of $4000_{\rm H}$ is added.

When an an unmasked interrupt occurs while the device is in Idle State this state is immediately left and the PC continues operation on the appropriate interrupt vector (see **Figure 29**). After the processing of the Interrupt service routine (*RETI* instruction) the device automatically returns into Idle State in case no Resume Event has occured in between. If a Resume Event has been detected during the interrupt service routine the *RETI* instruction returns the PC to the location after the Idle Instruction. It is highly recommended that this instruction to be a *NOP*.

The priority of the Interrupts can be configured using the IP register. Setting a bit in IP to one assigns higher priority to the linked interrupt. A high priority interrups can then interrupt a service routine from a low priority interrupt.

Interrupt Vector	Vector Address	Forwarded Address	Interrupt source	
Reset Vector	00 _H	4000 _H		
Vector 0	03 _H	4003 _H	External Interrupt 0 (PP9)	
Vector 1	0В _Н	400В _н	Timer 0 Interrupt	
Vector 2	13 _H	4013 _H	External Interrupt 1 (PP7)	
Vector 3	1B	401B	Timer 1 Interrupt	
Vector 4	23 _H	4023 _H	I ² C Interface Interrupt	
Vector 5	2B _H	402B _H	SPI Interface Interrupt	
Vector 6	33 _H	4033 _H	Extended Interrupt: the Flash software has to detect the Interrupt source peripheral from this Vector by reading IRQFR and the appropriate source within the peripheral from the various flag registers. – Timer 2 Interrupt – Timer 3 Interrupt – LF Receiver Interrupt – RF Encoder Interrupt	

Table 29 Interrupt Vector locations

External Interrupts 0 and 1

The <Dev_NameShort1> has two external Interrupt sources Ext_Int0 on PP9 and Ext_Int1 on PP7. As in the CPU8051 the control bits and interrupt flags can be found in the TCON register (please refer to Table 44 on Page 92).

When enabled by setting IE.0 [EX0] for External Interrupt 0 (resp. IE.2 [EX1] for External Interrupt 1) interrupts can be generated from PP9 (resp. PP7).

The External Interrupts 0 and 1 can be programmed to be level-activated or negativetransition activated by clearing or setting bit TCON.0 [IT0], respectively TCON.2 [IT1]. If bit ITx = 0, the corresponding External Interrupt is triggered by a detected low level at the pin. If ITx = 1, the corresponding External Interrupt is negative edge-triggered. In this mode, if successive samples of the pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx=1 then requests the interrupt.

If the External Interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Each of the External Interrupts has its own interrupt vector.

Timer Interrupts

All four timers on the <Dev_NameShort1> can be used as interrupt sources.

While Timer 0 and Timer 1 are fully compatible to the original CPU8051 (for a description please refer to **"Timer/counter interrupts" on Page 96**), Timer 2 and Timer 3 interrupts are treated as Extended Interrupts.

I²C Interface Interrupts

The data interface transfer on the I²C Module can be controlled via interrupts. This module has a separte interrupt vector (vector address $23_{\rm H}$) where the PC is automatically set whenever one of the interrupt flags active and unmasked.

In Test-, Debug- and Programming Mode the I²C interface handling is done by polling.

SPI Interface Interrupts

The data transfer on the SPI Interface can be controlled via Interrups. This module has a separte interrupt vector (vector address $2B_{H}$) where the PC is automatically set whenever one of the interrupt flags is active and unmasked.

LF Receiver Interrupts

While the main target for LF receiver operation is waking up the device, it is also possible to receive data via the LF interface in Run Mode. The Wake-up flags are used as Interrupt event flags and Wake-up mask bits are used as Interrupt Mask bits as well.

RF Encoder Interrupts

Note: It is recommended to keep the CPU in IDLE state during RF transmission whenever possible. Nevertheless, it is possible to coordinate the data transfer interrupt driven. Therefore, two interrupt sources are available for RF transmission:

Interrupt source flags:

- RFS.0 [RFBF] RF Encoder Buffer Full
- RFS.1 [RFSE] RF Encoder Shift Register Empty

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EA	EID	ESPI	EI2C	ET1	EX1	ET0	EX0		
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0		
EA		Global Interr	obal Interrupt Enable bit						
EID		Enable Exter	able Extended Interrupts (Timer2/3, LF Receiver, RF Encoder)						
ESPI		Enable Interi	nable Interrupts from the SPI Interface						
EI2C		Enable Interi	rupts from I ² C	Interface					
ET1		Enable Interi	rupts from Tim	er 1					
EX1		Enable Interr	nable Interruots from External Interrupt 1 (PP7)						
ET0		Enable Interr	Enable Interrupts from Timer 0						
EX0		Enable Interr	Enable Interrupts from External Interrupt 0 (PP9)						

Table 30 SFR Address A8_H: IE-Interrupt Enable Register

Table 31	SFR Address B8 _H : IP-Interrupt Priority Register	
----------	--	--

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
n.u.	PID	PSPI	PI2C	PT1	PX1	PT0	PX0		
r 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0		
PID		Priority level 1 1: high priorit 0: low priority	 'riority level for Extended Interrupts (Timer2/3, LF Receiver, RF Encoder) : high priority Interrupt : low priority Interrupt 						
PSPI		Priority level f	Priority level for Interrupts from the SPI Interface						
PI2C		Priority level f	or Interrupts f	rom I ² C Interfa	ce				
PT1		Priority level f	or Interrupts f	rom Timer 1					
PX1		Priority level f	Priority level for Interruots from External Interrupt 1 (PP7)						
PT0		Priority level f	Priority level for Interrupts from Timer 0						
PX0		Priority level f	Priority level for Interrupts from External Interrupt 0 (PP9)						

Table 32 SFR Address 8F_H: IRQFR-Interrupt Request Flag Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
n.u.	n.u.	n.u.	n.u.	IRQFMC	IRFLF	IRQFT3	IRQFT2	
r 0/0	r 0/0	r 0/0	r 0/0	rc 0/0	rc 0/0	r 0/0	r 0/0	
IRQFMC		Interrupt I	terrupt Request Flag RF Encoder					
IRQFLF		Interrupt I	terrupt Request Flag LF Receiver					
IRQFT3		Interrupt I	iterrupt Request Flag Timer 3					
IRQFT2		Interrupt I	nterrupt Request Flag Timer 2					

2.5.9 RF 315/434/868/915 MHz FSK/ASK Transmitter

The RF transmitter consists of a PLL Frequency synthesizer that is contained fully on chip, a lock detector and a power amplifier.

Figure 15 RF Transmitter Block Diagram

The RF-Transmitter can be configured for the 315/434/868/915 MHz ISM-Band frequencies by setting SFR bits RFTX.3-2[ISMB1-0] and choosing the proper crystal. Manchester/BiPhase/NRZ coded data with a bit rate up to 20kbit/s (40kchips/s) can be transmitted using ASK or FSK modulation.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
XCapSH	INVTXDAT	ASKFSK	n.u.	ISMB1	ISMB0	PAOP1	PAOP0
w 0/0	w u/0	w u/0	0/0	w u/0	w u/1	w u/1	w u/1
XCapSH		Enable XCA	AP short		·		
INVTXDAT		Invert TX D	ert TX Data				
ASKFSK		TX ASK/FS 1: ASK 0: FSK	K Modulatio	n Select			
ISMB1-0		RF Frequer 1xb: 868MH 01b: 434MH 00b: 315MH	icy Select Iz/915MHz Iz Iz				
PAOP1-0		RF Power A 11b: 10dBm 10b: 8dBm 01b: 8dBm 00b: 5dBm	mplifier Out ו	tput Power Sele	ect		

Table 33 SFR Address AE_H: RFTX - RF Transmitter Control Register 1

The PLL synthesizer and the power amplifier can be enabled seperately by using the SFR RFC control register. The power amplifier should be switched on with a delay of at least 100µs after enabling the frequency synthesizer. This delay is needed for PLL locking.

	Table 34	SFR Address EE _H : RFC - RF Transmitter Control Regis	ter
--	----------	--	-----

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	ENFSYN	EnPA	
0/0	0/0	0/0	0/0	0/0	0/0	rw 0/0	rw 0/0	
ENFSYN		Enable RF Fre	Enable RF Frequency Synthesizer					
EnPA		Enable RF Power Amplifier						

2.5.9.1 Phase Locked Loop PLL

The PLL consists of an on-chip VCO, an asynchronous divider chain with selectable overall division ratio, a phase detector with charge pump and an internal loop filter. (see Table 118 "SFR Address DE_H: RFVCO -RF Frequency Synthesizer VCO Config" on Page 151)

The PLL can be enabled manually by setting SFR bit RFC.1[ENFSYN]. The PLL lock frequency is determined by the used crystal (see **Table 25 "Formulas for Crystal selection dependent of RF- Bands" on Page 71**) and the appropriate configuration in the SFR bits RFTX.3-2[ISMB1-0].

2.5.9.2 Power Amplifier PA

The highly efficient power amplifier is enabled automatically if a byte is transmitted (RFS.1 [RFSE] is set to '0') and if TX data are not output on pin PP2 (CFG1.4 [RfTXPEn]). Alternatively the power amplifier is enabled immediately by using RFC.0 [ENPA]. The nominal transmit power levels are +5/8/10dBm into 50 Ohm load at a supply voltage of 3.0V. The power amplifier operating point must be optimized to the output power +5/8/10dBm regarding current consumption by properly setting the RFTX.1-0 [PAOP1-0], RFFSPLL.3-2 [DCC1-0] and using an optimal sized matching circuit. The power amplifier should be enabled at least 100 μ s after enabling the RF frequency synthesizer because of the PLL lock in time.

2.5.9.3 ASK Modulator

ASK modulation is done by turning on and off the power amplifier dependent on the baseband data to be transmitted (On/Off-Keying) by using RFENC.3 [TXDD] or the Manchester/BiPhase encoder (see also "Manchester/BiPhase Encoder with bit Rate Generator" on Page 81). About FSK modulation please see "Crystal Oscillator" on Page 71.

2.5.9.4 Voltage Controlled Oscillator (VCO)

The VCO is using on-chip inductors and varactors for tuning and has a nominal center frequency of 1750MHz. The tuning range VCO is split up into 16 frequency ranges.

Figure 16 VCO tuning characteristic

automatically by the operating system after power up or a System Reset by using the PLL Lock detector and the PLL Lock detection routine. Additionally, the VCO is always recalibrated by firmware if the crystal oscillator is selected as clock source by setting CFG0.0 [ClkSel]. Table 118 "SFR Address DE_H: RFVCO -RF Frequency Synthesizer VCO Config" on Page 151

Additionally, the PLL Lock Detector for VCO tuning curve selection may be used by the user program code before RF data transmission. The PLL Lock Detection routine can be called by the user program for that reason. Table 119 "SFR Address D4H: ADCDL - ADC Result Register (low Byte)" on Page 151

A ROM library function is available which selects the tuning curve automatically dependent on environmental conditions (temperature, V_{bat}).

Note: Recalibration of the tuning curve is typically necessary when the supply voltage changes by more than 800mV or the temperature changes by more than 70 degrees.

For details on the ROM library functions please refer to [1] "Reference SFR Registers" on Page 144.

2.5.9.5 Manchester/BiPhase Encoder with bit Rate Generator

The interface between the CPU and the RF transmitter offers a Manchester/BiPhase encoder. The encoding bitrate can be set with Timer 3 (see "Timer Unit (Timer 0, Timer 1, Timer 2, Timer 3)" on Page 90) and may be programmed within a broad range.

Figure 17 Manchester/BiPhase Encoder

The Manchester/BiPhase encoder automatically enables the power amplifier when a new databyte is written to SFR RFD. The power amplifier is disabled after transmitting the last data bit automatically as well.

It is also possible to send data with a user-defined encoding scheme, e.g. for sending a preamble. This can be achieved by using chipmode (SFR bits RFENC.2-0[RFMode2-0] = 101b). The chipmode sends each bit without encoding, but twice the data rate.

The encoding selection can be changed everytime before a data byte is written to the SFR RFD by adjusting SFR bits RFENC.2-0[RFMode2-0].

The SFR bit RFENC.3[TXDD] defines the data value assigned to Manchester/BiPhase encoder output when no data is available in the SFR RFD.

Note: If SFR bit RFC.1-0[ENFSYN EnPA] is set the SFR bit RFENC.3[TXDD] controls directly the transmitter state. By using this feature the user has full control of the transmit data without any restrictions in timing or protocol.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFDLen2	RFDLen1	RFDLen0	RFMASK	TXDD	RFMode2	RFMode1	RFMode0
rw 1/1	rw 1/1	rw 1/1	rw 0/0	rw 0/0	rw =0/0	rw 0/0	rw 0/0
RFDLen2-0		RF Data Leng	gth - Number of	of bits to be tra	insmitted from S	FR RFD	
TXDD		Transmit data	ansmit data if SFR bit RFC.1-0 [ENFSYN EnPA] is set.				
RFMASK		RF Interrupt N	RF Interrupt Mask Flag				
RFMode2-0		RF Encoder M 000b: Mancho 001b: Inverter transition 010b: Differer 011b: BiPhas 100b: BiPhas 101b: Data bi 110b: reserve 111b: reserve	Mode ester: 0' is enc d Manchester: ntial Manchest e: '0' is encod e: '1' is encod ts are interpre ed	coded as Low- ''0' is encoded ed transition ed transition ted as chips	to-High, '1' as H J as High-to-Lov ied as transition	ligh-to-Low tr v, '1' as Low-	ansition to-High

Table 35 SFR Address E7_H: RFENC - RF Encoder Tx Control Register

By writing a databyte to the SFR RFD the data transmission is invoked automatically. Per default the transmission takes place byte-aligned. If less than 8 Bits should be transmitted, SFR bits RFENC.7-5[RFDLen2-0] can be set to determine the number of bits that should be transmitted.

Table 36 SFR Address 8E_H: RFD - RF Encoder Tx Data Register

SFR (Abbr):	Addr	Access	Default Value	Register
RFD	8Eн	w	u/00н	RF Encoder Data Register

The following figure shows the different timing diagrams for the different encoding schemes:

Figure 18 Diagram of the different RF Encoder modes.

Timer 3 (see "Timer Unit (Timer 0, Timer 1, Timer 2, Timer 3)" on Page 90) provides the bitrate clock and has to be set according to the desired bitrate. The bitrate timer value can be calculated with the following formula:

timervalue =
$$\frac{f_{timerclocksource}[Hz]}{8 \bullet Bitrate\left[\frac{1}{s}\right]} - 1$$

This timervalue has to be written to the timer registers (see Table 43 "SFR Address 8AH--8DH and CAH--CDH: Timer Registers" on Page 92).

The SFR RFS represents the status of the RF Encoder.

After writing a databyte to SFR RFD, the SFR bit RFS.0[RFBF] is set. It is cleared automatically when the databyte in SFR RFD is transferred to the shiftregister.

The application should poll SFR bit RFS.0[RFBF] to determine when the data is transferred to the shiftregister and SFR RFD can take the next data byte for processing. It is necessary to provide the transmitter with a continous data stream to prevent the receiver from losing synchronization.

SFR bit RFS.1[RFSE] is set if there is no data available in the shiftregister and cleared if the shiftregister contains data that has to be transmitted.

Note: This flag is used internally to switch On/Off the Power Amplifier, thus is can be used by the application to determine if the Power Amplifier is currently active (SFR bit RFS.1[RFSE] == '0') or not active (SFR bit RFS.1[RFSE] == '1').

	Table 37	SFR Address E6 _H : RFS - RF Encoder Status Register
--	----------	--

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	RFSE	RFBF			
0/0	0/0	0/0	0/0	0/0	0/0	r 1/1	r 0/0			
RFSE		RF Encoo Automatio	RF Encoder Shift-Register Empty Automatically set by hardware if no further bits are available in shift register.							
RFBF		RF Encoo Automatio register R	RF Encoder Buffer Full Automatically set by hardware on write access to RFD register or cleared if data in register RFD is transferred to shift register respectively.							

2.5.10 LF Receiver

The LF receiver is used for data transmission to the PMA7110, as well as for waking up the PMA7110 from POWER DOWN state.

It can generate a wakeup directly by the carrier detector if the carrier amplitude is above a preset threshold, or it can decode the received data and not wake up the microcontoller until a predefined sync match pattern or wakeup pattern is detected in the data stream.

Data recovery using a synchronizer and a decoder is available for Manchester and BiPhase coded data. The synchronizer can also handle Manchester/BiPhase code violations. Any other coding scheme can be handled by the microcontroller on chip level, thus no limitations on data coding schemes apply.

A LF On/Off Timer is implemented to generate periodical On/Off switching of the LF receiver in POWER DOWN state. This can be done to reduce the current consumption.

2.5.11 16Bit CRC (Cyclic Redundancy Check) Generator/Checker

Figure 19 CRC (Cyclic Redundancy Check) Generator/Checker

CRC is a powerful method to detect errors in datapackets that have been transmitted over a distorted connection. The CRC Generator/Checker divides each byte of a datapacket that is transmitted/received, by a polynomial, leaving the remainder, which represents the checksum. The CRC-Generator/Checker is using the 16Bit CCITT polynomial $1021_{\rm H}$ (x¹⁶+x¹²+x⁵+1). The 16 bit start value is determined by SFR CRC0 and SFR CRC1.

The CRC Generator/Checker can process 8 bit parallel and/or serial data.

SFR (Abbr)	Addr	Access	Default Value	Register
CRCD	AAH	rw	00 н	CRC Data Register
CRC0	AC ^H	rw	00 н	CRC Result Register 0 low byte
CRC1	ADн	rw	00 н	CRC Result Register 1 high byte

Table 38 CRC Data & Result Register

Table 39 SFR Address A9_H: CRCC - CRC Control Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
n.u.	CRCSD	CRCSS	n.u.	n.u.	n.u.	CRCValid	n.u.		
0/0	rw 0/0	w 0/0	0/0	0/0	0/0	r 1/1	0/0		
CRCSD		CRC Serial	CRC Serial Data						
CRCSS		CRC Serial use CRCSS	RC Serial Data Strobe see CRCSD into CRC encoding/decoding procedure.						
CRCValid		CRC Valid Is set by har	CRC Valid s set by hardware on vaild CRC results, that means all CRC-bits are 0.						

Byte aligned CRC Generation

CRC generation is done executing the following steps:

- The CRC shiftregister has to be initialized e.g. with '1's by writing FF_H to both SFR CRC0 and SFR CRC1.
- The databytes which should be checked by the CRC Checker have to be shifted one after the other into the SFR CRCD. The process of CRC Generation is automatically invoked when data bytes are written to the SFR CRCD.
- The resulting checksum value is available in the CRC Result Register SFR CRC0 and SFR CRC1 after processing the last data byte.

Byte aligned CRC Checking

CRC checking is done in the following steps:

- The CRC shift register has to be initialized e.g. with '1's by writing $\rm FF_{\rm H}$ to both SFR CRC0 and SFR CRC1.
- The databytes which should be checked by the CRC Checker have to be shifted serially (one after the other) into the SFR CRCD. It is important that the order (MSB-LSB) is the same as it was during the CRC Generation. The process of CRC Checking is automatically invoked when data bytes are written to the SFR CRCD.
- Write the 16 bit CRC-value to the SFR CRCD beginning with the high byte after processing all user-data.
- The SFR bit CRCC.1[CRCValid] indicates the correctness of the CRC calculation after processing the last data byte.

Serial bitstream CRC Generation/Checking

The CRC Generator/Checker features an additional serial mechanism to perform CRC generation and checking of non byte-aligned data streams. In this case SFR bit CRCC.5[CRCSS] and SFR bit CRCC.6[CRCSD] are used instead of SFR CRCD.

The data stream is written bit by bit into SFR bit CRCC.6[CRCSD]. Each bit is processed by forcing the flag SFR bit CRCC.5[CRCSS].

The following figure shows an example for the usage of SFR bit CRCC.5[CRCSS] and SFR bit CRCC.6[CRCSD].

Figure 20 Example for serial CRC generation/checking

Note: The serial and byte-aligned generation/checking mechanism is interchangeable within the same generation/checking process. E.g. if a data packet consists of 18 bits, then 16 bits can be processed byte-aligned via SFR CRCD and the two remaining bits can be processed bit-aligned by using SFR bit CRCC.5[CRCSS] and SFR bit CRCC.6[CRCSD].

2.5.12 Pseudo Random Number Generator

For many applications a pseudo random number generator is needed, e.g. to vary the interval period between transmissions. For this purpose a Maximum Length linear Feedback Shift Register (MLFSR) is available as a hardware unit.

Table 40 SFR Address AB_H: SFR RNGD - Random Number Generator Data

SFR (Abbr)	Addr	Access	Default Value	Register
RNGD	ABн	rw	u/55н	Random Number Generator Data Register

A user-defined start value (except 00_H) can be written to SFR RNGD. The default value after startup is 55_H .

The generation of a new random number is initiated by setting SFR bit CFG1.5[RNGEn].

After the random number is generated, SFR bit CFG1.5[RNGEn] is reset automatically and the value is available in SFR RNGD.

2.5.13 Timer Unit (Timer 0, Timer 1, Timer 2, Timer 3)

The PMA7110 comprises four independent 16 bit timers. Timer 0/1 operate as upcounters, timer 2/3 operate as down-counters.

Timer / counter 0 and 1 are fully compatible with Timer / counter 0 and 1 of the Standard 8051 and can be used in the same four operating modes:

- Mode 0: 8-bit timer/counter with a divide-by-32 prescaler
- Mode 1: 16-bit timer/counter
- Mode 2: 8-bit timer/counter with 8-bit auto-reload
- Mode 3: Timer/counter 0 is configured as one 8-bit timer/counter and one 8-bit timer/counter 1 in this mode holds its count. The effect is the same as setting TR1 = 0.

The external inputs PP1 and PP9 can be programmed to function as a gate for timer/counters 0 and 1 to facilitate pulse width measurements. Each timer consists of two 8-bit registers (TH0 and TL0 for timer/counter 0, TH1 and TL1 for timer/counter 1) which may be combined to one timer configuration depending on the mode that is established. The functions of the timers are controlled by two special function registers TCON and TMOD. In the following descriptions the symbols TH0 and TL0 are used to specify the high-byte and the low-byte of Timer 0 (TH1 and TL1 for Timer 1, respectively). The operating modes are described and shown for Timer 0. If not explicity noted, this applies also to Timer 1.

2.5.13.1 Basic Timer Configuration

Timer 0 -Timer 3 comprise four fully programmable 16-bit timers, which can be used for time measurements as well as generating time delays. The clock source is selectable in order to enlarge the timer runtime.

SFR TMOD and SFR TMOD2 are used to select the clock source and the desired timer mode.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
T1Gate	T1C/T	T1M1	T1M0	T0Gate	T0C/T	T0M1	томо		
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0		
T1Gate		Timer 1 Ga	Timer 1 Gate Control bit (gating input: PP8)						
T1C/T		Timer 1 Co	Timer 1 Counter / not Timer (count input: PP9)						
T1M1-0		Timer 1 Mode 00b: Mode 0. 8-bit timer with a divided-by-32 prescaler 01b: Mode 1.16-bit timer 10b: Mode 2. 8-bit timer with 8-bit auto-reload 11b: Mode 3. Timer 1 hold its count. The effect is the same like setting TR1=0							
T0Gate		Timer 0 Gate Control bit (gating input: PP0)							

 Table 41
 SFR Address 89_H: TMOD - Timer Mode Register

T0C/T	Timer 0 Counter / not Timer (count input: PP1)
T0M1-0	Timer 0 Mode 00b: Mode 0. 8-bit timer with a divided-by-32 prescaler 01b: Mode 1.16-bit timer 10b: Mode 2. 8-bit timer with 8-bit auto-reload 11b: Mode 3. Two 8-bit timers.

Table 42 SFR Address C9_H: TMOD2 - Timer Mode Register 2 (Timer 2/3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
T3Clk1	T3Clk0	T2Clk1	T2Clk0	n.u.	TM2	TM1	тмо	
rw 0/0	rw 0/0	rw 0/0	rw 0/0	0/0	rw 0/0	rw 0/0	rw 0/0	
T3Clk1-0		Timer 3 Clock 00b: undivide Page 71) 01b: systemc Page 71) 10b: 2 kHz LF 11b: PP2 eve	c Source Select d systemclock lock divided by PRC Oscillato nt count (risin	ct (see Figure y 8 (see Figur r clock g edge)	"PMA7110 e "PMA711	nternal Clock 0 Internal Clo	Divider" on	
T2Clk1-0		Timer 2 Clock Source Select 00b: undivided systemclock (see Figure "PMA7110 Internal Clock Divider" on Page 71) 01b: systemclock divided by 8 (see Figure "PMA7110 Internal Clock Divider" on Page 71) 10b: 2 kHz LP RC Oscillator clock						
TM2-0		Timer Mode 000b: Mode 0 001b: Mode 1 010b: Mode 2 011b: Mode 3 100b: Mode 4 101b: Mode 5 110b: not used 111b: Mode 7						

The timer registers described in **Table 43 "SFR Address 8AH--8DH and CAH--CDH: Timer Registers" on Page 92** are used as start values and - once the timer is started - hold the actual counter values and can be read by the application at any time.

Note: The purpose of these registers depends on the selected timer mode.

SFR (Abbr)	Addr	Access	Default Value	Register
ТН0	8C _H	rw	00 _H /00 _H	Timer 0 Register Upper Byte
TL0	8A _H	rw	00 _H /00 _H	Timer 0 Register Lower Byte
TH1	8D _H	rw	00 _H /00 _H	Timer 1 Register Upper Byte
TL1	8В _Н	rw	00 _H /00 _H	Timer 1 Register Lower Byte
TH2	CD _H	rw	00 _H /00 _H	Timer 2 Register Upper Byte
TL2	СС _н	rw	00 _H /00 _H	Timer 2 Register Lower Byte
ТНЗ	CВ _Н	rw	00 _H /00 _H	Timer 3 Register Upper Byte
TL3	CA _H	rw	00 _H /00 _H	Timer 3 Register Lower Byte

Table 43SFR Address $8A_H$ -- $8D_H$ and CA_H -- CD_H : Timer Registers

SFR TCON and SFR TCON2 are used for starting and stopping timers and for status indication of all timers.

Note: The purpose of this bits depends on the selected timer mode.

Table 44 SFR Address 88_H: TCON - Timer Control Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0			
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0			
TF1		Timer 1 Ov	Timer 1 Overflow Flag							
TR1		Timer 1 Ru	Timer 1 Run control Bit							
TF0		Timer 0 Ov	Timer 0 Overflow Flag							
TR0		Timer 0 Ru	un control Bit							
IE1		Interrupt 1	Interrupt 1 Edge Flag							
IT1		Interrupt 1	Interrupt 1 Type control bit							
IE0		Interrupt 0 Edge Flag								
ІТО		Interrupt 0 Type control bit								

Setting the SFR bit TCON.4[TR0] (respectively SFR bit TCON.6[TR1]) starts Timer 0 (resp. Timer 1). It counts using the selected clock (see SFR TMOD) until the timer is elapsed. SFR bit TCON.5[TF0] (resp. SFR bit TCON.7[TF1] is set.

If the selected timer mode used timer reload, then the timer is automatically reloaded and restarted.

If the selected timer mode doesn't use timer reload, the timer is stopped and SFR bit TCON.4[TR0] (resp. SFR bit TCON.6[TR1]) is cleared.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
T3Mask	n.u.	T3Full	T3Run	T2Mask	n.u.	T2Full	T2Run		
rw 0/0	0/0	rw 0/0	rw 0/0	rw 0/0	0/0	rw 0/0	rw 0/0		
T3Mask		Timer 3 In	terrupt Mask E	Bit. When set to	zero the Inte	rrupt from Time	3 is disabled		
T3Full		Timer 3 Fu	Timer 3 Full bit						
T3Run		Timer 3 R	un bit						
T2Mask		Timer 2 In	Timer 2 Interrupt Mask Bit. When set to zero the Interrupt from Timer 2 is disabled						
T2Full		Timer 2 Full bit							
T2Run		Timer 2 Run bit							

Table 45 SFR Address C8_H: TCON2 - Timer Control Register 2

Setting the SFR bit TCON2.0[T2Run] (respectively SFR bit TCON2.4[T3Run]) starts Timer 3 (resp. Timer 2). It counts using the selected clock (see SFR TMOD) until the timer is elapsed. SFR bit TCON2.1[T2Full] (resp. SFR bit TCON2.5[T3Full] is set. If the selected timer mode used timer reload, then the timer is automatically reloaded and restarted.

If the selected timer mode doesn't use timer reload, the timer is stopped and SFR bit TCON2.0[T2Run] (resp. SFR bit TCON2.4[T3Run]) is cleared.

2.5.13.2 General Operation Description Timer 0 and Timer 1

Mode 0

When putting Timer/counter 0 (resp. Timer/counter 1) into Mode 0 the timer is configured as an 8-bit timer/counter with a divide-by-32 prescaler. **Figure 21 "Timer/Counter 0, Mode 0, 13-Bit Timer/Counter." on Page 94** shows the Mode 0 operation. In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer overflow flag TCON.5 [TF0] (resp. TCON.7 [TF1]). The overflow flag TCON.5 [TF0] (resp. TCON.7 [TF1]) can then be used to request an interrupt. The counted input is enabled to the timer when TCON.4 [TR0] = 1 and either TMOD.3 [T0Gate] = 0 or INT0 = 1 (setting T0Gate = 1 allows the timer to be controlled by external input PP1 (resp. PP9), to facilitate pulse width measurements).

The 13-bit register consists of all 8 bits of TH0 (resp. TH1) and the lower 5 bits of TL0 (resp TL1). The upper 3 bits of TL0 (resp. TL1) are indeterminate and should be ignored. Setting the run flag TCON.4 [TR0] (resp. TCON.6 [TR1]) does not clear the registers.

Figure 22 Timer/Counter 1, Mode 0, 13-Bit Timer/Counter

Mode 1

Mode 1 is equal to Mode 0 with the difference that the timer register is running with all 16 bits.

Mode 2

Mode 2 configures the timer registers as an 8-bit counter in TL0 (resp. TL1) with automatic reload, as shown in Figure 23 "Timer/Counter 0, Mode 2: 8-Bit Timer/Counter with auto-reload" on Page 95. Overflow from TL0 (resp. TL1) not only sets TCON.5 [TF0] (resp. TCON.7 [TF1]), but also reloads TL0 (resp. TL1) with the

contents of TH0 (resp. TH1) , which is preset by software. The reload leaves TH0 (resp. TH1) unchanged.

Figure 23 Timer/Counter 0, Mode 2: 8-Bit Timer/Counter with auto-reload

Mode 3

Mode 3 has different effects on Timer 0 and Timer 1. Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TCON.6 [TR1]=0. Timer 0 establishes TL0 and TH0 as two separate counters (Figure 24 "Timer/Counter 0, Mode 3: Two 8-Bit Timers/Counters" on Page 96). TL0 uses the Timer 0 control bits: TMOD.2 [T0C/T], TMOD.3 [T0Gate], TCON.4 [TR0], TCON.5 [TF0] and the pin status of PP0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TCON.6 [TR1] and TCON.7 [TF1] from Timer 1. Thus, TH0 now controls the Timer 1 interrupt. Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or in fact, in any application not requiring an interrupt from Timer 1 itself.

Figure 24 Timer/Counter 0, Mode 3: Two 8-Bit Timers/Counters

Interrupt support

This module supports interrupt generation on overrun of timer/counter 0 as well as timer/counter 1. Additional to these timer/counter interrupts, two external interrupts are handled by this unit, too (ref. to standard 8051).

When an Interrupt event occurs in Idle state, the device starts operation immediately and the PC is set to the appropriate interrupt vector.

Timer/counter interrupts

On overrun of the upcounting timer/counter from all '1' to all '0' the flag TCON.5 [TF0] or TCON.7 [TF1] is set by hardware. These flags acts as interrupt request flags: a '1' indicates a pending interrupt request. These flags are cleared by hardware as on Standard 8051 when the corresponding interrupt vector has been fetched by the CPU.

External interrupts 0 and 1

As on the Standard 8051, the interrupt control bits for the External Interrupts 0 and 1 are located in the TCON register. For a detailed description of the External Interrupts please refer to "Interrupt Sources on the <Dev_NameShort1>" on Page 74.

2.5.13.3 Timer Modes for Timer 2 and Timer 3

Timer mode 0

comprises:

• 16 bit timer with reload

The timer unit is configured as a 16 bit reloadable timer. SFR TL2 and SFR TH2 hold the start value. If SFR bit TCON2.0[T0Run] is set, the timer starts down counting. SFR bit TCON2.1[T0Full] is set when the timer is elapsed (underflow from 0 to 0xFF). The timer value is reloaded from SFR TL3 and SFR TH3 and the timer is restarted automatically. SFR bit TCON2.1[T0Full] has to be reset by software. It is not cleared on read-access.

Note: In this mode, both SFR bit TCON2.4[T1Run] and SFR bit TCON2.5[T1Full] are not used.

Figure 25 Timer mode 0

Timer mode 1

Comprises:

- 16 bit timer without reload
- · 8 bit timer with reload and bitrate strobe signal for RF Transmitter

Timer 2 operates as 16 bit timer with start value in SFR TL2 and SFR TH2, timer run bit SFR bit TCON2.0[T0Run] and timer elapses indicator SFR bit TCON2.1[T0Full]. If the timer elapses, it stops, sets SFR bit TCON2.1[T0Full] and resets the timer run bit SFR bit TCON2.0[T0Run].

Timer 3 sets up a reloadable 8 bit timer holding the startup value in SFR TL3, timer reload value in SFR TH3, timer run bit in SFR bit TCON2.4[T1Run] and timer elapses indicator in SFR bit TCON2.5[T1Ful].

Timer mode 2

Comprises:

- 8 bit timer with reload
- · 8 bit timer with reload and bitrate strobe signal for RF Transmitter

Timer 2 sets up a reloadable 8 bit timer holding the start value SFR TL0, timer reload value SFR TH0, timer run bit SFR bit TCON2.0[T0Run] and timer elapsed indicator SFR bit TCON2.1[T0Full].

Timer 3 sets up a reloadable 8 bit timer holding the start value SFR TL1, timer reload value SFR TH1, timer run bit SFR bit TCON2.4[T1Run] and timer elapsed indicator SFR bit TCON2.5[T1Full].

Figure 27 Timer mode 2

Timer mode 3

Comprises:

- 8 bit timer without reload (1)
- 8 bit timer without reload (2)
- · 8 bit timer with reload and bitrate strobe signal for RF Transmitter

Timer 2 (1) utilizes SFR TL0 as starting value and T0Full as timer elapsed flag. Setting SFR bit TCON2.0[T0Run] starts the timer, and SFR bit TCON2.1[T0Full] is set when the timer is elapsed. SFR bit TCON2.0[T0Run] is reset automatically if the timer elapses.

Timer 3 (2) utilizes SFR TH0 as starting value and SFR bit TCON2.5[T1Full] as timer elapsed flag. Setting SFR bit TCON2.4[T1Run] starts the timer, and SFR bit TCON2.5[T1Full] is set when the timer is elapsed. SFR bit TCON2.4[T1Run] is reset automatically if the timer elapses.

Timer 3 operates exclusive as 8-bit bitrate timer for Manchester coding. Therefore the timer needs neither a run nor an elapsed bit. It is started automatically when the timer mode is set.

Timer mode 4

Comprises:

• 16 bit timer with reload and bitrate strobe signal for RF Transmitter

The timer unit is configured as a 16 bit reloadable timer. SFR TL1 and SFR TH1 hold the start value. If SFR bit TCON2.4[T1Run] is set, the timer starts counting. SFR bit TCON2.5[T1Full] is set when the timer is elapsed. The timer value is reloaded from SFR TL0 and SFR TH0 and the timer is restarted automatically. SFR bit TCON2.5[T1Full] has to be reset by software. It is not cleared on read-access.

Note: In this mode both SFR bit TCON2.0[T0Run] and SFR bit TCON2.1[T0Full] are not used.

Figure 29 Timer mode 4

Timer mode 5

comprises:

- 8 bit timer with reload
- · 16 bit timer without reload and bitrate strop signal for RF Transmitter

SFR bit TCON2.0[T0Run] starts the timer, and SFR bit TCON2.1[T0Full]

Timer 2 sets up a reloadable 8 bit timer holding the start value in SFR TL0, timer reload value in SFR TH0, timer run bit SFR bit TCON2.0[T0Run] and timer elapsed indicator in SFR bit TCON2.1[T0Full].

Timer 3 operates as a 16 bit timer with the start value in SFR TL1 and SFR TH1, timer run bit SFR bit TCON2.4[T1Run] and timer elapsed indicator SFR bit TCON2.5[T1Full]. If the timer elapses, the timer stops SFR bit TCON2.5[T1Full] is set and the timer run bit SFR bit TCON2.4[T1Run] is reset.

Timer mode 6

Comprises:

- 16 bit timer without reload
- · 16 bit timer without reload and bitrate strobe signal for RF Transmitter

Timer 2 operates as a 16 bit timer with the start value in SFR TL0 and SFR TH0, timer run bit SFR bit TCON2.0[T0Run] and timer elapsed indicator SFR bit TCON2.1[T0Full]. If the timer is elapsed the timer is stopped, SFR bit TCON2.1[T0Full] is set and the timer run bit SFR bit TCON2.0[T0Run] is reset.

Timer 3 operates as a 16 bit timer with the start value in SFR TL1 and SFR TH1, timer run bit SFR bit TCON2.4[T1Run] and timer elapsed indicator SFR bit TCON2.5[T1Full]. If the timer elapses, the timer stops, SFR bit TCON2.5[T1Full] is set and the timer run bit SFR bit TCON2.4[T1Run] is reset.

Figure 31 Timer mode 6

Timer mode 7

Comprises:

- 16 bit timer for Interval Timer calibration
- · 8 bit timer with reload and bitrate strobe signal for RF Transmitter

Timer 2 operates as 16 bit clock counter during one 2 kHz RC LP Oscillator period with the counting value provided in SFR TL0 and SFR TH0, a timer run bit SFR bit TCON2.0[T0Run] and timer overflow indicator SFR bit TCON2.1[T0Full]. When SFR bit TCON2.0[T0Run] is set, the counter starts counting on the next rising edge of the 2 kHz RC LP Oscillator and is stopped at the subsequent rising edge. This Timer mode is used for e.g. Interval Timer Calbration by the ROM library functions (see [1] "Reference SFR Registers" on Page 144).

Timer 3 sets up a reloadable 8 bit Timer holding the startup value in SFR TL1, timer reload value in SFR TH1, timer run bit in SFR bit TCON2.4[T1Run] and timer elapsed indicator in SFR bit TCON2.5[T1Full].

Note: This timer mode is not recommended for application usage. It is used by the ROM library functions for calibration purpose.

Figure 32 Timer mode 7

2.5.14 General Purpose Input/Output (GPIO)

Ten GPIO pins are available and can either be used by the application for general purposes or are fixed assigned to one peripheral ("Alternative Port Functionality" on Page 109). When used as GPIO pins they can be accessed directly by the processor. Pullup and pulldown resistors are configurable on demand to allow wired-AND and wired-OR functions. All peripheral port pins are configured as input with the pullup resistor which will be enabled after a Power On Reset. Pin-status will be kept during Powerdown.

2.5.14.1 Peripheral Port Basic Configuration

SFR (Abbr)	Addr	Access	Default Value	Register
P1DIR	91 _H	rwuu/	FF _H	PP0-7 Data Direction Register
P1IN	92 _H	r	x/x	PP0-7 Data Input Register
P10UT	90 _H	rw	u/FF _H	PP0-7 Data OUT Register
P1SENS	93 _H	rw	u/00 _H	PP0-7 Sensitivity Register
P3DIR	EB _H	rw	u/03 _H	PP8-9 Data Direction Register
P3IN	EC _H	r	x/x _H	PP8-9 Data Input Register
P3OUT	В0 _н	rw	u/03 _H	PP8-9 Data OUT Register
P3SENS	ED _H	rw	u/0 _H	PP8-9 Sensitivity Register

Table 46Peripheral I/O Port Registers

The following table shows the different possible configurations for the GPIO- Port.

Table 47 GPIO Port Configuration

PPDx	PPOx	PPSx	1/0	pullup/ pulldown	Comment
0	0	-	Output	no	LOW (sink)
0	1	-	Output	no	HIGH (source)
1	0	-	Input	no	high-Z (Tri-State Bidirectional)
1	1	0	Input	pullup	Weak-High (Quasi Bidirectional)
1	1	1	Input	pulldown	Weak-Low (Quasi Bidirectional)

Note: In addition SFR bit PPSx defines the wakeup sensitivity for the external wakeup source (see "External Wakeup on PP1-PP4 and PP6-PP9" on Page 109).

The x in the table has to be replaced by any of 0 until 9(PP0 - PP9).

Table 48	SFR Address 91 _H : P1DIR - IO-Port1 Direction Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PD1_7	PD1_6	PD1_5	PD1_4	PD1_3	PD1_2	PD1_1	PD1_0
rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1
PD1_7 PD1_6 PD1_5 PD1_4 PD1_3		PP7 - PP3 1: Input po 0: Output p	I/O-Port conf rt port	iguration/Testi	node(DMUX6-[DMUX2 directio	n)
PD1_2 PD1_1 PD1_0		PP2 - PP0 1: Input po 0: Output p	I/O-Port conf rt port	iguration			

Table 49 SFR Address EB_H: P3DIR - IO-Port3 Direction Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	PPD9	PPD8
0/0	0/0	0/0	0/0	0/0	0/0	rw u/1	rw u/1
PPD9-8		PP-PP8 I/O-P 1: Input port 0: Output port	ort configurati	on			

т

Table 50 SFR Address 90_H: P1OUT - I/O-Port1 Data Out Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
P1_7	P1_6	P1_5	P1_4	P1_3	P1_2	P1_1	P1_0				
rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1	rw u/1				
P1_7-P1_2		PP7 - PP2 Data Out/DMUX6-DMUX1 (Data Out/PullUp enable) 1: Input port 0: Output port									
P1_1-P1_0		PP1 - PP0 Data Out / PullUp enable									

Table 51 SFR Address B0_H: P3OUT - I/O-Port3 Data Out Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	P3_1	P3_0				
r 0/0	r 0/0	r 0/0	r 0/0	r 0/0	r 0/0	rw u/1	rw u/1				
P3_1 P3_0		PP9 Data Out / PullUp enable PP8 Data Out / PullUp enable									

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PS1_7	PS1_6	PS1_5	PS1_4	PS1_3	PS1_2	PS1_1	PS1_0				
rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0				
PS1_x		PPx I/O-Port s 1b: Pulldown i 0b: Pullup is e	Px I/O-Port sensitivity b: Pulldown is enabled if SFR P1DIR.x==1 and P1OUT.x==1 b: Pullup is enable if SFR P1DIR.x==1 and P1OUT.x==1								

Table 52 SFR Address 93_H: P1SENS - IO-Port1 Sensitivity Register

The x in the table has to be replaced by either of 0 until 7.

Table 53 SFR Address ED_H: P3SENS - IO-Port3 Sensitivity Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	PS3_1	PS3_0
r0/0	r0/0	r0/0	r0/0	r0/0	r0/0	rw u/0	rw u/0
PS3_1		PP9 I/O-F 1b: Pulldo 0b: Pullup	Port sensitivity own				
PS3_0		PP8 I/O-F 1b: Pulldo 0b: Pullup	Port sensitivity own				

Table 54 SFR Address 92_H: P1IN - IO-Port1 Data In Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
PI1_7	PI1_6	PI1_5	PI1_4	PI1_3	PI1_2	PI1_1	PI_0						
r x/x	r x/x	r x/x	r x/x	r x/x	r x/x	r x/x	r x/x						
PI1_7-PI1_2		PP7-PP2	P7-PP2 data In / Testmode (DMUX7-DMUX2 in)										
PI1_1-PI1_0		PP1-PP0	data In			P1-PP0 data In							

Table 55 SFR Address EC_H: P3IN - IO-Port3 Data In Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	PI3_1	PI3_0			
0/0	0/0	0/0	0/0	0/0	0/0	r x/x	r x/x			
PI3_1		PP9 data In	P9 data In							
PI3_0		PP8 data In								

2.5.14.2 Spike Suppression on Input Pins

To avoid metastabilities when reading the GPIO pins, a synchronization stage is included and a two-stage spikefilter suppresses spikes, thus data is available to be read after a delay of maximum 2 systemclock periods.

Due to the synchronization stage the following possibilities might occur:

- Signal duration (T_{SIGNAL}) < 1 systemclock period (1 T_{CLK}): Signal is surpressed
- 1 T_{CLK} < T_{SIGNAL} < 2 T_{CLK}: undefined if supressed or passed
- $T_{SIGNAL} > 2 T_{CLK}$: Signal is available in P1IN register

2.5.14.3 External Wakeup on PP1-PP4 and PP6-PP9

PP1-PP4 and PP6-PP9 can additionally be used as external wakeup sources if enabled by the Wakeup-Mask SFR bit ExWUM.x[MEXTWUx] and configured as input pin by setting SFR bit P1DIR.x[PPDx].

The internal pullup/pulldown resistor is enabled if SFR bit P1OUT.x[PPOx] is set. SFR bit P1SENS.x[PPSx] selects the sensitivity (high active/low active):

Table 56 External Wakeup Configuration

SFR Settings	Description
SFR bit P1DIR.x[PPDx] = 1 SFR bit P1OUT.x[PPOx]=1 SFR bit P1SENS.x[PPSx] = 0 SFR bit ExWUM.x[MEXTWUx] = 0	PPx configured as Input, pullup enabled, Wakeup occurs if PPx is forced to LOW externally.
SFR bit P1DIR.x[PPDx] = 1 SFR bit P1OUT.x[PPOx] =1 SFR bit P1SENS.x[PPSx] = 1 SFR bit ExWUM.x[MEXTWUx] = 0	PPx configured as Input, pulldown enabled, Wakeup occurs if PPx is forced to HIGH externally.

The x in the table has to be replaced by either 1-4 or 5-9 (PP0-PP4, PP6-PP9).

2.5.14.4 Alternative Port Functionality

In the following table, the alternative port functionality is shown - which has higher priority than standard I/O port functionality.

 Table 57
 I/O Port 1 - Alternative Functionality

Pin	Function	I/O	Description
PP0	I2C-SCL	I	I2C Serial Clock Line Configured to I2C clock pin if SFR bit CFG1.6 [I2CEn] is set. Weak-High has to be provided by an external pullup resistor or by the I2C master device.
	Port Pin I/O	I/O	Standard I/O port functionality
	OPMode1	I/O	Select operation mode
PP1	I2C-SDA	I/O	I2C Serial Data Configured to I2C data pin if bit CFG1.6 [I2CEn] is set. Weak-High has to be provided either by the internal pullup resistor, by an external pullup resistor or by the I2C master device.
	Port Pin I/O	I/O	Standard I/O port functionality
	WU0	I/O	Wake up by external wake up source
	OPMode2	I/O	Select operation mode

Pin	Function	I/O	Description
PP2	TX Data Out	0	If bit CFG1.4[RfTXPEn] is set to one, the Manchester/BiPhase encoded data is delivered serial to PP2. An external device can process the data.
	Port Pin I/O	I/O	Standard I/O port functionality
	WU1	I/O	Wake up by external wake up source
PP3	SPI_CS	I/O	SPI bus interface chip select
	Port Pin I/O	I/O	Standard I/O port functionality
	WU2	I/O	Wake up by external wake up source
PP4	SPI_MISO	I/O	SPI bus interface master in slave out
	Port Pin I/O	I/O	Standard I/O port functionality
	WU3	I/O	Wake up by external wake up source
PP5	SPI_MOSI	I/O	SPI bus interface master out slave in
	Port Pin I/O	I/O	Standard I/O port functionality
PP6	SPI_Clk	I/O	SPI bus interface clock
	Port Pin I/O	I/O	Standard I/O port functionality
	WU4	I/O	Wake up by external wake up source
PP7	Port Pin I/O	I/O	Standard I/O port functionality
	WU5	I/O	Wake up by external wake up source
PP8	Port Pin I/O	I/O	Standard I/O port functionality
	WU6	I/O	Wake up by external wake up source
PP9	Ext_Int	I/O	Interrupt by external interrupt source
	Port Pin I/O	I/O	Standard I/O port functionality
	WU7	I/O	Wake up by external wake up source

2.5.15 I²C-Interface

For communication between a external hardware and the PMA7110, a I²C master/slave interface is implemented.

- PP1 is used as a serial data line (SDA)
- PP0 is used as a serial clock line (SCL)
- PMA7110 responds to I²C- Address 6C_H or to a general call if enabled by addressing slave address 00_H. General call is enabled by setting SFR bit I2CC.6[GCEn].
- Data transfer up to 100 kbit/s in standard mode, or 400 kbit/s in fast mode.

To control I²C master/slave interface, the following registers are implemented:

SFR (Abbr)	Addr	Access	Default Value	Register
I2CB	B1 _H	rw	00/001 _H	I ² C Bitrate Register.
I2CC	A2 _H	rw	00/00 _H	I ² C Control Register.
I2CS	9B _H	r/rc	00/00 _H	I ² C Status Register.
I2CD	9A _H	rw	00/00 _H	I ² C DataIn / DataOut Register. If written, data are stored in the I ² C internal data transmit register - if read, data is read from the data receive register. Flags TBF and RBF are available in status register.
I2CM	A3 _H	rw	6C/6C _H	I ² C Mode Register.

 Table 58
 SFR I²C Control, Status und DataRegister

The basic I²C-bus configuration is set for both master- and slave mode. To allow bitlogic operations this register is readable and writeable. The contained bits are partially set by software and reset by hardware resp. set and reset by software itself. The control register is only applicable in master mode; in slave mode all functional steps are done automatically without external control.

Table 59 SFR Address A2_H: I2CC - I²C Control Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
n.u.	GCEn	INP	ACKDT	ACKEN	PEN	RSEN	SEN						
0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0						
GCEN		I ² C Gener	I ² C General Call Enable.										
INP		I ² C interru	pt/not-polling h	andling (0: inte	errupt, 1: pollin	g mode).							
ACKDT		I ² C ackno	wledge data (0	: ACK, 1: nACl	K).								
ACKEN		I ² C ackno	I ² C acknowledge sequence enable.										
PEN		I ² C STOP	² C STOP condition enable.										

RSEN	¹² C repeated START condition enable.
SEN	I ² C START condition enable.

Table 60 SFR Address 9B_H: I2CS - I²C Status Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
АМ	CD	ον	S	RnW	RAck	TBF	RBF					
rc 0/0	rc 0/0	rc 0/0	rc 0/0	r 0/0	r 0/0	r 0/0	r 0/0					
AM		Address mate	Address match - set if device address matches with received address byte									
CD		I2C bus collis	ion detected									
ov		Overflow Bit - set if byte has cases, the old cleared by ha	Overflow Bit - set if received byte has not been read out before next byte received; also set if byte has not been transmitted after writing new byte to register I2CD. In both cases, the old byte value is kept, the new byte is rejected. The bit is automatically cleared by hardware if I2CS is read.									
S		I2C transmiss occurrance of	ion in progres stop condition	s - set on occu n.	rrance of start o	ondition and r	eset on					
RnW		Read/Write B	it Information	- states the act	ual state receive	ed with device	address					
RAck		Received Ack if acknowledg	nowledge Lev e, '1' if not-ac	el - states the a knowledge rece	actual level of the eived).	e received ack	nowledge ('0'					
TBF		Transmit Buff if data byte is	Transmit Buffer Full - set by hardware if register I2CD is written; cleared automatically if data byte is taken over by the shift register to be transmitted.									
RBF		Receive Buffe automatically	Receive Buffer Full - set by hardware if a full data byte is received; cleared automatically if register I2CD is read.									

Table 61 SFR Address 9A_H: I2CD - I2C Data Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
I2CD.7	I2CD.6	I2CD.5	I2CD.4	I2CD.3	I2CD.2	I2CD.1	I2CD.0		
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0		
I2CD.7-0		8 bit Read/Wr	bit Read/Write Data. Access should be done after reading I2CS Bits [TBD, RBF]						

Table 62 SFR Address B1_H: I2CB - I2C Bitrate Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SPIB.7	SPIB.6	SPIB.5	SPIB.4	SPIB.3	SPIB.2	SPIB.1	SPIB.0			
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0			
I2CB.7-0		8 bit Bitrate	3 bit Bitrate Data.							

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
A7	A6	A5	A4	A3	A2	A1	n.u.			
rw 0/0	rw 1/1	rw 1/1	rw 0/0	rw 1/1	rw 1/1	rw 0/0	r 0/0			
I2CM.0-7		8 bit Address	bit Address Data.							

Table 63 SFR Address A3_H: I2CM - I2C Mode Register

2.5.15.1 Slave mode sequence

Programming the slave I²C interface

To enable the I²C interface, the SFR bit I2CC.6[GCEn] has to be set. Once the I²C interface has been enabled, the PMA7110 waits for a start condition to occur. After the PMA7110 received a start condition, the following received 7 bits are compared to the device address. When the address matches, the hardware automatically generates an acknowledge and sets SFR bit I2CS.7[AM] and SFR bit I2CS.3[RnW].

Depending on SFR bit I2CS.3[RnW], the following two different actions are executed:

Receive I²C-data

- If SFR bit I2CS.0[RBF] is set, one byte has been shifted to SFR I2CD.
 An acknowledge is automatically set by hardware as long as no receive buffer overflow (SFR bit I2CS.5[OV]) has occurred.
- If SFR bit I2CS.4[S] is set, a stop condition has occurred; the transmission is closed by the master device.
- If SFR bit I2CS.7[AM] is set, a restart condition has been set and a matching address
 has been received; in case of a write access, a branch to the transmit data subroutine
 has to be performed.

Transmit I²C data

- Data to be transmitted has to be written to SFR I2CD.
 SFR bit I2CS.1[TBF] is reset if data is taken over by the shift-register and new data may be written to SFR I2CD. If no data is provided, the I²C interface automatically sets line SCL to low until data is written to SFR I2CD (slave device gains access over line SCL).
- If SFR bit I2CS.4[S] is set, the transmission process has been terminated by the master and the transmission subroutine can be left.

2.5.15.2 General call sequence

If a general call address is sent and bit I2CC.6 [GCEn] in control register is set the I2Cbus behaves like a slave receiver, i.e. the same procedure may be taken. The defined general call protocol has to be done by software.

2.5.15.3 Master mode sequence

After enabling the I²C bus module and configuration as master device, it waits for further actions given by the control register (I2CC and simultaneously for a start condition from other master devices; in the later case the master behaves like a slave, i.e. the same procedure described above may be taken. Control over the I2C-bus is only taken if the I2C-bus is in idle state and bit I2CC.0 [SEN] (start enable in the control register plus the address of the wanted device including the access direction bit RnW in status register (I2CS.3 is set by software. The start condition and the following address byte is transmitted immediately on SCL and SDA. An existing slave with the according device address responds with an acknowledge, whereby bits IE.4 [EI2C] and I2CS.2 [RAck] in status register will be set accordingly. After that the master may transmit (write data to data register) or receive (read data register after reception) data. After data reception the master has to set an acknowledge. This is done by setting bit I2CC.3 [ACKEN] and I2CC.4 [ACKDT] in control register.

Please see Table 30 "SFR Address $A8_{H}$: IE-Interrupt Enable Register" on Page 76 and Table 31 "SFR Address $B8_{H}$: IP-Interrupt Priority Register" on Page 77.

2.5.16 Serial Peripheral Interface SPI

The PMA7110 supports a 2, 3 or 4 wires bus protocol.

- High speed synchronous data transfer (up to 1.125 Mbit @ 18 MHz clock)
- Four programmable bit rates through prescaler
- 2-wire bus for half duplex transmission; a serial clock line (SPI_Clk) and concatenated data line (SPI_MISO,SPI_MOSI)
- 3-wire bus for full duplex transmission; a serial clock line (SPI_Clk) and two serial data lines (SPI_MISO,SPI_MOSI)
- A 4-wire bus for full duplex transmission plus handshaking can be implemented by utilizing also the Chip Select (SPI_CS). This pin can be used for indicating the beginning of a new byte sequence
- Master or Slave Operation

- Clock Control Polarity (idle low/high) and Phase (sample data with rising/falling clock edge) are programmable
- Bit Width (1 to 8 bits) and Bit Order (MSB or LSB first) are configurable
- Compatible to SSC (High Speed Synchronous Serial Interface) and standard SPI interfaces
- Protocol is defined by software

The Serial Peripherial Interface, also known as SPI, is a very simple synchronous interface to transfer data on a serial bus, connecting an intelligent master controller with general-purpose slave circuits like slave controller, RAMs, memories and so on. A simple 2-wire (half duplex mode) or 3-wire (full duplex mode) bus is used for communication.

The SPI will operate in the master mode normally, thus the SPI has to drive the clock line (SPI_Clk). Therefore the SPI encloses a dedicated bit rate generator.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
n.u.	CSMON	DORD	MSTR	CPOL	СРНА	n.u.	n.u.		
0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	0/0	0/0		
DORD		"Data Order" DORD = 0 DORD = 1	LSB is transm MSB is transr	nitted and rece mitted and rece	ived first eived first				
MSTR		"Master/Slave MSTR = 0 MSTR = 1	Master/Slave Select" MSTR = 0 SPI is configured as slave device (controls port MISO) MSTR = 1 SPI is configured as master device (controls port SCK, MOSI)						
CPOL		"Clock Polarit CPOL = 0 CPOL = 1	y" - defines th idle clock line idle clock line	e initial state o is low and lead is high and lead	f SPI clock line ding clock edge ading clock edge	SCK is a low to e is a high	high transition to low transition		
СРНА		"Clock Phase determines w CPHA = 0 1 edge detecter CPHA = 1 a the following	" hether data is transmission s d, the first data a rising or fallir clock edge da	active with ris starts without a a bit is latched ng edge is gene ta are latched	ing or falling ed rising or falling , with the follow erated on SPI cl before shifted c	ge of SPI edge on S ing edge d ock before on with cor	clock SCK. PI clock; with first lata are shifted. e data are set; with isecutive one.		

 Table 64
 SFR Address F4_H: SPIC - SPI Control Register

Table 65 SFR Address F5_H:SPID - SFR SPI Data Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPID.7	SPID.6	SPID.5	SPID.4	SPID.3	SPID.2	SPID.1	SPID.0
rw 0/0							

Table 66 SFR Address F6_H: SPIM - SPI Mode Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
FL	n.u.	n.u.	ALGN	n.u.	DWS2	DWS1	DWS0				
rw 0/0	0/0	0/0	rw 0/0	0/0	rw 0/0	rw 0/0	rw 0/0				
FL		SPI force FL=0 S FL=1 S	level SPI_MISO, SPI SPI_MISO, SPI	_MOSI and S _MOSI and S	SPI_CLK pullup d SPI_CLK active d	riven weak hig riven high leve	gh level el				
DWS2-0		"Data Wid Defines th (8 bits) is depends transmitte	"Data Width Selection (bit 2-0)" Defines the amount of transmitted bits per data byte. If set to "000", a whole data byte (8 bits) is transmitted (SPI standard). If only a byte fragment should be transferred, it depends on SPIC.5 [DORD] whether the upper DWS.2-0 bits of data register SPID are transmitted or the lower one								
ALGN		Data allig	ın (0: right, 1: le	ft)							

Table 67 SFR Address F7_H: SPIS - SPI Status Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SRE	STE	SPE	SSCC	SCSD	SCSS	SRBF	STBE		
rc 0/0	r 1/1	rc 0/0	rc 0/0	rc 0/0	rc 0/0	rc 0/0	r 1/1		
SRE		"SPI Receive Is set by hard was not read	Error" ware if a new out from the r	data frame is c eceive data bu	completely recei	ved but the pr will be overwri	evious data tten).		
STE		"SPI Transmit Completed" (no further data to transmit)							
SPE		"SPI Phase E Is set by hardv (slave mode) samples after	rror" vare if the inc sampled with latching edge	oming data at p CPU clock, ch e of the clock si	oin MISO (maste anges between gnal.	r mode) respe 1 sample befo	ectively MOSI ore and 2		
SSCC		"SPI Slave Co	mmunication	Corrupt"					
SCSS		"SPI Chip Select latch Status" If register SPIC is read, this bit is set with the actual state of PP5/SPI-MOSI. CSS is set, if an rising edge is detected on PP5/SPI-MOSI pin (SPI transmission completed).							
SCSD		"SPI Chip Sel	ect detected"						

SRBF	SPI Receive Buffer Full" Is set by hardware if a data byte is received completely; the receive buffer is ready to beread.
STBE	SPI Transmit Buffer Empty" Is reset by hardware if register SPID is written and automatically set if data byte is transferred to SPI internal shift register.

Table 68SFR Address F3_H: SPIB - SPI Bitrate Register (11 Bit cascaded
register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPIB.7	SPIB.6	SPIB.5	SPIB.4	SPIB.3	SPIB.2	SPIB.1	SPIB.0
w 0/0	w 0/0	w 0/0	w 0/0	w 0/0	w 0/0	w 0/0	w 0/0
SPIB.7 - SPIB.0		Bit 7 - Bit 0					

2.5.17 **PROGRAMMING mode Operation**

In PROGRAMMING mode the PMA7110 is accessible as a slave using the I²C Interface. The device is operating using the 12 MHz RC HF Oscillator as clock source.

To avoid programming failures all PROGRAMMING mode commands are protected by a 16 bit CRC at the end of each command ("16Bit CRC (Cyclic Redundancy Check) Generator/Checker" on Page 86 shows details about the used CRC polynom).

The checksum has to be calculated over all bytes in the command excluding the PMA7110 $\ensuremath{^{\rm PMA7110}}$ I²C device address.

PROGRAMMING mode commands:

- FLASH Write Line
- FLASH Erase
- FLASH Check Erase Status
- FLASH Read Line
- FLASH Set Lockbyte 3
- Read Status

2.5.17.1 FLASH Write Line

The FLASH Write Line command writes 32 bytes to the FLASH, start address is a multiple of $20_{\rm H}$.

- If transferring the start address, the lower 5 bits are cleared automatically.
- If less than 32 data bytes are received, the contents of the previous write access are written into the FLASH.

• If an already written section in the FLASH gets re-written (without being erased before), the resulting data is undefined.

Note: After the Stop condition (*P*) is received the data is programmed into the FLASH. During the programming time incoming I²C commands are not acknowledged.

S	0x6C	А	AdrHi	А	AdrLo	А	Data0	Α	 А	Data31	А	CRCH	А	CRCL	А	Ρ

Figure 33 FLASH Write Line Command

AdrHi: MSB of the FLASH address to write to.

AdrLo: LSB of the FLASH address to write to (has to be a multiple of 20_H).

Data0 ... Data31: This data is written into the FLASH memory starting at the specified address. Data0 is written at the lowest specified address.

CRCH: MSB of the CRC sum.

CRCL: LSB of the CRC sum.

2.5.17.2 FLASH Erase

The FLASH Erase command erases 1 to 5 sectors of the FLASH.

Note: After the Stop condition (P) is received the selected FLASH sectors are being erased. During the erase time incoming I²C commands are not acknowledged.

S	0x6C	Α	0xA2	Α	Sect	Α	CRCH	Α	CRCL	Α	Ρ
---	------	---	------	---	------	---	------	---	------	---	---

Figure 34 FLASH Erase Command

Table 69Parameter: Sect

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
n.u.	n.u.	n.u.	Sector4	Sector3	Sector2	Sector1	Sector0		
Sector4		protected area	otected area, don't care						
Sector3		protected area	otected area, don't care						
Sector2		protected area	a, don't care						

Sector1	1: erase User Data Sector 0: don't erase User Data Sector
Sector0	1: erase Code sector 0: don't erase Code sector

CRCH: MSB of the CRC sum *CRCL*: LSB of the CRC sum

2.5.17.3 FLASH Check Erase Status

This function returns the status of the selected FLASH sector(s). The time required for the checking of the sectors depends on the selected sectors.

Note: After the first Stop condition (P) is received the selected FLASH sectors are checked. During this time incoming I²C commands are not acknowledged.

S	0x6C	А	0xA3	А	Sect	А	CRCH	А	CRCL	ΑP] <
											-)

Pause > 35ms

Figure 35 FLASH Check Erase Status Command

Table 70Parameter: Sect

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
n.u.	n.u.	n.u.	Sector4	Sector3	Sector2	Sector1	Sector0			
Sector4		protected a	rea, thus don'	t care						
Sector3		protected a	rotected area, thus don't care							
Sector2		protected a	protected area, thus don't care							
Sector1		1: check if 0: don't che	User Data Sec eck User Data	ctor is erased Sector						
Sector0		1: check if 0: don't che	Code sector is eck Code sector	erased or						

CRCH: MSB of the CRC sum.

CRCL: LSB of the CRC sum.

Table 71 Return Value: Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	Sector4	Sector3	Sector2	Sector1	Sector0
Sector4		1: at least 0: sector	t one bit is set ir is erased or unt	the sector ested	·		
Sector3		1: at least 0: sector	t one bit is set ir is erased or unt	the sector ested			
Sector2		1: at least 0: sector	t one bit is set ir is erased or unt	n the sector ested			
Sector1		1: at least 0: sector	t one bit is set ir is erased or unt	n the sector ested			
Sector0		1: at least 0: sector	t one bit is set ir is erased or unt	n the sector ested			

2.5.17.4 FLASH Read Line

The contents of the FLASH memory can be read out via the I²C interface. If Lockbyte 2 is set, reading of code sector will only yield $0_{\rm H}$, but the Lockbyte 2 itself can still be read for validating the result.

Figure 36 FLASH Read Line Command

AdrHi: MSB of the address to start the read access.

AdrLo: LSB of the read address.

Data0: Value that has been read from the specifed address

Data31: Value that has been read from the specified address + 31.

CRCH: MSB of the CRC sum.

CRCL: LSB of the CRC sum.

2.5.17.5 FLASH Set Lockbyte 2

Lockbyte 2 protect the Code sector. After the Lockbyte 2 is set by the Keil programmer, a startup in DEBUG mode or PROGRAMMING mode is not possible any more.

2.5.17.6 FLASH Set Lockbyte 3

This command sets the Lockbyte 3 protecting the FLASH User Configuration Sector (Sector 1). After the Lockbyte 3 is set, a startup in DEBUG mode or PROGRAMMING mode is not possible any more (see"" on Page 121 for details).

Note: It is required to set Lockbyte 2 (Code Sector) to enable Lockbyte 3 to become effective.

Figure 37 FLASH Set Lockbyte 3 Command

2.5.17.7 Read Status

This function is intended to read out the status of the previous executed functions (pass/fail). It can be called whenever desired to verify if there were errors since the last Read Status call.

Figure 38 Read Status Command

Table 72 Return Value: Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CmdCnt3	CmdCnt2	CmdCnt1	CmdCnt0	ErrCnt1	ErrCnt0	InvCmdL	CRCFail
CmdCnt3-0		Counter indic 1111b: 15 co 1110b: 14 co 0001b: 1 con 0000b: error	ates the num mmands or m mmands nmand occured in las	ber of executed lore	d commands sir	ice the first de	tected error.
ErrCnt1-0		Counter of er 11b: three or 10b: two erro 01b: one erro 00b: no error	roneous ever more errors rs or	its since the las	st Read Status o	call	
InvCmdL		1: Invalid con 0: no Invalid d	nmand length command leng	or execution fa oth or executior	ail since the last n fail occured sir	Read Status	call ad Status call
CRCFail		1: CRC Failu 0: no CRC Ei	re detected si rror occured s	nce the last Re ince the last Re	ead Status call ead Status call		

CRCH: MSB of the CRC sum

CRCL: LSB of the CRC sum.

 ☐ from master to slave
 S start condition
 nA not acknowledg€

 ☐ from slave to master
 P stop condition
 A acknowledge

SR repeated start condition, may be replaced by Stop-Start condition

Figure 39 I²C-Commands Legend

2.5.18 DEBUG mode Operation

2.5.18.1 Debug Special Function Registers

SFR (Abbr)	Addr	Access	Default Value	Register
DBCL0	94 _H	rw	00н/00н	Debug Compare Register 0 (low)
DBCH0	95⊦	rw	00н/00н	Debug Compare Register 0 (high)
DBTL0	96 _H	rw	00н/00н	Debug Target Register 0 (low)
DBTH0	97 _H	rw	00н/00н	Debug Target Register 0 (high)
DBCL1	9C _H	rw	00н/00н	Debug Compare Register 1(low)
DBCH1	9D⊦	rw	00н/00н	Debug Compare Register 1 (high)
DBTL1	9E+	rw	00н/00н	Debug Target Register 1 (low)
DBTH1	9F⊦	rw	00н/00н	Debug Target Register 1 (high)

Table 73 DEBUG mode SFRs:

2.5.18.2 Debugging Facility

During program execution, the Program Counter (PC) of the microcontroller is continuously compared with the contents of the DBCHx + DBCLx registers.

The DBCHx + DBCLx registers can be set to addresses in the FLASH or the ROM code area. In case of a match, the PC is automatically set to the address given in DBTHx + DBTLx, and program execution is continued.

The x in the upper content is 0 or 1.

ROM Debug Function

The debug function mainly consists of a debug handler and a single stepper. The debug handler processes the l^2C communication and debug command interpretation. The debug commands **SetSFR**, **ReadSFR**, **SetData**, **ReadData** and **SetPC**, **ReadPC** are executed directly by the debug handler.

The debug commands **Single Step**, **Run Interruptible** and **Run until Breakpoint** are executed by the single stepper. The single stepper fetches the current opcode and enables opcode execution depending on the debug command. To enable single stepping of branch instructions, two sets of debug registers are implemented. Afterwards, the debug handler is entered again.

2.5.18.3 Debugger Commands

SetSFR: Set an SFR to a user-defined value. Exception: It is not possible to set the SFRs used by the Debug Function itself (GPR3, GPR4, GPR5, DBCxx).

Adr: represents the address of the SFR to be set.

Data: this value has to be put into the SFR address specified by Adr.

ReadSFR: Read the value of one SFR.

Adr: represents the address of the SFR to be read.

Data: this value was read on the SFR address specified by Adr.

SetData: Set one Byte in RAM to a user-defined value.

S	0x6C	А	0x06	А	Adr	А	Data	А	Ρ
---	------	---	------	---	-----	---	------	---	---

Adr: represents the address of the Internal data memory to be set.

Data: this value that has to be written into the internal data memory byte specified by Adr.

ReadData: Read one Byte of the RAM.

Adr: represents the address of the Internal data memory location to be read. *Data*: this value was read from the internal data memory address specified by *Adr*.

SetPC: Set the Program Counter to a user-defined value.

AdrHi: MSB of the new Program Counter. *AdrLo:* LSB of the new Program Counter.

ReadPC: Reads the Program Counter

PCHi: MSB of the Program Counter. *PCLo:* LSB of the Program Counter.

SingleStep: Execute one Opcode Instruction and return to the debug handler

Run Interruptible: The function consists of device internal consecutive single steps until any I²C command is received on the bus. Compared to running the program in realtime this function has a slower execution speed by a factor of about 1/50, dependent on the executed program.

0x15 S 0x6C Α

Run until Breakpoint: The debugged program is executed without single steps in realtime. This enables debugging of runtime critical functions like RF transmission or LF data receiving. The execution is stopped when the PC matches one of the two hardware breakpoints. If none of these breakpoints is hit the communication to the debugger is lost.

BP0 H: MSByte of the Breakpoint Register 0. *BP0 L*: LSByte of the Breakpoint Register 0.

☐ from master to slave
 S start condition
 nA not acknowledge
 ☐ from slave to master
 P stop condition
 A acknowledge

SR repeated start condition, may be replaced by Stop-Start condition

Figure 40 I²C-Commands Legend

3.1 Electrical Data

3.1.1 Absolute Maximum Ratings

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Table 74 Absolute Maximum Ratings

#	Parameter	Symbol	Lin	nit Values	Unit	Remarks	
			min.	max.			
A1	Supply Voltage	V _{batmax}	-0.3	+4.0	V		
A2	Operating Temperature	Tj	-40	+125	°C	Max 24 hrs accumulated over life time	
A3	Storage Temperature	Т _s	-40	+100	°C	Max 1000 hours	
A5	ESD HBM integrity	V _{HBM}	2		k∨	all pins According to ESD Standard JEDEC EIA / JESD22-A114- B	
A6	ESD CDM integrity	V _{CBM}		500	V	all pins (According to ESDA STM 5.3.1)	
				750	V	corner pins (According to ESDA STM 5.3.1)	
A7	Latch up	I _{LU}	-100	+100	mA	AEC-Q100 (transient current)	
A8	Input voltage at digital input pins	V _{inmax}	-0.3	V _{Bat} +0.3	V		
A9	Input and Output current for digital I/O pins	I _{IOmax}		4	mA		
A10	LF Receiver Input current	I _{LFIN}		4	mA		
A11	XTAL input volage	V _{InXT}	-0.3	V _{REG} +0.3	V		

3.1.2 Operating Range

Within the operational range the IC operates as explained in the circuit description.

Table 75Operating Range

#	Parameter	Symbol		Limit Va	lues	Unit	Remarks
			min.	typ.	max.		
B1	Supply voltage	V _{Bat1}	2.1		3.6	V	Measurement of, temperature and external sensor. Operation of LF receiver
		V _{Bat2}	1.9		3.6	V	Battery measurements, microcontroller, RF transmitter
		V _{BatFL}	2.5		3.6	V	FLASH programming
B4	Ambient temperature	T _{amb}	-40		85	°C	Normal operation
		T _{FLC}	0	0~35		°C	FLASH code sector programming
		T _{FLD}	0	0~35		°C	FLASH data sector programming

3.1.3 **Product Characteristics**

Product characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range.

Typical characteristics are the median of the production.

Supply voltage: V_{bat} = 1.9V ... 3.6V, unless otherwise specified

Ambient temperature: T_{amb} = -40°C ... +85°C, unless otherwise specified

Table 76 Temperature Sensor Characteristics

#	Parameter	Symbol	Limit Values			Unit	Test Conditions Remarks
			min.	typ.	max.		
Q1	Measurement error	T _{Error}	-3		+3	°C	T=-20 70°C V _{bat} = 2.1 3.6V
Q2	Measurement error		-5		+5	°C	T=-40 85°C V _{bat} = 2.1 3.6V

Table 77 Battery Sensor Characteristics

#	Parameter	Symbol	Limit Values		Unit	Test Conditions Remarks	
			min.	typ.	max.		
P1	Measurement error	V _{Error}	-100		100	mV	

Table 78Supply Currents

#	Parameter	Symbol	Limit Values		Unit	Test Conditions Remarks	
			min.	typ.	max.		
C1a	Supply Current RF Transmission FSK modulation	FSK5dbm FSK8dbm FSK10dbm		8,9 11 12	9 12 15	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=-40°C SFR DIVIC = 0x03, f=315MHz
C1b	Supply Current RF Transmission FSK modulation	FSK5dbm FSK8dbm FSK10dbm		9,2 11,5 12,9	9,5 12 15	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=-40°C SFR DIVIC = 0x03, f=434MHz
C2a	Supply Current RF Transmission FSK modulation	_{FSK5dbm} _{FSK8dbm} _{FSK10dbm}		9,7 12,2 12,8	10 14 18	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=25°C SFR DIVIC = 0x03, f=315MHz

#	Parameter	Symbol	L	Limit Values		Unit	Test Conditions Remarks	
			min.	typ.	max.			
C2b	Supply Current RF Transmission FSK modulation	I _{FSK5dbm} I _{FSK8dbm} I _{FSK10dbm}		9,9 12,3 13,8	10 14 18	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=25°C SFR DIVIC = 0x03, f=434MHz	
C3a	Supply Current RF Transmission FSK modulation	I _{FSK5dbm} I _{FSK8dbm} I _{FSK10dbm}		tbd tbd tbd	tbd tbd tbd	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=85°C SFR DIVIC = 0x03, f=315MHz	
C3b	Supply Current RF Transmission FSK modulation	_{FSK5dbm} _{FSK8dbm} _{FSK10dbm}		tbd tbd tbd	tbd tbd tbd	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=85°C SFR DIVIC = 0x03, f=434MHz	
C4a	Supply Current RF Transmission FSK modulation	_{FSK5dbm} _{FSK8dbm} _{FSK10dbm}		11,3 12,8 16,8	tbd tbd tbd	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=-40°C SFR DIVIC = 0x03, f=868MHz	
C4b	Supply Current RF Transmission FSK modulation	_{FSK5dbm} _{FSK8dbm} _{FSK10dbm}		11,3 13,4 16,7	tbd tbd tbd	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=-40°C SFR DIVIC = 0x03, f=915MHz	
C4c	Supply Current RF Transmission FSK modulation	I _{FSK5dbm} I _{FSK8dbm} I _{FSK10dbm}		11,8 12,9 16,9	14 18 24	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=25°C SFR DIVIC = 0x03, f=868MHz	
C4d	Supply Current RF Transmission FSK modulation	I _{FSK5dbm} I _{FSK8dbm} I _{FSK10dbm}		12,6 15,3 17,1	14 18 24	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=25°C SFR DIVIC = 0x03, f=915MHz	
C4e	Supply Current RF Transmission FSK modulation	I _{FSK5dbm} I _{FSK8dbm} I _{FSK10dbm}		tbd tbd tbd	tbd tbd tbd	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=85°C SFR DIVIC = 0x03, f=868MHz	
C4f	Supply Current RF Transmission FSK modulation	I _{FSK5dbm} I _{FSK8dbm} I _{FSK10dbm}		tbd tbd tbd	tbd tbd tbd	mA mA mA	@Pout=5/8/10dBm, V _{Bat} =3V, T=85°C SFR DIVIC = 0x03, f=915MHz	

Note: Matching circuit as used in the 50 Ohm-Output evaluation board at the specified frequency. Tolerances of the passive elements not taken into account

C5	Supply Current	I _{PD}	500	700	nA	V _{bat} = 3.0V, T= 25°C
	POWER DOWN		2.6	9	μA	V _{bat} = 3.0V, T= 85°C

#	Parameter	Symbol	L	.imit V	alues	Unit	Test Conditions Remarks
			min.	typ.	max.		
C7	Supply Current THERMAL SHUTDOWN	I _{TSHD}	n.u.	n.u.	n.u.	μA	
C8	Supply Current IDLE (SFR DIVIC = 0x00, systemclock = 12 MHz RC Osc.)	I _{IDLE}			tbd	mA	V _{bat} = 3.0V, T= 25°C
					tbd	mA	V _{bat} = 3.0V, T= 85°C
C9	Supply Current	I _{RUN}			tbd	mA	V _{bat} = 3.0V, T= 25°C
	RUN (SFR DIVIC = 0x00, systemclock = 12 MHz RC Osc.)				tbd	mA	V _{bat} = 3.0V, T= 85°C

Table 79 RF Transmitter Characteristics

The RF Transmitter is characterized on the testboard with 50 Ohm matching network for specified frequency. Tolerances of the passive elements not taken into accoun. Under this condition, the application is compliant to standards ETSI EN 300 220 and FCC 15.231a/b/e.

#	Parameter	Symbo		Limit Valu	es	Unit	Test Conditions	
		I	min.	typ.	max.		Remarks	
D1	Transmit frequency	f _{TX}	300 433 865 902		320 450 870 928	MHz MHz MHz MHz		
D2	Output power transformed to 50 Ohm	P _{5dBm} P _{8dBm} P _{10dBm}	4 7 9	5 8 10	6 9 11	dBm dBm dBm	V _{Bat} =3V, T=25°C	
D3	Low temp. output power change	dP _{LT}			1	dB	V _{Bat} =3V, T=-40°C, nominal output power P _{5dBm}	
D4	High temp. output power change	dP _{HT}			-1.5	dB	V _{Bat} =3V, T=85°C, nominal output power P _{5dBm}	
D5	Supply voltage dependent output power change	dP _{V1V9}		-5.5		dB	V _{Bat} =1.9V, T=25°C, nominal output power P _{5dBm}	
D6	Supply voltage dependent output power change	dP _{V2V5}		-1.8		dB	V _{Bat} =2.5V, T=25°C, nominal output power P _{5dBm}	
D7	Supply voltage dependent output power change	dP _{V3V6}		1.8		dB	V _{Bat} =3.6V, T=25°C nominal output power P _{5dBm}	
D8	Data rate				32	kBps	64kChips/s	
D9	Carrier to spurious ratio (incl. harmonics) @D1=315/915MHz				-28	dBc	FCC 15.231a/e RBW=100kHz 2nd -10th harmonic	
D10	carrier to noise ratio @D1=315/915MHz				-20	dBc	FCC 15.231a/e RBW=100kHz measured at frequency edge: 0,25%*fc for 315MHz 0,5%*fc for 915MHz fc: carrier frequency	

D11	SSB Phase Noise				RBW = 100kHz, +25°C
	@D1=315MHz	-95	tbd	dBc/Hz	@ 10kHz offset,
	-	-93	tbd	dBc/Hz	@ 100kHz offset,
		-97	tbd	dBc/Hz	@ 250kHz offset,
		-120	tbd	dBc/Hz	@ 1MHz offset,
		-136	tbd	dBc/Hz	@ 10MHz offset,
D12	SSB Phase Noise				RBW = 100kHz, +25°C
	@D1=434MHz	-93	tbd	dBc/Hz	@ 10kHz offset,
		-90	tbd	dBc/Hz	@ 100kHz offset,
		-91	tbd	dBc/Hz	@ 250kHz offset,
		-113	tbd	dBc/Hz	@ 1MHz offset,
		-132	tbd	dBc/Hz	@ 10MHz offset,
D13	SSB Phase Noise				RBW = 100kHz, +25°C
	@D1=868MHz	-87	tbd	dBc/Hz	@ 10kHz offset,
		-85	tbd	dBc/Hz	@ 100kHz offset,
		-88	tbd	dBc/Hz	@ 250kHz offset,
		-110	tbd	dBc/Hz	@ 1MHz offset,
		-134	tbd	dBc/Hz	@ 10MHz offset,
D14	SSB Phase Noise				RBW = 100kHz, +25°C
	@D1=915MHz	-86	tbd	dBc/Hz	@ 10kHz offset,
		-85	tbd	dBc/Hz	@ 100kHz offset,
		-87	tbd	dBc/Hz	@ 250kHz offset,
		-109	tbd	dBc/Hz	@ 1MHz offset,
		-135	tbd	dBc/Hz	@ 10MHz offset,
D15	Spurious and Out		-54	dBm	EN300220 (EUR)
	Band Emission				RBW = 10kHz
	@D1=434/868MHz				47-74MHz,
					87.5-118MHz,
					174-230MHz,
					470-862MHz
D16	Spurious and Out		-36	dBm	EN300220 (EUR)
	Band Emission				RBW = 10kHz
	@D1=434/868MHz				other < 1GHz
D17	Spurious and Out		-30	dBm	EN300220 (EUR)
	Band Emission				RBW=10kHz
	@D1=434/868MHz				other >1GHz

Note: Matching circuit as used in the 50 Ohm-Output Testboard at the specified frequency. Tolerances of the passive elements not taken into account

Table 80LF Receiver, V_{bat}=2.1-3.6V

#	Parameter	Symbol	l	Limit Values		Unit	Test Conditions,	
			min.	typ.	max.		Remarks	
E1	LF Baseband Sensitivity Gain setting 1	S _{LF1}			1.2	mV _{pp}	Input signal level required to achieve a BER better than 0.1% (100% square AM modulation, Datarate 4000 Bit/s) SFR LFRX0: tbd SFR LFCDM: tbd SFR LFCDFLT: tbd	
E2	LF Baseband Sensitivity Gain setting 2	S _{LF2}			120	mV _{pp}	Input signal level required to achieve a BER better than 0.1% (100% square AM modulation, Datarate 4000 Bit/s) SFR LFRX0: tbd SFR LFCDM: tbd SFR LFCDFLT: tbd	
E3	Datarate	DR _{LF}	2000		4000	Bit/s		
E4	Datarate error	DR _{error}			2	%		
E5	Carrier frequency	f _{CLF}	120	125	130	kHz		
E6	LF Current consumption	I _{LF_AFE}			2	μΑ	V_{Bat} = 3.0V, T= 25°C, LF Input signal smaller than Carrier Detection level (12 MHz RC HF Osc. and LF Baseband OFF)	
		I _{LF_BB}			tbd	μA	V _{Bat} = 3.0V, T= 25°C, LF Input signal higher than Carrier Detection level or enabled by SFR Bit LFCDFLT.[CDFM1-0] = 11b (12 MHz RC HF Osc. and LF Baseband ON)	
E7	Input dynamic range	DR _{LF}	70			dB	Sensitivity Gain setting 1 (#E1), AGC enabled	
E9	AGC attack time	T _{AGCATT}		200	900	μs	@continous wave signal	

#	Parameter	Symbol	l	Limit V	alues	Unit	Test Conditions,
			min.	typ.	max.		Remarks
E10	AGC decay slew rate	T _{AGCDEC}		35		V/s	SFR bit LFRX0.7-6[AGCTCD1- 0] = 00b
				70		V/s	SFR bit LFRX0.7-6[AGCTCD1- 0] = 01b
				140		V/s	SFR bit LFRX0.7-6[AGCTCD1- 0] = 10b
E11	Settling time	T _{SET}			4	ms	power on settling time of internal nodes. 6 x 2 kHz RC Oscillator cycles. Min/Max Tolerances from Table 83 apply.
E12	Input capacitance	C _{inLF}	t.b.d	10	t.b.d	pF	
E13	Differential Input resistance	R _{inLF}	t.b.d	420	t.b.d	kOhm	AGC disabled
E14	Preamble length	T _{preamble}	3			ms	Manchester coded input signal. Datarate 4kBit/s
F1	LF Carrier Detector threshold Gain setting 1.	DL _{CD1}	0.2	tbd	2.5	mV _{pp}	Minimum Carrier Pulse length 1ms SFR LFRX0: tbd SFR LFCDM: tbd SFR LFCDFLT: tbd
			1.2	3	7.5	mV _{pp}	Minimum Carrier Pulse length 1ms SFR LFRX0: tbd SFR LFCDM: tbd SFR LFCDFLT: tbd
F2	LF Carrier Detector threshold Gain setting 2	DL _{CD2}	20	50	120	mV _{pp}	Minimum Carrier Pulse length 1ms SFR LFRX0: tbd SFR LFCDM: tbd SFR LFCDFLT: tbd
			80	200	480	mV _{pp}	Minimum Carrier Pulse length 1ms SFR LFRX0: tbd SFR LFCDM: tbd SFR LFCDFLT: tbd
F3	Carrier Detector Freeze Hold Time	T _{CDCFH}			50	ms	worst case @ 85°C if Calibration Freeze Bit SFR bit LFCDM.3[LFENFC TC] is set

#	Parameter	Parameter Symbol Limit Values		Unit	Test Conditions,		
			min.	typ.	max.		Remarks
F4 Carrier Detector Filter time	T _{CDFLT}	tbd		tbd	μs	SFR bit LFCDFLT.4-5[CDFT1- 0] = 00b	
			tbd		tbd	μs	SFR bit LFCDFLT.4-5[CDFT1- 0] = 01b
			tbd tbd I		μs	SFR bit LFCDFLT.4-5[CDFT1- 0] = 10b	
			tbd		tbd	μs	SFR bit LFCDFLT.4-5[CDFT1- 0] = 11b

Table 81Crystal Oscillator

#	Parameter	Symbol	L	imit Va.	lues	Unit	Test Conditions
			min.	typ.	max.		Remarks
G1	Crystal startup time	t _{xtal}		1.2		ms	IFX Testboard with Crystal NX5032SD EXS00A- 02825 C_L =12pF , $f_{Crystal}$ = 18,08MHz
G2	Crystal oscillator startup delay time	t _{xtaladj}	0		1750	μs	Progammable in 250µs steps SFR XTCFG
G3	Crystal frequency	f _{XTAL}	18		20	MHz	
G4	Paracitic capacitance	C _{PCBmax}			4	pF	determined by PCB Layout
G5	Serial resistance of	R _{Rmax}	-	-	60	Ohm	fcrystal=19~20MHz
	the crystal	R _{Rmax}	-	-	80	Ohm	fcrystal=18~19MHz
G6	Input inductance XTALOUT	L _{osc}		2.2		uH	
G7	Crystal fine tuning capacitance	C _{tune}		40		pF	Selectable with 156 fF resolution (8 bits)

Table 82 12 MHz RC HF Oscillator

#	Parameter	Symbol	Limit Values			Unit	Test Conditions	
			min.	typ.	max.		Remarks	
H1	Operating frequency	f _{RCHF}	11.64	12.00	12.36	MHz	V _{Bat} = 3.0V, T= 25°C	
H3	Overall drift	df _{RCHF}			+/- 5	%		

Table 83 2kHz RC LP Oscillator

#	Parameter	Symbol	Limit Values			Unit	Test Conditions	
			min.	typ.	max.		Remarks	
J1	Operating frequency	f _{RCLP}	1.3	2	2.8	kHz	V _{Bat} = 3.0V, T= 25°C	
J2	Overall drift	df _{RCLP}			+/- 7	%		

Table 84Interval Timer

#	Parameter	Symbol	L	Limit Values		Unit	Test Conditions
			min.	typ.	max.		Remarks
K1	Wake up interval timer range	T _{WU}	0.035		332.8	s	Adjustble with resolution of 8 bit.
K2	Wake up interval timer step	T _{WUST}	0.05		1	s	
K3	Frequency calibration error	f _{ITCE}			+/- 5	%	T _{WUST} =0.5s, systemclock = XTAL

Table 85Power On Reset

# Parameter		Symbol	Li	mit Val	ues	Unit	Test Conditions
			min.	typ.	max.		Remarks
L1	Power On Reset level	V _{POR}	0.2	0.4	1.7	V	Minimum supply voltage level measured at Pin V _{REG} for a valid logic LOW at Power On Reset circuit
L2	Power On release level	V _{THR}	1.7		1.8	V	measured at Pin V _{REG}
L3	Power On reset time	t _{POR}	0.25		10	ms	
L4	Brown Out detect level in RUN state	V _{BRD}	1.7		1.8	V	measured at Pin V _{REG}
L5	Brown Out detect level in POWER DOWN and THERMAL SHUTDOW N	V _{PDBR}	0.7		1.7	V	measured at Pin V _{REG}
L6	Mode selection time	t _{MODE}			2.5	ms	
L7	Minimum detectable Brown Out glitch in RUN state	t _{brd}			1	μs	
L8	Minimum detectable Brown Out glitch in POWER DOWN and THERMAL SHUTDOW N	t _{brdpd}				μs	not used

Table 86Voltage Regulator

#	Parameter	Symbol	Li	imit Val	ues	Unit	Test Conditions Remarks	
			min.	typ.	max.			
M1	Regulated output voltage in RUN state	V _{REG}	2.3	2.5	2.75	V	V _{Bat} = 2.5V-3.6V, I _{REG} =0.1-10mA ¹⁾	
M2	Regulated output voltage at low battery in RUN state	V _{REGLOW}	1.8		2.5	V	V _{Bat} = 1.9V-2.5V, I _{REG} =0.1-8.5mA ¹)	
M4	Regulated output voltage in POWER DOWN THERMAL SHUT DOWN	V _{regLP}	1.7		2.75	V	I _{REGPD} = max. 40uA ¹⁾	

 The voltage regulator is designed to supply only the internal blocks of the PMA7110 and not designed to drive any external circuitry, thus only the decoupling cap may be connected to the pin V_{REG}.
 A 100nF decoupling cap is recommended for proper operation.

Table 87 VMIN detector

#	Parameter	Symbol	Limit Values			Unit	Test Conditions,
			min.	typ.	max.		Remarks
N1	Low battery threshold warning level	TH _{LBat}	2.0	2.1	2.2	V	used by ROM Library functions only

Table 88 6k FLASH Code memory data

#	Parameter	Symbol		Limit V	alues ¹⁾	Unit	Test Conditions
			min.	typ.	max.		Remarks
01	Temperature range Erase/program	TR _{FL}	0	0 ~ 35		°C	
02	Erase/Program Supply voltage range regulated @pad VDDD @pad VBat	V _{FLVDDD} V _{FLBat}	2.3 2.5	2.5		> >	
O3	Endurance Data Retention @25°C	En _{FLCode} t _{RCode}	400k 40	1M		cycles yrs	programming /erase cycles per sector or wordline
04	Erase time			102		ms	RC-HF-Oscillator @12MHz
O5	Write time/line			2.2		ms	RC-HF-Oscillator @12MHz Line=32byte

1) This is only valid for storage temperature from -40°C to +125°C for max. 1000 hours.

Table 89 2 times 128 byte FLASH User Data memory

#	Parameter	Symbol	Lin	Limit Values ¹⁾			Test Conditions
			min.	min. typ.			Remarks
O6	Temperature range Erase/program	TR _{FL}		0~35		°C	
07	Erase/Program Supply voltage range regulated @pad VDDD @pad VBat	V _{FLVDDD} V _{FLBat}	2.3 2.5	2.5		V V	
O8	Endurance Data Retention	En _{FLCode} @25°C t _{RCode} @85°C	100 40	500		kcycles yrs	programming /erase cycles per sector or wordline retention is a function of Endurance

09	Erase time		102	ms	RC-HF-Oscillator @12MHz
O10	Write time/line		2.2	ms	RC-HF-Oscillator @12MHz Line=32byte

1) This is only valid for storage temperature from -40°C to +125°C for max. 1000 hours.

Table 90ADC Interface

#	Parameter	Symbol	L	.imit Va	lues	Unit	Test Conditions
			min.	typ.	max.		Remarks
P1	ADC input voltage range	VR _{ADC}	GND		VADC		
P2	ADC resolution	R _{ADC}	10			bit	
P3	Offset correction range	R _{OFFC}			6	bit	
P4	ADC clock frequency	f _{ADC}	0.5	1	20	MHz	
P5	Differential non- linearity	DNL	-0.5		0.5	lsb	
P6	Integral non- linearity	INL	-1		1	lsb	
P7	Noise	N _{ADC}			15	μV_{rms}	
P8	Non-ratiometric offset voltage with supply voltage ¹	OV _{NR}	-1.5		1.5	lsb	Measured at any constant temperature between -20 and 70°C

1.) Extrapolate offset voltage vs. supply voltage to find the intersection with the y-axis (supply voltage =0). This is the non-ratiometric part of the offset voltage.

Table 91 TMAX Detector

#	Parameter	Symbol	Limit Values			Unit	Test Conditions	
			min.	typ.	max.		Remarks	
T1	THERMAL SHUTD OWNrelease temperature	T _{REL}	tbd	tbd	tbd	°C	used by ROM Library functions only	

Table 92 Digital I/O Pin

#	Parameter	Symbol	Limit Values			Unit	Test Conditions
			min.	typ.	max.		Remarks
U1	Input low voltage	V _{IL}	-0.2		0.4	V	
U2	Input high voltage	V _{IH}	V _{Bat} -0.4		V _{Bat} + 0.2	V	
U3	Output low voltage	V _{OL}			0.5	V	I _{OL} = 1.6mA

#	Parameter	Symbol	Symbol Limit Values			Unit	Test Conditions	
			min.	typ.	max.		Remarks	
U4	Output high voltage	V _{OH}	V _{Bat} -0.5			V	I _{OH} = -1.6mA	
U6	Output transition time	t _{thl} , t _{tlh}			30	ns	20pF load, 10% 90%	
U7	Input capacitance	C _{pad}			2	pF		
U8	Internal pullup or pulldown resistor	R _{uPPx} , R _{downPPx} ¹⁾	35	50	65	kOhm		
U9	Internal pullup or pulldown resistor	R _{upPPy} , R _{downPPy} ²⁾	175	250	325	kOhm		

1) PPx are: PP0, PP1, PP4, PP5, PP6, PP7

2) PPy are: PP2, PP3, PP8, PP9

3.2 Reference SFR Registers

This section contains detailed description about SFRs which are shown in Figure 7 "SFR Special Function Register Address Overview" on Page 53 but not described in Chapter "Functional Description.

Table 93 SFR Address DB_H: ADCC0- ADC Configuration Register 0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
n.u.	TVC2	TVC1	TVC0	n.u.	STC2	STC1	STC0			
0/0	rw 0/0	rw 0/0	rw 0/0	0/0	r/w 0/0	rw 0/0	rw 0/0			
TCV2		Internal CI	ock Divider B	it 2	·					
TCV1		Internal CI	Internal Clock Divider Bit 1							
TCV0		Internal CI	ock Divider B	it O						
STC2		Sample Ti	me Adjustme	nt Bit 2						
STC1		Sample Ti	Sample Time Adjustment Bit 1							
STC0		Sample Ti	me Adjustme	nt Bit 0						

Table 94 SFR Address DC_H: ADCC1- ADC Configuration Register 1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SeDC	CSI	GAIN1	GAIN0	FCnSC	SUBC2	SUBC1	SUBC0				
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	r/w 0/0	rw 0/0	rw 0/0				
SeDC		Single end	Single ended/differential conversion								
CSI		Comparator signal inversion									
GAIN1		Gain setting of the 10-bit c-network Bit 1									
GAIN0		Gain settir	ng of the 10-b	it c-network B	it O						
FCnSC		Full conve	rsion or subc	onversion							
SUBC2		Subconve	rsion Bit 2								
SUBC1		Subconve	rsion Bit 1								
SUBC0		Subconversion Bit 0									

Table 95 SFR Address D4_H: ADCCL- ADC Configuration Register (low byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCD.7	ADCD.6	ADCD.5	ADCD.4	ADCD.3	ADCD.2	ADCD.1	ADCD.0
r 0/0	r 0/0	r 0/0	r 0/0	r 0/0	r 0/0	r 0/0	r 0/0
ADCD.7 - ADCD.0		Bit 7 - Bit 0	1				

Table 96 SFR Address D5_H: ADCCH- ADC Configuration Register (high byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	ADCD.9	ADCD.8
0/0	0/0	0/0	0/0	0/0	0/0	r 0/0	r 0/0
ADCD.9		Bit 9			÷		
ADCD.8		Bit 8					

Table 97 SFR Address D2_H: ADCM- ADC Mode Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
ADCStart	RV2	RV1	RV0	WBCStart	CS2	CS1	CS0					
rcw 0/0	rw 1/1	rw 1/1	rw 1/1	rcw 0/0	rw 1/1	rw 1/1	rw 1/1					
ADCStart		ADC conv	ADC conversion start									
RV2		Reference	Reference voltage select bit 2									
RV1		Reference voltage select bit 1										
RV0		Reference	e voltage sele	ct bit 0								
WBCStart		WBC star	t									
CS2		Analog c	hannel select	bit 2								
CS1		Analog c	Analog channel select bit 1									
CS0		Analog channel select bit 0										

Table 98 SFR Address DA_H: ADCOFF- ADC Input Offset c-network configuration

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
OFF5	OFF5	OFF5	RV0	WBCStart	CS2	CS1	CS0					
r 0/0	r 0/0	rw 0/0	rw 1/1	rcw 0/0	rw 1/1	rw 1/1	rw 1/1					
OFF5		Bit 5 (exte	Bit 5 (extended)									
OFF5		Bit 5 (exte	Bit 5 (extended)									
OFF5		Input of Of	Input of Offset c-network Bit 5									
OFF4		Input of Of	ffset c-networ	k Bit 4								
OFF3		Input of Of	ffset c-networ	k Bit 3								
OFF2		Input of Of	ffset c-networ	k Bit 2								
OFF1		Input of Of	Input of Offset c-network Bit 1									
OFF0		Input of Of	Input of Offset c-network Bit 0									

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
n.u.	SARSATL	SARSATH	CL000	CG3FF	n.u.	SAMPLE	BUSY					
0/0	r 0/0	r 0/0	r 0/0	r 0/0	0/0	r 0/0	r 0/0					
SARSATL		negative sat	egative saturation of SAR									
SARSATH		positive satu	ositive saturation of SAR									
CL000		0x000 satur	ation of c-n	et control word	ł							
CG3FF		0x3FF satur	ation of c-n	et control wor	d							
SAMPLE		Sample/Hole	Sample/Hold									
BUSY		Busy										

Table 99 SFR Address D3_H: ADCS- ADC Startus Register

Table 100 SFR Address DD_H: ADWBC- AD WBC Wire Bond Check

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
n.u.	n.u.	n.u.	n.u.	STAT3	STAT2	DREF	WBEF				
0/0	0/0	0/0	0/0	r 0/0	r 0/0	r 0/0	r 0/0				
STAT3		reserved	reserved								
STAT2		reserved									
DREF		Diagnosti	Diagnostic Resistor Error Flag								
BUSY		Wire Bon	Wire Bond Error FlagI								

Table 101 SFR Address E9_H: FCSP- Flash Control Register - Sector Protection Control

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ECCErr	ECCLeft	ECCOff	WLO	WLE	SingleStep	CodeLCK	ConfLCK			
rc 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rmw u/0	rmw u/0			
ECCErr		ECC Error D	CC Error Detected Bit (0=no error, 1=error detected)							
ECCLeft		ECC vector	ECC vector selection for read/write (0=select lower 8-bit, 1=selects LEFT 4 bits)							
ECCOff		Bypass ECC	Bypass ECC							
WLO		Selects all o	dd wordlines							
WLE		Selects all ev	ven wordlines							
SingleStep		Flash Single	-Step Mode							
CodeLCK		Code-sector	Code-sector Lock Bit (0=programmable & erasable; 1=read only)							
ConLCK		Config-secto	or Lock Bit (0=p	orogrammable	e & erasable;	1=read only)				

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
IPROG	IERASE	IREAD	IPDWN	PROG	ERASE	READ	PDWN				
r 0/0	r 0/0	r 0/0	r 1/1	rw 0/0	rw 0/0	rw 0/0	rw 1/1				
IPROG		Indicates that	ndicates that the Flash is in Program Mode								
IERASE		Indicates that	ndicates that the Flash is in Erase Mode								
IREAD		Indicates that	Indicates that the Flash is in Read Mode								
IPDWN		Indicates that	at the Flash is i	n PowerDow	n Mode						
PROG		Program En	able Bit: 0->1:	Starts transiti	on into Prog	ram Mode					
ERASE		Erase Enabl	e Bit: 0->1: Sta	arts transition	into Erase M	lode					
READ		Read Enable	Read Enable Bit: 0->1: Starts transition into Read Mode								
PDWN		CPDWN Ena	able Bit: 0->1:	Starts transiti	on into Powe	erDown Mo	de				

Table 102 SFR Address EA_H: FCS- Flash Control Register - Status Model

Table 103SFR Address E1_H: FCPP0- Flash Charge Pumps Power Control
Register 0I

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
VProgN1	VProgN0	VProgNen	VPP3	VPP2	VPP1	VPP0	VPPen					
rw 0/0	rw 0/0	rw 0/0	rw0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0					
VProgN1		also used for	Iso used for SSDI<7> and DisConCG									
VProgN0		also used for	also used for SSDI<6>									
VProgNen		also used for	also used for SSDI<5>									
VPP3		also used for	SSDI<4> and	I DMux <3>	and LongE	val						
VPP2		also used for	SSDI<3> and	1 DMux <2>	•							
VPP1		also used for	SSDI<2> and	I DMux <1>	•							
VPP0		also used for SSDI<1> and DMux <0>										
VPPen		also used for	also used for SSDI<0>									

Table 104SFR Address E2_H: FCPP1- Flash Charge Pumps Power Control
Register 1I

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
VReadHi	lBiasHi	VProgPBit4	VProgPBit3	VProgPBit2	VProgPBit1	VProgPBit0	VProgPEn				
rw 0/0	rw 0/0	rw 0/0	w 0/0 rw0/0 rw 0/0 rw 0/0 rw 0/0 rw 0/0								
VReadHi		increases CG-	ncreases CG-voltage from 1.8 V to 2.5 V during read								
IBiasHi		increases bias	currents by 66	% (from 5 uA t	o 8.33 uA)						
VProgPBit4											
VProgPBit3											
VProgPBit2		also used for S	SDI<11>								

VProgPBit1	i	also used for SSDI<10>
VProgPBit0	i	also used for SSDI<9>
VProgPEn	i	also used for SSDI<8>

Table 105 SFR Address E3_H: FCSERM- Flash Sector Erase and Read Margin Select Registerl

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
UseVEXT	REFCURMAG1	REFCURMAG0	ERSELREF	ERSELCONF	ERSELS2	ERSELS1	ERSELS0				
rw 0/0	rw 0/0	rw 1/1	rw0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0				
UseVEXT		uses voltage at V	ses voltage at VEXT to increase VProgP current								
REFCUR MAG1		Reference curren	ference current magnitude, bit 1								
REFCUR MAG0		Reference curren	eference current magnitude, bit 0								
ERSELR EF		Selects Referenc	e cells for Era	se							
ERSELC ONF		Selects Config-se	ector for Erase	9							
ERSELS2		Selects ID-sector	Selects ID-sector for Erase								
ERSELS1		Selects Data-sec	Selects Data-sector for Erase								
ERSELS0		Selects Code-sec	ctor for Erase								

Table 106 SFR Address 84_H: MMR0 - Memory Mapped Register 0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0			
Bit 7 - Bit 0		general / programming & debugging purposes								

Table 107 SFR Address 85_H: MMR1 - Memory Mapped Register 1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		general / prog	ramming & de	bugging purpo	ses		

Table 108 SFR Address 86_H: MMR2 - Memory Mapped Register 2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	
Bit 7 - Bit 0		general / programming & debugging purposes						

Table 109 SFR Address 81_H: SP - Stack Pointer

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
0/0	0/0	0/0	0/0	0/0	rw 0/0	rw 0/0	rw 1/1
SP.7 -SP. 0		Stackpointer E	Bit 7 - Bit 0				

Table 110SFR Address 8C_H: TH0 - Timer 0 Register High Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 111SFR Address 8D_H: TH1 - Timer 1Register High Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 112 SFR Address CD_H: TH2 - Timer 2 Register High Byte

Table 113 SFR Address CB_H: TH3 - Timer 3Register High Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 114 SFR Address 8A_H: TL0 - Timer 0 Register Low Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 115 SFR Address 8B_H: TL1 - Timer 1 Register Low Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 116 SFR Address CC_H: TL2 - Timer 2 Register Low Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 117SFR Address CA_H: TL3 - Timer 3 Register Low Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0	rw 0/0
Bit 7 - Bit 0		Bit 7 - Bit 0					

Table 118 SFR Address DE_H: RFVCO -RF Frequency Synthesizer VCO Config

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
VCOCC3	VCOCC2	VCOCC1	VCOCC0	VCOF3	VCOF2	VCOF1	VCOF0	
rw u/1	rw u/0	rw u/0	rw u/1	rw u/0	rw u/0	rw u/0	rw u/0	
Bit 7-4	VCOCC3-0	VCO Core Cu VCOCC3 1 VCOCC2 8 VCOCC1 4 VCOCC0 2	CO Core Current Select COCC3 1600μA (MSB) COCC2 800μA COCC1 400μA COCC1 400μA COCC0 200μA (LSB)					
Bit 3-0	VCOF3-0	VCO Frequer VCO Tuning (icy range adju Curve Select	istment				

Table 119 SFR Address D4_H: ADCDL - ADC Result Register (low Byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCD.7	ADCD.6	ADCD.5	ADCD.4	ADCD.3	ADCD.2	ADCD.1	ADCD.0
r 0/0							

Table 120 SFR Address D5_H: ADCDH - ADC Result Register (high Byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	ADCD.9	ADCD.8
0/0	0/0	0/0	0/0	0/0	0/0	r 0/0	r 0/0
Bit 1	ADCD.9	Bit 9					
Bit 0	ADCD.8	Bit 8					

Table 121 SFR Address AA_H: CRCD - CRC Data Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCD.7	CRCD.6	CRCD.5	CRCD.4	CRCD.3	CRCD.2	CRCD.1	CRCD.0
rw 0/0							

Table 122 SFR Address AC_H: CRC0 - CRC Shift Register(low byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRC.7	CRC.6	CRC.5	CRC.4	CRC.3	CRC.2	CRC.1	CRC.0
rw 0/0							

Table 123 SFR Address AD_H: CRC1 - CRC Shift Register(high byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRC.15	CRC.14	CRC.13	CRC.12	CRC.11	CRC.10	CRC.9	CRC.8
rw 0/0							

Table 124 SFR Address 94_H: DBCL0- CPU Debug Compare Register 0 (Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBCL.7	DBCL.6	DBCL.5	DBCL.4	DBCL.3	DBCL.2	DBCL.1	DBCL.0
rw 0/0							

Table 125 SFR Address 95_H: DBCH0- CPU Debug Compare Register 0 (High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBCH.7	DBCH.6	DBCH.5	DBCH.4	DBCH.3	DBCH.2	DBCH.1	DBCH.0
rw 0/0							

Table 126 SFR Address 96_H: DBTL0- CPU Debug Target Register 0 (Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBTL.7	DBTL.6	DBTL.5	DBTL.4	DBTL.3	DBTL.2	DBTL.1	DBTL.0
rw 0/0							

Table 127 SFR Address 97_H: DBTH0- CPU Debug Target Register 0 (High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBTH.7	DBTH.6	DBTH.5	DBTH.4	DBTH.3	DBTH.2	DBTH.1	DBTH.0
rw 0/0							

Table 128 SFR Address 9C_H: DBCL1- CPU Debug Compare Register 1 (Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBCL.7	DBCL.6	DBCL.5	DBCL.4	DBCL.3	DBCL.2	DBCL.1	DBCL.0
rw 0/0							

Table 129	SFR Address 9D _P	: DBCH1- CPU Debug	Compare Reg	jister 1 (High)
		J		

Bit 7 Bit 6 Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-------------------	-------	-------	-------	-------	-------

DBCH.7	DBCH.6	DBCH.5	DBCH.4	DBCH.3	DBCH.2	DBCH.1	DBCH.0
rw 0/0							

Table 130 SFR Address 9E_H: DBTL1- CPU Debug Target Register 1 (low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBTL.7	DBTL.6	DBTL.5	DBTL.4	DBTL.3	DBTL.2	DBTL.1	DBTL.0
rw 0/0							

Table 131 SFR Address 9F_H: DBTH1- CPU Debug Target Register 1 (High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBTH.7	DBTH.6	DBTH.5	DBTH.4	DBTH.3	DBTH.2	DBTH.1	DBTH.0
rw 0/0							

Table 132 SFR Address E4_H: FCTKAS- Flash Tkill and Analog Output Select Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Read0V9	CLKSEL	ANSEL3	ANSEL2	ANSEL1	ANSEL0	TKILL1	TKILL0			
rw 0/0	rw 0/0	rw 1/1	rw 1/1	rw 1/1	rw 1/1	rw 1/1	rw 1/1			
Bit 7	Read0V9	sets the read	the read voltage to 0.9 V							
Bit 6	CLKSEL	Read clock s	ad clock select (0:g_Clk, 1:MemClk)							
Bit 5	ANSEL3	Analog Outp	ut Select, bit	3						
Bit 4	ANSEL2	Analog Outp	ut Select, bit	2						
Bit 3	ANSEL1	Analog Outp	ut Select, bit	1						
Bit 2	ANSEL0	Analog Outp	ut Select, bit	0						
Bit 1	TKILL1	Tkill-Time, b	Tkill-Time, bit 1							
Bit 0	TKILL0	Tkill-Time, b	Tkill-Time, bit 0							

Table 133 SFR Address E5_H: FCSS- Flash Control Register for Single-Step Mode

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SelRefCell1	SelRefCell0	VPPCh	VProgPCh	VProgNCh	SSCSB	SSALE	SSWRB		
rw 1/1	rw 1/1	r 0/0	r 0/0	r 0/0	rw 0/0	rw 0/0	rw 0/0		
Bit 7	SelRefCell1	Selects RefCe	lects RefCells#3 and #2						
Bit 6	SelRefCell0	Selects RefCe	elects RefCells#1 and #0						
Bit 5	VPPCh	Charge pump	charging indica	ator for VPP					
Bit 4	VProgPCh	Charge pump	charging indica	ator for VProg	Р				
Bit 3	VProgNCh	Charge pump	charging indica	ator for VProg	N				
Bit 2	SSCSB	Single-Step-C	hip-Select-Bar						
Bit 1	SSALE	Single-Step-A	Single-Step-Address-Latch-Enable						
Bit 0	SSWRB	Single-Step-W	Single-Step-Write-Read-Bar						

Table 134 SFR Address EF_H: LBD- Low Battery Detector Control

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
n.u.	n.u.	n.u.	n.u.	LBD2V1	LBDF	LBDEn	LBDMen	
0/0	0/0	0/0	0/0	rw 1/1	rc 0/0	rw 1/1	rw 1/1	
Bit 3	LBD2V1	Low Battery \	ow Battery Voltage Switch (12.1V VEXT, 02.4V VDDC)					
Bit 2	LBDF	Low Battery [Detector Flag (1	Supply Volta	ge below thre	shold)		
Bit 1	LBDEn	Low Battery [Low Battery Detector enable					
Bit 0	LBDMen	Low Battery [Low Battery Detector measurement enable					

Table 135 SFR Address D6_H: OSCCONF- RC HF Oscillator Configuration Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Rneg2	Rneg1	Rneg0	RCOFT4	RCOFT3	RCOFT2	RCOFT1	RCOFT0			
rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0			
Bit 7	Rneg2	Rneg setting	g setting of XtalOsc (bit 2)							
Bit 6	Rneg1	Rneg setting	eg setting of XtalOsc (bit 1)							
Bit 5	Rneg0	Rneg setting	g of XtalOsc (b	oit 0)						
Bit 4	RCOFT4	RC Oscillato	or Frequency 1	Funing (bit 4)						
Bit 3	RCOFT3	RC Oscillato	or Frequency 1	Funing (bit 3)						
Bit 2	RCOFT2	RC Oscillato	or Frequency 1	Funing (bit 2)						
Bit 1	RCOFT1	RC Oscillato	RC Oscillator Frequency Tuning (bit 1)							
Bit 0	RCOFT0	RC Oscillato	RC Oscillator Frequency Tuning (bit 0)							

Table 136 SFR Address D7_H: RFFSPLL- RF- Frequency Synthesizer PLL Configuration

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
FPDPOL	DDCC	ABLP1	ABLP0	DCC1	DCC0	CPCU1	CPCU0		
w 1/1	0/0	w 0/0	w 0/0	0/0	0/0	w 1/1	w 0/0		
Bit 7	FPDPOL	Frequency-P	quency-Phase-Detector polarity - must be '1'						
Bit 6	DDCC	Disable RF d	sable RF divider duty cycle control						
Bit 5	ABLP1	Antibacklash	pulse width s	select (bit 1)					
Bit 4	ABLP0	Antibacklash	pulse width s	select (bit 0)					
Bit 3	DCC1	RF divider du	ity cycle cont	rol (bit 1)					
Bit 2	DCC0	RF divider du	ity cycle cont	rol (bit 0)					
Bit 1	CPCU1	Charge pump	Charge pump current select (bit 1)						
Bit 0	CPCU0	Charge pump	Charge pump current select (bit 0)						

Table 137SFR Address DE_H: RFVCO- RF- Frequency Synthesizer VCO
Configuration

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
VCOCC3	VCOCC2	VCOCC1	VCOCCO	VCOF3	VCOF2	VCOF1	VCOF0		
rw u/1	rw u/0	rw u/0	rw u/1	rw u/0	rw u/0	rw u/0	rw u/0		
Bit 7 - Bit 0	VCOCC3 - VCOCC0	VCO Core Cu	O Core Current Select (bit 3 - bit 0)						
Bit 6	VCOCC2	VCO Core Cu	CO Core Current Select (bit 2)						
Bit 5	VCOCC1	VCO Core Cu	urrent Select (bi	t 1)					
Bit 4	VCOCC0	VCO Core Cu	urrent Select (bi	t 0)					
Bit 3	VCOF3	VCO Tuning	Curve Select (b	it 3 - bit 0)					
Bit 2	VCOF2	VCO Tuning	VCO Tuning Curve Select (bit 2)						
Bit 1	VCOF1	VCO Tuning	/CO Tuning Curve Select (bit 1)						
Bit 0	VCOF0	VCO Tuning	Curve Select (b	it 0)					

Table 138SFR Address DF_H: RFFSLD- RF- Frequency Synthesizer LockDetector Configuration

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
n.u.	n.u.	NOLOCK	ENLOCKDET	LL3	LL2	LL1	LL0		
0/0	0/0	rc 0/0	w u/0	w u/1	w u/0	w u/0	w u/0		
Bit 5	NOLOCK	PLL Lock Indi	LL Lock Indicator						
Bit 4	ENLOCKDET	Enable Lock [Detector						
Bit 3 - Bit 0	LL3 -LL0	Lock Limit Se	ock Limit Select (bit 3 - bit 0)						

Table 139 SFR Address BD_H: TMAX - TMAX Detector Control

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PD_TMAX	n.u.	TMTR5	TMTR4	TMTR3	TMTR2	TMTR1	TMTR0	
rw u/1	0/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	rw u/0	
Bit 7	PD_TMAX	Power down ⁻ always active	ower down TMAX Detector in RUN state if set. Please note, TMAX Detector is ways active in THERMAL SHUTDOWN state					
Bit 5 - Bit 0	TMTR5 - TMTR0	TMAX Detect (LSB~1°C nor 000000b = mi 111111b = ma	MAX Detector Shut Down Trigger/Release Tempr.Trimming .SB~1°C nonlinear charcteristic) 00000b = min. temp. threshold (~90°C) 11111b = max. temp. threshold (~135°C)					

3.3 Reference Documents

This section contains documents used for cross- reference throughout this document.

	Reference Documents					
Reference Number	Document description					
[1]	PMA5110 ROM Library function Guide					

Table 140 Reference Documents

Package Outlines

4 Package Outlines

1) Does not include plastic or metal protrusion of 0.15 max. per side

2) Does not include dambar protrusion of 0.08 max. per side

3) Does not include plastic or metal protrusion of 0.25 max. per side

Figure 41 Package Outline P-TSSOP-38

Table 141Order Information

Туре	Ordering Code	Package
PMA7110	tbd	TSSOP38

You can find all of our packages, sorts of packing and others on our Infineon Internet Page "Products": http://www.infineon.com/products.

www.infineon.com