

Mobile Intel[®] Pentium[®] 4 Processor Supporting Hyper-Threading Technology on 90-nm Process Technology

Datasheet

January 2005

Document Number: 302424-003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Mobile Intel® Pentium® 4 processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

¹Hyper-Threading Technology requires a computer system with a Mobile Intel Pentium 4 processor, a chipset and BIOS that utilize this technology, and an operating system that includes optimizations for this technology. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading for information.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com

Intel, Pentium, Intel NetBurst, Intel SpeedStep and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2005 Intel Corporation.

1	Introd	uction	7
	1.1	Terminology	8
	1.2	References	
2	Electr	ical Specifications	11
	2.1 2.2	Power and Ground Pins Decoupling Guidelines 2.2.1 Vcc Decoupling	11 11
	2.3	2.2.2 Front Side Bus GTL+ Decoupling	11
		2.3.1 Phase Lock Loop (PLL) Power and Filter	
	2.4	Reserved, Unused, and TESTHI Pins	
	2.5	Front Side Bus Signal Groups	
	2.6 2.7	Asynchronous GTL+ Signals Test Access Port (TAP) Connection	
	2.7	Front Side Bus Frequency Select Signals (BSEL[1:0])	
	2.9	Absolute Maximum and Minimum Ratings	
	2.10	Processor DC Specifications	
		2.10.1 Fixed Mobile Solution (FMS)	
	2.11	VCC Overshoot Specification	25
		2.11.1 Die Voltage Validation	26
3	Packa	age Mechanical Specifications	27
	3.1	Package Mechanical Specifications	27
		3.1.1 Package Mechanical Drawing	
		3.1.2 Processor Component Keep-Out Zones	
		3.1.3 Package Loading Specifications	
		3.1.4 Package Handling Guidelines	
		3.1.5 Package Insertion Specifications	
		3.1.6 Processor Mass Specification	
		3.1.8 Processor Markings	
		3.1.9 Processor Pin-Out Coordinates	
4	Pin Li	sting and Signal Descriptions	35
		Processor Pin Assignments	
	4.2	Alphabetical Signals Reference	
5	Therm	nal Specifications and Design Considerations	59
	5.1	Processor Thermal Specifications	
	• • • • • • • • • • • • • • • • • • • •	5.1.1 Thermal Specifications	
		5.1.2 Thermal Metrology	
	5.2	Processor Thermal Features	
		5.2.1 Intel Thermal Monitor	
		5.2.2 Thermal Monitor 2	61

		5.2.3	On-Demand Mode	63
		5.2.4	PROCHOT# Signal Pin	
		5.2.5	THERMTRIP# Signal Pin	
		5.2.6	Tcontrol and Fan Speed Reduction	64
		5.2.7	Thermal Diode	64
6	Featu	ıres		67
	6.1	Power-	-On Configuration Options	67
	6.2		Control and Low Power States	
		6.2.1	Normal State—State 1	
		6.2.2	AutoHALT Power-Down State—State 2	68
		6.2.3	Stop-Grant State—State 3	68
		6.2.4	HALT/Grant Snoop State—State 4	69
		6.2.5	Sleep State—State 5	
		6.2.6	Deep Sleep State—State 6	70
		6.2.7	Deeper Sleep State—State 7	
	6.3	Enhan	ced Intel SpeedStep® Technology	
7	Debu	g Tools S	Specifications	73
	7.1	Logic A	Analyzer Interface (LAI)	73
		7.1.1	Mechanical Considerations	
		712	Flectrical Considerations	73

Figures

Tables

2-1

2-2	Vcc Static and Transient Tolerance1, 2, 3	
2-3	VCC Overshoot Example Waveform	
3-1	Processor Package Assembly Sketch	
3-2	Processor Package Drawing Sheet 1 of 2	
3-3	Processor Package Drawing Sheet 2 of 2	30
3-4	Processor Top-Side Markings	
3-5	Processor Pin-Out Coordinates, Top View	
4-1	Pinout Diagram (Top View—Left Side)	
4-2	Pinout Diagram (Top View—Right Side)	
5-1	Case Temperature (TC) Measurement Location	
5-2	Intel Thermal Monitor 2 Frequency and Voltage Ordering	
6-1	Stop Clock State Machine	68
1-1	References	
2-1	Core Frequency to Front Side Bus Multiplier Configuration	
2-2	Voltage Identification Definition	
2-3	Front Side Bus Pin Groups	
2-4	Signal Description Table	
2-5	Signal Reference Voltages	
2-6	BSEL[1:0] Frequency Table for BCLK[1:0]	
2-7	Absolute Maximum and Minimum Ratings	
2-8	Voltage and Current Specifications	
2-9	VCC Core Deep Sleep State Voltage Regulator Static and Transient T (Deep Sleep VID Offset = 1.7%)	
2-10	GTL+ Signal Group DC Specifications	
2-11	Asynchronous GTL+ Signal Group DC Specifications	
2-12	PWRGOOD and TAP Signal Group DC Specifications	
2-13	VCCVID DC Specifications	
2-14	VIDPWRGD DC Specifications	
2-15	BSEL [1:0] and VID[5:0] DC Specifications	
2-16	BOOTSELECT DC Specifications	
2-17	VCC Overshoot Specifications	
3-1	Processor Loading Specifications	
3-2	Package Handling Guidelines	
3-3	Processor Materials	
4-1	Alphabetical Pin Assignments	35
4-2	Numerical Pin Assignment	
4-3	Signal Description	
5-1	Processor Thermal Specifications	
5-2	Thermal Diode Parameters	
5-3	Thermal Diode Interface	65
6-1	Power-On Configuration Option Pins	67

Phase Lock Loop (PLL) Filter Requirements14

Revision History

Revision Number	Description	Date
001	Initial release	June 2004
002	 Added Mobile Intel® Pentium® 4 Processor 548 specifications (3.33 GHz) Updated references table 	September 2004
003	Added Mobile Intel® Pentium® 4 Processor 552 specifications (3.46 GHz)	January 2005

1 Introduction

The Mobile Intel[®] Pentium[®] 4 processor supporting Hyper-Threading Technology on 90-nm process technology is a follow on to the Mobile Intel Pentium 4 processor on 130-nm process technology in the 478-pin package with enhancements to the Intel NetBurst[®] microarchitecture. The processor utilizes Flip-Chip Pin Grid Array (FC-mPGA4) package technology, and plugs into a zero insertion force (ZIF) socket. The Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology, like its predecessor, the Mobile Intel Pentium 4 processor in the 478-pin package, is based on the same Intel 32-bit microarchitecture and maintains the tradition of compatibility with IA-32 software. In this document the Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology will be referred to as the "the processor."

The Mobile Intel Pentium 4 processor on 90-nm process technology supports Hyper-Threading Technology. Hyper-Threading Technology allows a single, physical processor to function as two logical processors. While some execution resources such as caches, execution units, and buses are shared, each logical processor has its own architecture state with its own set of general-purpose registers, control registers to provide increased system responsiveness in multitasking environments, and headroom for next generation multi threaded applications. Intel recommends enabling Hyper-Threading Technology with Microsoft Windows* XP Professional or Windows*XP Home, and disabling Hyper-Threading Technology via the BIOS for all previous versions of Windows operating systems. For more information on Hyper-Threading Technology, see www.intel.com/info/hyperthreading. Refer to Section 6.1 for Hyper-Threading Technology configuration details.

In addition to supporting all the existing Streaming SIMD Extensions 2 (SSE2), there are 13 new instructions, which further extend the capabilities of Intel processor technology. These new instructions are called Streaming SIMD Extensions 3 (SSE3). These new instructions enhance the performance of optimized applications for the digital home such as video, image processing and media compression technology. 3D graphics and other entertainment applications such as gaming will take advantage of these new instructions as platforms with the Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology and SSE3 become available in the market place.

The processor's Intel NetBurst microarchitecture front side bus (FSB) utilizes a split-transaction, deferred reply protocol like the previous Mobile Intel Pentium 4 processor. The Intel NetBurst microarchitecture front side bus uses Source-Synchronous Transfer (SST) of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 4.3 GB/s.

The processor will feature Enhanced Intel SpeedStep[®] technology, which will enable real-time dynamic switching between multiple voltage and operating frequency points. This results in optimal performance without compromising low power. The processor features the Auto Halt, Stop Grant, Deep Sleep, and Deeper Sleep low power states.

The processor includes an address bus powerdown capability which removes power from the address and data pins when the FSB is not in use. This feature is always enabled on the processor.

1.1 Terminology

A # symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as *address* or data), the # symbol implies that the signal is inverted. For example, D[3:0] = HLHL refers to a hex A, and D[3:0]# = LHLH also refers to a hex A (H= High logic level, L= Low logic level).

Front side bus (FSB) refers to the interface between the processor and system core logic (the chipset components). The FSB is a multiprocessing interface to processors, memory, and I/O.

1.1.1 Processor Packaging Terminology

Commonly used terms are explained here for clarification:

- Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology Processor in the Micro-FCPGA package with a 1-MB L2 cache.
- Processor For this document, the term processor is the generic form of the Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology.
- **Keep-out zone** The area on or near the processor that system design can not utilize.
- Intel 852GM/852GME/852PM chipsets Intel's Portability chipsets which support DDR memory technology for the Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology.
- **Processor core** Processor core die with integrated L2 cache.
- FC-mPGA4 package The Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology is available in a Flip-Chip Micro Pin Grid Array 4 package, consisting of a processor core mounted on a pinned substrate with an integrated heat spreader (IHS). This packaging technology employs a 1.27 mm [0.05 in] pitch for the substrate pins.
- mPGA479 socket The Mobile Intel Pentium 4 processor supporting Hyper-Threading Technology on 90-nm process technology mates with the system board through a surface mount, 479-pin, zero insertion force (ZIF) socket.
- Integrated heat spreader (IHS) —A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.
- Storage Conditions refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor pins should not be connected to any supply voltages, have any I/Os biased, or receive any clocks.

Upon exposure to "free air" (i.e., unsealed packaging or a device removed from packaging material) the processor must handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.

• **Functional operation** — refers to normal operating conditions in which all processor specifications, including DC, AC, FSB, signal quality, mechanical and thermal, are satisfied.

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document:

Table 1-1. References

Document	Reference Number
Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide	253026
Intel® Architecture Software Developer's Manual	
Volume 1: Basic Architecture	253665
Volume 2A: Instruction Set Reference, A-M	253666
Volume 2B: Instruction Set Reference, N=Z	253667
Volume 3: System Programming Guide	253668
ITP700 Debug Port Design Guide	249679

§

Introduction

2 Electrical Specifications

2.1 Power and Ground Pins

For clean on-chip power distribution, the processor has 85 V_{CC} (power) and 179 V_{SS} (ground) pins. All power pins must be connected to V_{CC} , while all V_{SS} pins must be connected to a system ground plane. The processor V_{CC} pins must be supplied the voltage determined by the VID (Voltage identification) pins.

2.2 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Care must be taken in the board design to ensure that the voltage provided to the processor remains within the specifications listed in Table 2-8. Failure to do so can result in timing violations or reduced lifetime of the component. For further information and design guidelines, refer to the *Intel*® 852GME and *Intel*® 852PM Chipset Platforms Design Guide.

2.2.1 Vcc Decoupling

Regulator solutions need to provide bulk capacitance with a low effective series resistance (ESR) and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the large current swings when the part is powering on, or entering/exiting low power states, must be provided by the voltage regulator solution (VR). For more details on this topic, refer to the Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide.

2.2.2 Front Side Bus GTL+ Decoupling

The processor integrates signal termination on the die as well as incorporating high frequency decoupling capacitance on the processor package. Decoupling must also be provided by the system baseboard for proper GTL+ bus operation. For more information, refer to the *Intel*® 852GME and *Intel*® 852PM Chipset Platforms Design Guide.

2.2.3 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the front side bus interface speed as well as the core frequency of the processor. As in previous generation processors, the processor core frequency is a multiple of the BCLK[1:0] frequency. No user intervention is necessary, and the processor will automatically run at the speed indicated on the package. The processor uses a differential clocking implementation.

Table 2-1. Core Frequency to Front Side Bus Multiplier Configuration

Multiplication of System Core Frequency to Front Side Bus Frequency	Core Frequency (133 MHz BCLK/533 MHz FSB)
1/14	1.86 GHz
1/15	2.00 GHz
1/16	2.13 GHz
1/17	2.26 GHz
1/18	2.40 GHz
1/19	2.53 GHz
1/20	2.66 GHz
1/21	2.80 GHz
1/22	2.93 GHz
1/23	3.06 GHz
1/24	3.20 GHz
1/25	3.33 GHz
1/26	3.46 GHz
1/27	3.60 GHz

NOTE: Individual processors operate only at or below the rated frequency.

2.3 Voltage Identification

The voltage set by the VID signals is the reference VR output voltage to be delivered to the processor Vcc pins. A minimum voltage is provided in Table 2-8 and changes with frequency. This allows processors running at a higher frequency to have a relaxed minimum voltage specification. The specifications have been set such that one voltage regulator can work with all supported frequencies.

Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have different VID settings.

The processor uses six voltage identification pins, VID[5:0], to support automatic selection of power supply voltages. Table 2-2 specifies the voltage level corresponding to the state of VID[5:0]. A 1 in this table refers to a high voltage level and a 0 refers to low voltage level. If the processor socket is empty (VID[5:0] = x11111), or the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself.

Power source characteristics must be guaranteed to be stable whenever the supply to the voltage regulator is stable.

The processor's Voltage Identification circuit requires an independent 1.2-V supply and some other power sequencing considerations.

Table 2-2. Voltage Identification Definition

VID5	VID4	VID3	VID2	VID1	VID0	VID	VID5	VID4	VID3	VID2	VID1	VID0	VID
0	0	1	0	1	0	0.8375	0	1	1	0	1	0	1.2125
1	0	1	0	0	1	0.8500	1	1	1	0	0	1	1.2250
0	0	1	0	0	1	0.8625	0	1	1	0	0	1	1.2375
1	0	1	0	0	0	0.8750	1	1	1	0	0	0	1.2500
0	0	1	0	0	0	0.8875	0	1	1	0	0	0	1.2625
1	0	0	1	1	1	0.9000	1	1	0	1	1	1	1.2750
0	0	0	1	1	1	0.9125	0	1	0	1	1	1	1.2875
1	0	0	1	1	0	0.9250	1	1	0	1	1	0	1.3000
0	0	0	1	1	0	0.9375	0	1	0	1	1	0	1.3125
1	0	0	1	0	1	0.9500	1	1	0	1	0	1	1.3250
0	0	0	1	0	1	0.9625	0	1	0	1	0	1	1.3375
1	0	0	1	0	0	0.9750	1	1	0	1	0	0	1.3500
0	0	0	1	0	0	0.9875	0	1	0	1	0	0	1.3625
1	0	0	0	1	1	1.0000	1	1	0	0	1	1	1.3750
0	0	0	0	1	1	1.0125	0	1	0	0	1	1	1.3875
1	0	0	0	1	0	1.0250	1	1	0	0	1	0	1.4000
0	0	0	0	1	0	1.0375	0	1	0	0	1	0	1.4125
1	0	0	0	0	1	1.0500	1	1	0	0	0	1	1.4250
0	0	0	0	0	1	1.0625	0	1	0	0	0	1	1.4375
1	0	0	0	0	0	1.0750	1	1	0	0	0	0	1.4500
0	0	0	0	0	0	1.0875	0	1	0	0	0	0	1.4625
1	1	1	1	1	1	VR output off	1	0	1	1	1	1	1.4750
0	1	1	1	1	1	VR output off	0	0	1	1	1	1	1.4875
1	1	1	1	1	0	1.1000	1	0	1	1	1	0	1.5000
0	1	1	1	1	0	1.1125	0	0	1	1	1	0	1.5125
1	1	1	1	0	1	1.1250	1	0	1	1	0	1	1.5250
0	1	1	1	0	1	1.1375	0	0	1	1	0	1	1.5375
1	1	1	1	0	0	1.1500	1	0	1	1	0	0	1.5500
0	1	1	1	0	0	1.1625	0	0	1	1	0	0	1.5625
1	1	1	0	1	1	1.1750	1	0	1	0	1	1	1.5750
0	1	1	0	1	1	1.1875	0	0	1	0	1	1	1.5875
1	1	1	0	1	0	1.2000	1	0	1	0	1	0	1.6000

2.3.1 Phase Lock Loop (PLL) Power and Filter

 V_{CCA} and $V_{CCIOPLL}$ are power sources required by the PLL clock generators on the processor silicon. Since these PLLs are analog in nature, they require low noise power supplies for minimum jitter. Jitter is detrimental to the system: it degrades external I/O timings as well as internal core timings (i.e., maximum frequency). To prevent this degradation, these supplies must be low pass filtered from V_{CC} .

The AC low-pass requirements, with input at V_{CC} are as follows:

- < 0.2 dB gain in pass band
- < 0.5 dB attenuation in pass band < 1 Hz
- > 34 dB attenuation from 1 MHz to 66 MHz
- > 28 dB attenuation from 66 MHz to core frequency

The filter requirements are illustrated in Figure 2-1. For recommendations on implementing the filter refer to the *Intel*[®] 852GME and *Intel*[®] 852PM Chipset Platforms Design Guide.

O.2 dB
O dB
-0.5 dB

forbidden
zone

The state of the sta

high frequency

band

Figure 2-1. Phase Lock Loop (PLL) Filter Requirements

NOTES:

- 1. Diagram not to scale.
- 2. No specification exists for frequencies beyond fcore (core frequency).
- 3. fpeak, if existent, should be less than 0.05 MHz.

passband

2.4 Reserved, Unused, and TESTHI Pins

All RESERVED pins must remain unconnected. Connection of these pins to V_{CC} , V_{SS} , or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 4 for a pin listing of the processor and the location of all RESERVED pins.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. In a system level design, on-die termination has been included on the processor to allow signals to be terminated within the processor silicon. Most unused GTL+ inputs should be left as no connects, as GTL+ termination is provided on the processor silicon. However, see Table 2-4 for details on GTL+ signals that do not include on-die termination. Unused active high inputs should be connected through a resistor to ground (V_{ss}). Unused outputs can be left unconnected, however this may interfere with some test access port (TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. For unused GTL+ input or I/O signals, use pull-up resistors of the same value as the on-die termination resistors (R_{TT}).

TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die termination. Inputs and used outputs must be terminated on the system board. Unused outputs may be terminated on the system board or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing. Signal termination for these signal types is discussed in the *Intel*[®] 852GME and *Intel*[®] 852PM Chipset Platforms Design Guide.

The TESTHI pins must be tied to the processor V_{CC} using a matched resistor, where a matched resistor has a resistance value within +/-20% of the impedance of the board transmission line traces. For example, if the trace impedance is 60 Ω , then a value between 48 Ω and 72 Ω is required.

The TESTHI pins may use individual pull-up resistors or be grouped together as detailed below. A matched resistor should be used for each group:

- TESTHI[1:0]
- TESTHI[7:2]
- TESTHI8 cannot be grouped with other TESTHI signals
- TESTHI9 cannot be grouped with other TESTHI signals
- TESTHI10 cannot be grouped with other TESTHI signals
- TESTHI11 cannot be grouped with other TESTHI signals

2.5 Front Side Bus Signal Groups

The front side bus signals have been combined into groups by buffer type. GTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "GTL+ Input" refers to the GTL+ input group as well as the GTL+ I/O group when receiving. Similarly, "GTL+ Output" refers to the GTL+ output group as well as the GTL+ I/O group when driving.

Electrical Specifications

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 2-3 identifies which signals are common clock, source synchronous, and asynchronous.

Table 2-3. Front Side Bus Pin Groups

Signal Group	Туре	Signals ¹					
GTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#					
GTL+ Common Clock I/O	Synchronous to BCLK[1:0]	AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]#, BR0#, DBSY#, DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#, MCERR#					
		Signals Associated Strobe					
		REQ[4:0]#, A[16:3]# ³ ADSTB0#					
GTL+ Source Synchronous I/O	Synchronous to assoc. strobe	A[35:17]# ³ ADSTB1#					
Synomonodo i/O	Strobe	D[15:0]#, DBI0# DSTBP0#, DSTBN0#					
		D[31:16]#, DBI1# DSTBP1#, DSTBN1#					
		D[47:32]#, DBI2# DSTBP2#, DSTBN2#					
		D[63:48]#, DBI3# DSTBP3#, DSTBN3#					
GTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#					
Asynchronous GTL+ Input		A20M#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#, SLP#, STPCLK#					
Asynchronous GTL+ Output		FERR#/PBE#, IERR#, THERMTRIP#					
Asynchronous GTL+ Input/Output		PROCHOT#					
TAP Input	Synchronous to TCK	TCK, TDI, TMS, TRST#					
TAP Output	Synchronous to TCK	TDO					
Front Side Bus Clock	Clock	BCLK[1:0], ITP_CLK[1:0] ²					
Power/Other		V _{CC} , VCCA, VCCIOPLL, VID[5:0], VSS, VSSA, GTLREF[3:0], COMP[1:0], RESERVED, TESTHI[11:0], THERMDA, THERMDC, VCC_SENSE, VSS_SENSE, VCCVID, VCCVIDLB, BSEL[1:0], SKTOCC#, DBR# ² , VIDPWRGD, BOOTSELECT, OPTIMIZED/COMPAT# PWRGOOD					

- 1. Refer to Section 4.2 for signal descriptions.
- In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.
- The value of these pins during the active-to-inactive edge of RESET# defines the processor configuration options. See Section 6.1 for details.

Table 2-4. Signal Description Table

Signals with R _{TT}	Signals with no R _{TT}
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, BNR#, BOOTSELECT ² , BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#, HITM#, LOCK#, MCERR#, OPTIMIZED/COMPAT# ² , PROCHOT#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY#	A20M#, BCLK[1:0], BPM[5:0]#, BR0#, BSEL[1:0], COMP[1:0], DPSLP#, FERR#/PBE#, IERR#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, PWRGOOD, RESET#, SKTOCC#, SLP#, SMI#, STPCLK#, TDO, TESTHI[11:0], THERMDA, THERMDC, THERMTRIP#, VID[5:0], VIDPWRGD, GTLREF[3:0], TCK, TDI, TRST#, TMS
Open Drain Signals ¹	
BSEL[1:0], VID[5:0], THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#, BR0#, TDO	

NOTES:

- 1. Signals that do not have $\mathbf{R}_{\mathrm{TT}},$ nor are actively driven to their high-voltage level.
- 2. The OPTIMIZED/COMPAT# and BOOTSELECT pins have a 500-5000 Ω pullup to VCCVID rather than R_{TT}.

Table 2-5. Signal Reference Voltages

GTLREF	V _{cc} /2	VCCVID/2
BPM[5:0]#, LINT0/INTR, LINT1/NMI, RESET#, BINIT#, BNR#, HIT#, HITM#, MCERR#, PROCHOT#, BR0#, A[35:0]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY#	A20M#, DPSLP#, IGNNE#, INIT#, PWRGOOD ¹ , SLP#, SMI#, STPCLK#, TCK ¹ , TDI ¹ , TMS ¹ , TRST# ¹	VIDPWRGD, BOOTSELECT, OPTIMIZED/ COMPAT#

NOTE: These signals also have hysteresis added to the reference voltage. See Table 2-12 for more information.

2.6 Asynchronous GTL+ Signals

Legacy input signals such as A20M#, DPSLP#, IGNNE#, INIT#, SMI#, SLP#, and STPCLK# utilize CMOS input buffers. All of these signals follow the same DC requirements as GTL+ signals, however the outputs are not actively driven high (during a logical 0 to 1 transition) by the processor. These signals do not have setup or hold time specifications in relation to BCLK[1:0].

2.7 Test Access Port (TAP) Connection

Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is recommended that the processor be first in the TAP chain and followed by any other components within the system. A translation buffer should be used to connect to the rest of the chain unless one of the other components is capable of accepting an input of the appropriate voltage level. Similar considerations must be made for TCK, TMS, TRST#, TDI, and TDO. Two copies of each signal may be required, with each driving a different voltage level.

2.8 Front Side Bus Frequency Select Signals (BSEL[1:0])

The BSEL[1:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). Table 2-6 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset, and clock synthesizer. All agents must operate at the same frequency.

The processor currently operates at a 533-MHz front side bus frequency (selected by a 133-MHz BCLK[1:0] frequency). Individual processors will only operate at their specified front side bus frequency.

For more information about these pins refer to Section 4.2 and the appropriate platform design guidelines.

Table 2-6. BSEL[1:0] Frequency Table for BCLK[1:0]

BSEL1	BSEL0	Function
L	L	RESERVED
L	Н	133 MHz
Н	L	RESERVED
Н	Н	RESERVED

2.9 Absolute Maximum and Minimum Ratings

Table 2-7 specifies absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 2-7. Absolute Maximum and Minimum Ratings

Symbol	Parameter	Parameter Min		Unit	Notes
V _{cc}	Any processor supply voltage with respect to V _{SS}	- 0.3	1.55	V	1, 2
T _C	Processor case temperature	See Section 5	See Section 5	°C	3, 4
TSTORAGE	Processor storage temperature	-10	+45	°C	3, 4, 5

NOTES:

- For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.
- Overshoot and undershoot voltage guidelines for input, output and I/O signals are outlined in Section 3. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.
- 3. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the longterm reliability of the device. For functional operation, please refer to the processor case temperature specifications.
- 4. This rating applies to the processor and does not include any tray or packaging.
- 5. Contact Intel for storage requirements in excess of one year.

2.10 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core silicon and not at the package pins unless noted otherwise. See Section 4 for the pin signal definitions and signal pin assignments. Most of the signals on the processor front side bus are in the GTL+ signal group. The DC specifications for these signals are listed in Table 2-10.

Previously, legacy signals and Test Access Port (TAP) signals to the processor used low-voltage CMOS buffer types. However, these interfaces now follow DC specifications similar to GTL+. The DC specifications for these signal groups are listed in Table 2-11 and Table 2-12.

Table 2-8 through Table 2-16 list the DC specifications for the processor and are valid only while meeting specifications for case temperature, clock frequency, and input voltages. Care should be taken to read all notes associated with each parameter.

2.10.1 Fixed Mobile Solution (FMS)

The FMS guidelines are estimates of the maximum values the mobile processor will have over certain time periods. The values are only estimates and actual specifications for future processors may differ. The processor may or may not have specifications equal to the FMS value in the foreseeable future. System designers should meet the FMS values to ensure their systems will be compatible with future releases of the mobile processor.

Table 2-8. Voltage and Current Specifications

Symbol		Parameter	Min	Тур	Max	Unit	Notes ²
HFM VID	VID range	for HFM (Highest Frequency Mode)	1.250		1.400	V	1
LFM VID	VID for LFM (Lowest Frequency Mode)		N/A	1.150	N/A	V	
VID Transition	VID ste	ep size during a transition	N/A	N/A	± 12.5	mV	12
V _{CC}	V _{cc}	for FMS0.5 processors		ble and e 2-2	VID - I _{CC} (max) * 1.45 mΩ	V	3, 4, 5
	Processor Number	Core Frequency					
		I _{cc} for processor with VID = 1.15 V: 1.86 GHz			44		
I _{cc}	518 532 538 548 552	I _{cc} for processor with multiple VID: 2.80 GHz 3.06 GHz 3.20 GHz 3.33 GHz 3.46 GHz FMS0.5			80 80 80 80 80 80	A	7, 10
V _{CCDPRSLP}	Static and T	ransient Deeper Sleep Voltage	0.95	1.0	1.05	V	2, 3
	Processor Number	Core Frequency					
		I _{cc} Stop-Grant 1.86 GHz			31		
I _{SGNT}	518 532 538 548 552	2.80 GHz 3.06 GHz 3.20 GHz 3.33 GHz 3.46 GHz			40 40 40 40 40	A	6, 9, 13
I _{TCC}		I _{CC} TCC active			I _{cc}	Α	8
I _{CC_VCCA}		I _{CC} for PLL pins			60	mA	11
I _{CC_VCCIOPLL}		I _{CC} for I/O PLL pin			60	mA	11
I _{CC_GTLREF}	I _{CC} fo	GTLREF pins (all pins)			200	μА	
I _{CC_VCCVID/} VCCVIDLB	I _{cc} fo	or VCCVID/VCCVIDLB			150	mA	11

- 1. Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have different VID settings.
- 2. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date.

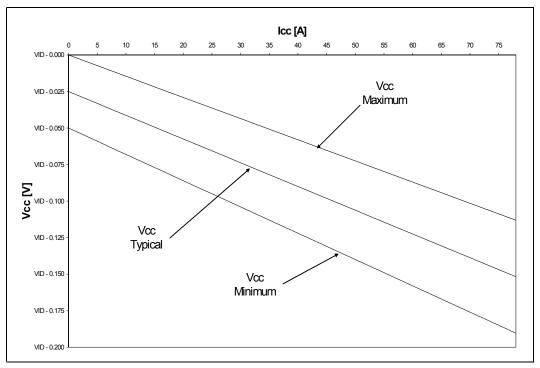
- 3. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.3 and Table 2-2 for more information.
- 4. The voltage specification requirements are measured across V_{CC_SENSE} and V_{SS_SENSE} pins at the socket with a 100MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 M Ω minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.
- 5. Refer to Table, Table 2-9, and Figure 2-2 for the minimum, typical, and maximum V_{CC} allowed for a given current. The processor should not be subjected to any V_{CC} and I_{CC} combination wherein V_{CC} exceeds V_{CC_MAX} for a given current. Moreover, V_{CC} should never exceed the VID voltage. Failure to adhere to this specification can shorten the processor lifetime.
- 6. The current specified is also for AutoHALT State.
- 7. FMS is the Fixed Mobile Solution guideline. These guidelines are for estimation purposes only. See Section 2.10.1 for further details on FMS guidelines
- 8. The maximum instantaneous current the processor will draw while the thermal control circuit is active as indicated by the assertion of PROCHOT# is the same as the maximum I_{CC} for the processor.
- 9. I_{CC} Stop-Grant and I_{CC} Sleep are specified at $V_{CC_MAX.}$
- 10. $I_{\rm CC_MAX}$ is specified at $V_{\rm CC_MAX}$.

 11. These parameters are based on design characterization and are not tested.
- 12. This specification represents the V_{CC} reduction due to each VID transition. See Section 2.3. AC timing requirements will be included in future revisions of this document.
- 13. The specifications for the Battery Optimized Mode (1.86 GHz at 1.15 VID) are not 100% tested. These specifications are determined by characterization of the processor currents at higher voltage and frequency and extrapolating the values for the Battery Optimized mode voltage and frequency.

Vcc Static and Transient Tolerance

Inc (A)	Voltage Deviation from VID Setting (V) ^{1,2,3}						
Icc (A)	Maximum	Typical	Minimum				
0	0.000	-0.025	-0.050				
5	-0.007	-0.033	-0.059				
10	-0.015	-0.041	-0.068				
15	-0.022	-0.049	-0.077				
20	-0.029	-0.058	-0.086				
25	-0.036	-0.066	-0.095				
30	-0.044	-0.074	-0.104				
35	-0.051	-0.082	-0.113				
40	-0.058	-0.090	-0.122				
45	-0.065	-0.098	-0.131				
50	-0.073	-0.106	-0.140				
55	-0.080	-0.114	-0.149				
60	-0.087	-0.123	-0.158				
65	-0.094	-0.131	-0.167				
70	-0.102	-0.139	-0.176				
75	-0.109	-0.147	-0.185				
80	-0.116	-0.155	-0.194				

- 1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.11.
- 2. This table is intended to aid in reading discrete points on Figure 2-2.
- 3. The loadlines specify voltage limits at the die measured at the V_{CC SENSE} and V_{SS SENSE} pins.
- 4. Voltage regulation feedback for voltage regulator circuits must be taken from processor V_{CC} and V_{SS} pins.


Table 2-9. V_{CC} Core Deep Sleep State Voltage Regulator Static and Transient Tolerance (Deep Sleep VID Offset = 1.7%)

Inc (A)	Voltage Deviation from (VID Setting - 1.7% of VID Setting) (V) ^{1,2,3,4}							
Icc (A)	Maximum	Typical	Minimum					
0	0.000	-0.025	-0.050					
5	-0.007	-0.033	-0.059					
10	-0.015	-0.041	-0.068					
15	-0.022	-0.049	-0.077					
20	-0.029	-0.058	-0.086					
25	-0.036	-0.066	-0.095					
30	-0.044	-0.074	-0.104					
35	-0.051	-0.082	-0.113					
40	-0.058	-0.090	-0.122					

NOTES:

- 1. The loadline specifications include both static and transient limits.
- 2. This table is intended to aid in reading discrete points on Figure 2-2.
- 3. The loadlines specify voltage limits at the die measured at the V_{CC_SENSE} and V_{SS_SENSE} pins. Voltage regulation feedback for voltage regulator circuits must be taken from processor V_{CC} and V_{SS} pins.
- 4. The voltage used in Deep Sleep mode must first be offset by 1.7% from the VID setting before reading the voltage deviation on respective loadline.

Figure 2-2. Vcc Static and Transient Tolerance^{1, 2, 3}

- 1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.11.
- 2. This loadline specification shows the deviation from the VID set point.

3. The loadlines specify voltage limits at the die measured at the $V_{\text{CC_SENSE}}$ and $V_{\text{SS_SENSE}}$ pins. Voltage regulation feedback for voltage regulator circuits must be taken from processor V_{CC} and V_{SS} pins.

Table 2-10. GTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
VIL	Input Low Voltage	0.0	GTLREF - (0.10 * V _{CC})	V	2, 6
VIH	Input High Voltage	GTLREF + (0.10 * V _{cc})	V _{cc}	٧	3, 4, 6
Vон	Output High Voltage	0.90*V _{CC}	V _{cc}	V	4, 6
lol	Output Low Current	N/A	$V_{\rm CC}^{\prime}/$ [(0.50*R _{TT_MIN})+(R _{ON_MIN})]	Α	
lu	Input Leakage Current	N/A	± 200	μΑ	7
llo	Output Leakage Current	N/A	± 200	μΑ	8
Ron	Buffer On Resistance	8	12	Ω	5

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. V_{IL} is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.
- 3. V_{IH} is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.
- 4. Viii and V_{OH} may experience excursions above V_{CC}. However, input signal drivers must comply with the signal quality specifications.
- 5. Refer to processor I/O Buffer Models for I/V characteristics.
- 6. The V_{CC} referred to in these specifications is the instantaneous V_{CC} .
- 7. Leakage to $V_{\rm SS}$ with pin held at $V_{\rm CC}$. 8. Leakage to $V_{\rm CC}$ with pin held at 300 mV.

Table 2-11. Asynchronous GTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
VIL	Input Low Voltage	0.0	V _{CC} /2 - (0.10 * V _{CC})		3, 11
ViH	Input High Voltage	V _{CC} /2 + (0.10 * V _{CC})	V _{cc}		4, 5, 7, 11
Vон	Output High Voltage	0.90*V _{CC}	V _{CC}	V	2, 5, 7
lol	Output Low Current		$V_{CC}/[(0.50*R_{TT_MIN})+(R_{ON_MIN})]$	Α	8
lu	Input Leakage Current	N/A	± 200	μΑ	9
I _{LO}	Output Leakage Current	N/A	± 200	μΑ	10
Ron	Buffer On Resistance	8	12	Ω	6

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. All outputs are open drain.
- 3. V_{IL} is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.
- 4. V_{IH} is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.
- 5. Refer to the processor I/O Buffer Models for I/V characteristics.
- 6. The V_{CC} referred to in these specifications refers to instantaneous V_{CC} .
- 7. The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test load.
- 8. Leakage to Vss with pin held at Vcc
- 9. Leakage to V_{CC} with pin held at 300 mV.
- 10.LINT0/INTR and LINT1/NMI use GTLREF as a reference voltage. For these two signals V_{IH} = GTLREF + $(0.10 * V_{CC})$ and $V_{II} = GTLREF - (0.10 * Vcc)$.

Table 2-12. PWRGOOD and TAP Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ^{1, 2}
VHYS	Input Hysteresis	200	350	mV	7
V _T +	Input low to high threshold voltage	0.5 * (V _{CC} + VHYS_MIN)	0.5 * (V _{CC} + VHYS_MAX)	V	5
VT-	Input high to low threshold voltage	0.5 * (V _{CC} - VHYS_MAX)	0.5 * (V _{CC} - VHYS_MIN)	٧	5
Vон	Output High Voltage	N/A	V _{cc}	V	3, 5
lol	Output Low Current		45	mA	6
ILI	Input Leakage Current		± 200	μΑ	
I _{LO}	Output Leakage Current		± 200	μA	
Ron	Buffer On Resistance	7	12	Ω	4

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. All outputs are open drain.
- 3. Refer to the processor I/O Buffer Models for I/V characteristics.
- 4. The V_{CC} referred to in these specifications refers to instantaneous V_{CC}.
 5. The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test load.
- 6. V_{HYS} represents the amount of hysteresis, nominally centered about 0.5 * V_{CC} for all TAP inputs. 7. Leakage to Vss with pin held at V_{CC} . 8. Leakage to V_{CC} with Pin held at 300 mV.

Table 2-13. VCCVID DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VCCVID	Voltage	1.14	1.2	1.26	V	
VCCVIDLB	Voltage	1.14	1.2	1.26	V	

Table 2-14. VIDPWRGD DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VIL	Input Low Voltage			0.3	V	
ViH	Input High Voltage	0.9				

Table 2-15. BSEL [1:0] and VID[5:0] DC Specifications

Symbol	Parameter	Max	Unit	Notes ¹
R _{ON} (BSEL)	Buffer On Resistance	60	Ω	2
R _{ON} (VID)	Buffer On Resistance	60	Ω	2
I _{OL}	Max Pin Current	8	mA	
I _{LO}	Output Leakage Current	200	μΑ	3
V _{TOL}	Voltage Tolerance	3.3 + 5%	V	

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. These parameters are not tested and are based on design simulations.
- 3. Leakage to Vss with pin held at 2.5 V.

Table 2-16. BOOTSELECT DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{IL}	Input Low Voltage			0.2 * VCCVID	V	1
V _{IH}	Input High Voltage	0.8 * VCCVID		60	V	1

NOTE: These parameters are not tested and are based on design simulations.

2.11 V_{CC} Overshoot Specification

The processor can tolerate short transient overshoot events where V_{CC} exceeds the VID voltage when transitioning from a high to low current load condition. This overshoot cannot exceed VID + V_{OS_MAX} (V_{OS_MAX} is the maximum allowable overshoot voltage). The time duration of the overshoot event must not exceed T_{OS_MAX} (T_{OS_MAX} is the maximum allowable time duration above VID). These specifications apply to the processor die voltage as measured across the VCC_SENSE and VSS_SENSE pins.

Table 2-17. V_{CC} Overshoot Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Figure	Notes
V _{OS_MAX}	Magnitude of $V_{\rm CC}$ overshoot above VID			0.050	V	2-3	
T _{OS_MAX}	Time duration of $V_{\rm CC}$ overshoot above VID			25	μS	2-3	

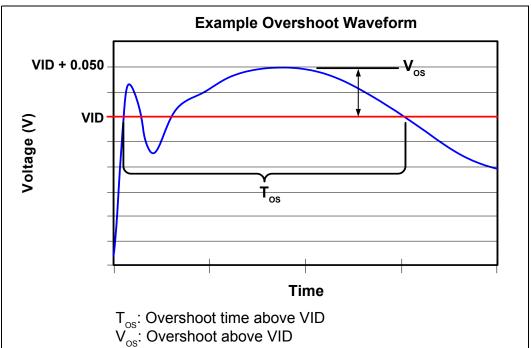


Figure 2-3. V_{CC} Overshoot Example Waveform

NOTES:

- 1. Vos is measured overshoot voltage.
- 2. Tos is measured time duration above VID.

2.11.1 Die Voltage Validation

Overshoot events from application testing on real processors must meet the specifications in Table 2-17 when measured across the VCC_SENSE and VSS_SENSE pins. Overshoot events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot should be taken with a 100-MHz bandwidth limited oscilloscope.

ξ

3 Package Mechanical Specifications

3.1 Package Mechanical Specifications

The Mobile processor is packaged in a Flip-Chip Pin Grid Array (FC-mPGA4) package that interfaces with the motherboard via a mPGA479 socket. The package consists of a processor core mounted on a substrate pin carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surface for processor component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor package components and how they are assembled together. Refer to the mPGA479, mPGA478A, mPGA478B, mPGA478C, and mPGA476 Socket Design Guidelines for complete details on the mPGA479 socket.

The package components shown in Figure 3-1 include the following:

- 1. Integrated Heat Spreader (IHS)
- 2. Thermal Interface Material (TIM)
- 3. Processor core (die)
- 4. Package substrate
- 5. Capacitors

Figure 3-1. Processor Package Assembly Sketch

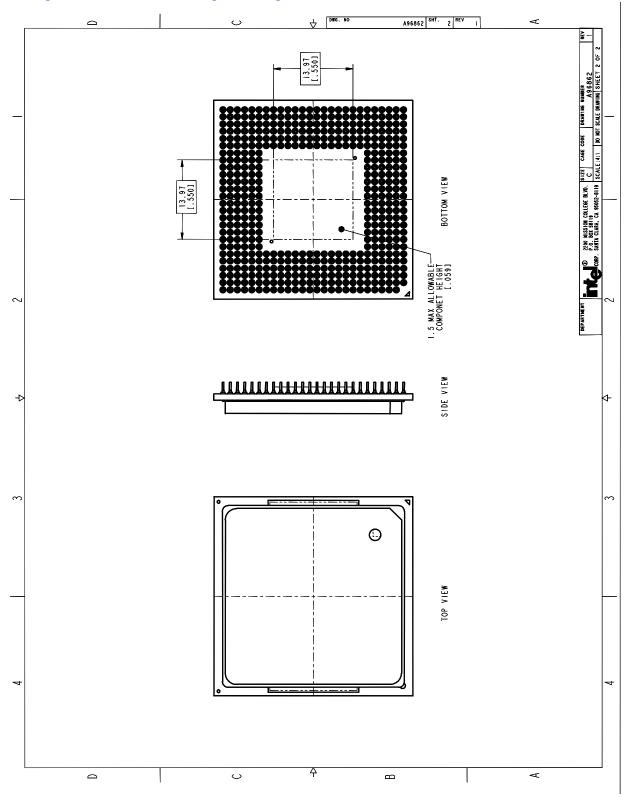
NOTE: Socket and motherboard are included for reference and are not part of processor package.

Package Mechanical Drawing 3.1.1

The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The drawings include dimensions necessary to design a thermal solution for the processor. These dimensions include:

- 1. Package reference with tolerances (total height, length, width, etc.)
- 2. IHS parallelism and tilt
- 3. Pin dimensions
- 4. Top-side and back-side component keep-out dimensions
- 5. Reference datums

All drawing dimensions are in mm [in].


Figure 3-2. Processor Package Drawing Sheet 1 of 2 A96862 SHT. 1 REV CORP. SMITA CLARA, CA 95052-8119 Ø0,356 [0.014] A B C Ø0,254 [0.010] A **ENTS DRAWING** BOTTOM VIEW ر2 F2 5 <u>-</u> SIDE VIEW mmmmmmm ₽ ⋖-// 0.203 [.008] A HS LID HIS LIP IHS SEALANT— PACKAGE SUBSTRATE-

 \circ

⋖

Figure 3-3. Processor Package Drawing Sheet 2 of 2

3.1.2 Processor Component Keep-Out Zones

The processor may contain components on the substrate that define component keep-out zone requirements. A thermal and mechanical solution design must not intrude into the required keep-out zones. Decoupling capacitors are typically mounted to either the topside or pin-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep-out zones.

The location and quantity of package capacitors may change due to manufacturing efficiencies but will remain within the component keep-in.

3.1.3 Package Loading Specifications

Table 3-1 provides dynamic and static load specifications for the processor package. These mechanical maximum load limits should not be exceeded during heatsink assembly, shipping conditions, or standard use condition. Also, any mechanical system or component testing should not exceed the maximum limits. The processor package substrate should not be used as a mechanical reference or load-bearing surface for thermal and mechanical solution. The minimum loading specification must be maintained by any thermal and mechanical solutions.

Table 3-1. Processor Loading Specifications

Parameter	Minimum	Maximum	Notes
Static	44 N [10 lbf]	445 N [100 lbf]	1, 2, 3
Dynamic		890 N [200 lbf]	1, 3, 4
Transient		667 N [150 lbf]	1, 3, 5

NOTES:

- 1. These specifications apply to uniform compressive loading in a direction normal to the processor IHS.
- This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the minimum specified load on the processor package.
- 3. These specifications are based on limited testing for design characterization. Loading limits are for the package only and does not include the limits of the processor socket.
- 4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement.
- 5. Transient loading is defined as a 2 second duration peak load superimposed on the static load requirement, representative of loads experienced by the package during heatsink installation.

3.1.4 Package Handling Guidelines

Table 3-2 includes a list of guidelines on package handling in terms of recommended maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal.

Table 3-2. Package Handling Guidelines

Parameter	Maximum Recommended	Notes
Shear	356 N [80 lbf]	1, 4
Tensile	156 N [35 lbf]	2, 4
Torque	8 N-m [70 lbf-in]	3, 4

- 1. A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.
- 2. A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.

- 3. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top surface
- 4. These guidelines are based on limited testing for design characterization.

3.1.5 **Package Insertion Specifications**

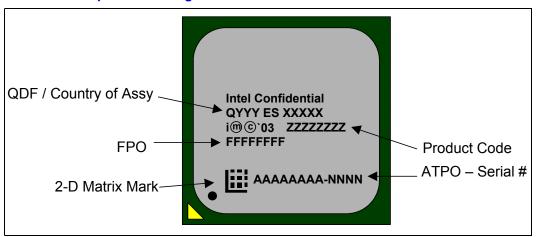
The processor can be inserted into and removed from a mPGA479 socket 15 times. The socket should meet the mPGA479 requirements detailed in the mPGA479, mPGA478A, mPGA478B, mPGA478C, and mPGA476 Socket Design Guidelines.

3.1.6 **Processor Mass Specification**

The typical mass of the processor is 19 g [0.67 oz]. This mass [weight] includes all the components that are included in the package.

3.1.7 **Processor Materials**

Table 3-3 lists some of the package components and associated materials.

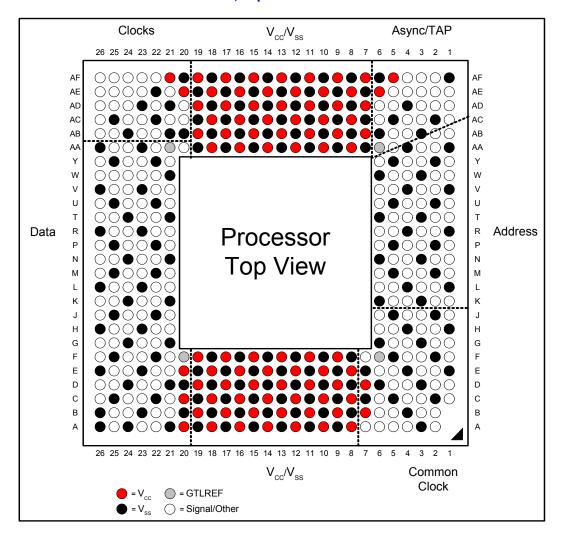

Table 3-3. Processor Materials

Component	Material
Integrated Heat Spreader (IHS)	Nickel Plated Copper
Substrate	Fiber Reinforced Resin
Substrate Pins	Gold Plated Copper

3.1.8 **Processor Markings**

Figure 3-4 shows the topside markings on the processor. These diagrams are to aid in the identification of the processor.

Figure 3-4. Processor Top-Side Markings



3.1.9 Processor Pin-Out Coordinates

Figure 3-5 shows the top view of the processor pin coordinates. The coordinates are referred to throughout the document to identify processor pins.

Figure 3-5. Processor Pin-Out Coordinates, Top View

Package Mechanical Specifications

4 Pin Listing and Signal Descriptions

4.1 Processor Pin Assignments

This chapter provides the processor pinout and signal description. Table 4-1 provides the pinout arranged alphabetically by signal name and Table 4-2 provides the pinout arranged numerically by pin number. The pinout footprint is shown in Figure 4-1 and Figure 4-2.

Table 4-1. Alphabetical Pin Assignments

Pin Name	Pin Number	Signal Buffer Type	Direction
A03#	K2	Source Synch	Input/Output
A04#	K4	Source Synch	Input/Output
A05#	L6	Source Synch	Input/Output
A06#	K1	Source Synch	Input/Output
A07#	L3	Source Synch	Input/Output
A08#	M6	Source Synch	Input/Output
A09#	L2	Source Synch	Input/Output
A10#	M3	Source Synch	Input/Output
A11#	M4	Source Synch	Input/Output
A12#	N1	Source Synch	Input/Output
A13#	M1	Source Synch	Input/Output
A14#	N2	Source Synch	Input/Output
A15#	N4	Source Synch	Input/Output
A16#	N5	Source Synch	Input/Output
A17#	T1	Source Synch	Input/Output
A18#	R2	Source Synch	Input/Output
A19#	P3	Source Synch	Input/Output
A20#	P4	Source Synch	Input/Output
A21#	R3	Source Synch	Input/Output
A22#	T2	Source Synch	Input/Output
A23#	U1	Source Synch	Input/Output
A24#	P6	Source Synch	Input/Output
A25#	U3	Source Synch	Input/Output
A26#	T4	Source Synch	Input/Output
A27#	V2	Source Synch	Input/Output
A28#	R6	Source Synch	Input/Output
A29#	W1	Source Synch	Input/Output
A30#	T5	Source Synch	Input/Output

Pin Name	Pin Number	Signal Buffer Type	Direction
A31#	U4	Source Synch	Input/Output
A32#	V3	Source Synch	Input/Output
A33#	W2	Source Synch	Input/Output
A34#	Y1	Source Synch	Input/Output
A35#	AB1	Source Synch	Input/Output
A20M#	C6	Asynch GTL+	Input
ADS#	G1	Common Clock	Input/Output
ADSTB0#	L5	Source Synch	Input/Output
ADSTB1#	R5	Source Synch	Input/Output
AP0#	AC1	Common Clock	Input/Output
AP1#	V5	Common Clock	Input/Output
BCLK0	AF22	Bus Clock	Input
BCLK1	AF23	Bus Clock	Input
BINIT#	AA3	Common Clock	Input/Output
BNR#	G2	Common Clock	Input/Output
BOOTSELECT	AD1	Power/Other	Input
BPM0#	AC6	Common Clock	Input/Output
BPM1#	AB5	Common Clock	Input/Output
BPM2#	AC4	Common Clock	Input/Output
ВРМ3#	Y6	Common Clock	Input/Output
BPM4#	AA5	Common Clock	Input/Output
BPM5#	AB4	Common Clock	Input/Output
BPRI#	D2	Common Clock	Input
BR0#	H6	Common Clock	Input/Output
BSEL0	AD6	Power/Other	Output
BSEL1	AD5	Power/Other	Output
COMP0	L24	Power/Other	Input
COMP1	P1	Power/Other	Input

Pin Listing and Signal Descriptions

Pin Name	Pin Number	Signal Buffer Type	Direction	Pin Name	Nu
D0#	B21	Source Synch	Input/Output	D39#	N25
D01#	B22	Source Synch	Input/Output	D40#	R21
D02#	A23	Source Synch	Input/Output	D41#	P24
D03#	A25	Source Synch	Input/Output	D42#	R25
D04#	C21	Source Synch	Input/Output	D43#	R24
D05#	D22	Source Synch	Input/Output	D44#	T26
D06#	B24	Source Synch	Input/Output	D45#	T25
D07#	C23	Source Synch	Input/Output	D46#	T22
D08#	C24	Source Synch	Input/Output	D47#	T23
D09#	B25	Source Synch	Input/Output	D48#	U26
D10#	G22	Source Synch	Input/Output	D49#	U24
D11#	H21	Source Synch	Input/Output	D50#	U23
D12#	C26	Source Synch	Input/Output	D51#	V25
D13#	D23	Source Synch	Input/Output	D52#	U21
D14#	J21	Source Synch	Input/Output	D53#	V22
D15#	D25	Source Synch	Input/Output	D54#	V24
D16#	H22	Source Synch	Input/Output	D55#	W26
D17#	E24	Source Synch	Input/Output	D56#	Y26
D18#	G23	Source Synch	Input/Output	D57#	W25
D19#	F23	Source Synch	Input/Output	D58#	Y23
D20#	F24	Source Synch	Input/Output	D59#	Y24
D21#	E25	Source Synch	Input/Output	D60#	Y21
D22#	F26	Source Synch	Input/Output	D61#	AA2
D23#	D26	Source Synch	Input/Output	D62#	AA2
D24#	L21	Source Synch	Input/Output	D63#	AA2
D25#	G26	Source Synch	Input/Output	DBI0#	E21
D26#	H24	Source Synch	Input/Output	DBI1#	G25
D27#	M21	Source Synch	Input/Output	DBI2#	P26
D28#	L22	Source Synch	Input/Output	DBI3#	V21
D29#	J24	Source Synch	Input/Output	DBR#	AE2
D30#	K23	Source Synch	Input/Output	DBSY#	H5
D31#	H25	Source Synch	Input/Output	DEFER#	E2
D32#	M23	Source Synch	Input/Output	DP0#	J26
D33#	N22	Source Synch	Input/Output	DP1#	K25
D34#	P21	Source Synch	Input/Output	DP2#	K26
D35#	M24	Source Synch	Input/Output	DP3#	L25
D36#	N23	Source Synch	Input/Output	DPSLP#	AD2
D37#	M26	Source Synch	Input/Output	DRDY#	H2
D38#	N26	Source Synch	Input/Output	DSTBN0#	E22
				DSTBN1#	K22

Pin Name	Pin Number	Signal Buffer Type	Direction
D39#	N25	Source Synch	Input/Output
D40#	R21	Source Synch	Input/Output
D41#	P24	Source Synch	Input/Output
D42#	R25	Source Synch	Input/Output
D43#	R24	Source Synch	Input/Output
D44#	T26	Source Synch	Input/Output
D45#	T25	Source Synch	Input/Output
D46#	T22	Source Synch	Input/Output
D47#	T23	Source Synch	Input/Output
D48#	U26	Source Synch	Input/Output
D49#	U24	Source Synch	Input/Output
D50#	U23	Source Synch	Input/Output
D51#	V25	Source Synch	Input/Output
D52#	U21	Source Synch	Input/Output
D53#	V22	Source Synch	Input/Output
D54#	V24	Source Synch	Input/Output
D55#	W26	Source Synch	Input/Output
D56#	Y26	Source Synch	Input/Output
D57#	W25	Source Synch	Input/Output
D58#	Y23	Source Synch	Input/Output
D59#	Y24	Source Synch	Input/Output
D60#	Y21	Source Synch	Input/Output
D61#	AA25	Source Synch	Input/Output
D62#	AA22	Source Synch	Input/Output
D63#	AA24	Source Synch	Input/Output
DBI0#	E21	Source Synch	Input/Output
DBI1#	G25	Source Synch	Input/Output
DBI2#	P26	Source Synch	Input/Output
DBI3#	V21	Source Synch	Input/Output
DBR#	AE25	Power/Other	Output
DBSY#	H5	Common Clock	Input/Output
DEFER#	E2	Common Clock	Input
DP0#	J26	Common Clock	Input/Output
DP1#	K25	Common Clock	Input/Output
DP2#	K26	Common Clock	Input/Output
DP3#	L25	Common Clock	Input/Output
DPSLP#	AD25	Asynch GTL+	Input
DRDY#	H2	Common Clock	Input/Output
DSTBN0#	E22	Source Synch	Input/Output
DSTBN1#	K22	Source Synch	Input/Output

Pin Name	Pin Number	Signal Buffer Type	Direction	Pin Name	Pin Number	Signal Buffer Type	Direction
DSTBN2#	R22	Source Synch	Input/Output	RS2#	F4	Common Clock	Input
DSTBN3#	W22	Source Synch	Input/Output	RSP#	AB2	Common Clock	Input
DSTBP0#	F21	Source Synch	Input/Output	SKTOCC#	AF26	Power/Other	Output
DSTBP1#	J23	Source Synch	Input/Output	SLP#	AB26	Asynch GTL+	Input
DSTBP2#	P23	Source Synch	Input/Output	SMI#	B5	Asynch GTL+	Input
DSTBP3#	W23	Source Synch	Input/Output	STPCLK#	Y4	Asynch GTL+	Input
FERR#/ PBE#	B6	Asynch AGL+	Output	тск	D4	TAP	Input
GTLREF	AA21	Power/Other	Input	TDI	C1	TAP	Input
GTLREF	AA6	Power/Other	Input	TDO	D5	TAP	Output
GTLREF	F20	Power/Other	Input	TESTHI0	AD24	Power/Other	Input
GTLREF	F6	Power/Other	Input	TESTHI1	AA2	Power/Other	Input
HIT#	F3	Common Clock	Input/Output	TESTHI10	Y3	Power/Other	Input
HITM#	E3	Common Clock	Input/Output	TESTHI11	A6	Power/Other	Input
IERR#	AC3	Asynch GTL+	Output	TESTHI2	AC21	Power/Other	Input
IGNNE#	B2	Asynch GTL+	Input	TESTHI3	AC20	Power/Other	Input
INIT#	W5	Asynch GTL+	Input	TESTHI4	AC24	Power/Other	Input
ITP_CLK0	AC26	TAP	Input	TESTHI5	AC23	Power/Other	Input
ITP_CLK1	AD26	TAP	Input	TESTHI6	AA20	Power/Other	Input
LINT0	D1	Asynch GTL+	Input	TESTHI7	AB22	Power/Other	Input
LINT1	E5	Asynch GTL+	Input	TESTHI8	U6	Power/Other	Input
LOCK#	G4	Common Clock	Input/Output	TESTHI9	W4	Power/Other	Input
MCERR#	V6	Common Clock	Input/Output	THERMDA	В3	Power/Other	
OPTIMIZED/ COMPAT#	AE26	Power/Other	Input	THERMDC	C4	Power/Other	
PROCHOT#	C3	Asynch GTL+	Input/Output	THERMTRIP#	A2	Asynch GTL+	Output
PWRGOOD	AB23	Power/Other	Input	TMS	F7	TAP	Input
REQ0#	J1	Source Synch	Input/Output	TRDY#	J6	Common Clock	Input
REQ1#	K5	Source Synch	Input/Output	TRST#	E6	TAP	Input
REQ2#	J4	Source Synch	Input/Output	VCC	A10	Power/Other	
REQ3#	J3	Source Synch	Input/Output	VCC	A12	Power/Other	
REQ4#	H3	Source Synch	Input/Output	VCC	A14	Power/Other	
RESERVED	A22			VCC	A16	Power/Other	
RESERVED	A7			VCC	A18	Power/Other	
RESERVED	AE21			VCC	A20	Power/Other	
RESERVED	AF24			VCC	A8	Power/Other	
RESERVED	AF25			VCC	AA10	Power/Other	
RESET#	AB25	Common Clock	Input	VCC	AA12	Power/Other	
RS0#	F1	Common Clock	Input	VCC	AA14	Power/Other	
RS1#	G5	Common Clock	Input	VCC	AA16	Power/Other	

Pin Listing and Signal Descriptions

Pin Name	Pin Number	Signal Buffer Type	Direction	Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	AA18	Power/Other		VCC	AF9	Power/Other	
VCC	AA8	Power/Other		VCC	B11	Power/Other	
VCC	AB11	Power/Other		VCC	B13	Power/Other	
VCC	AB13	Power/Other		VCC	B15	Power/Other	
VCC	AB15	Power/Other		VCC	B17	Power/Other	
VCC	AB17	Power/Other		VCC	B19	Power/Other	
VCC	AB19	Power/Other		VCC	B7	Power/Other	
VCC	AB7	Power/Other		VCC	В9	Power/Other	
VCC	AB9	Power/Other		VCC	C10	Power/Other	
VCC	AC10	Power/Other		VCC	C12	Power/Other	
VCC	AC12	Power/Other		VCC	C14	Power/Other	
VCC	AC14	Power/Other		VCC	C16	Power/Other	
VCC	AC16	Power/Other		VCC	C18	Power/Other	
VCC	AC18	Power/Other		VCC	C20	Power/Other	
VCC	AC8	Power/Other		VCC	C8	Power/Other	
VCC	AD11	Power/Other		VCC	D11	Power/Other	
VCC	AD13	Power/Other		VCC	D13	Power/Other	
VCC	AD15	Power/Other		VCC	D15	Power/Other	
VCC	AD17	Power/Other		VCC	D17	Power/Other	
VCC	AD19	Power/Other		VCC	D19	Power/Other	
VCC	AD7	Power/Other		VCC	D7	Power/Other	
VCC	AD9	Power/Other		VCC	D9	Power/Other	
VCC	AE10	Power/Other		VCC	E10	Power/Other	
VCC	AE12	Power/Other		VCC	E12	Power/Other	
VCC	AE14	Power/Other		VCC	E14	Power/Other	
VCC	AE16	Power/Other		VCC	E16	Power/Other	
VCC	AE18	Power/Other		VCC	E18	Power/Other	
VCC	AE20	Power/Other		VCC	E20	Power/Other	
VCC	AE6	Power/Other		VCC	E8	Power/Other	
VCC	AE8	Power/Other		VCC	F11	Power/Other	
VCC	AF11	Power/Other		VCC	F13	Power/Other	
VCC	AF13	Power/Other		VCC	F15	Power/Other	
VCC	AF15	Power/Other		VCC	F17	Power/Other	
VCC	AF17	Power/Other		VCC	F19	Power/Other	
VCC	AF19	Power/Other		VCC	F9	Power/Other	
VCC	AF2	Power/Other		VCCA	AE23	Power/Other	
VCC	AF21	Power/Other		VCCIOPLL	AD20	Power/Other	
VCC	AF5	Power/Other		VCCSENSE	A5	Power/Other	Output
VCC	AF7	Power/Other		VCCVID	AF4	Power/Other	Input

Pin Name	Pin Number	Signal Buffer Type	Direction	Pin Name	Pin Number	Signal Buffer Type	Direction
VCCVIDLB	AF3	Power/Other	Input	VSS	AB8	Power/Other	
VID0	AE5	Power/Other	Output	VSS	AC11	Power/Other	
VID1	AE4	Power/Other	Output	VSS	AC13	Power/Other	
VID2	AE3	Power/Other	Output	VSS	AC15	Power/Other	
VID3	AE2	Power/Other	Output	VSS	AC17	Power/Other	
VID4	AE1	Power/Other	Output	VSS	AC19	Power/Other	
VID5	AD3	Power/Other	Output	VSS	AC2	Power/Other	
VIDPWRGD	AD2	Power/Other	Input	VSS	AC22	Power/Other	
VSS	A11	Power/Other		VSS	AC25	Power/Other	
VSS	A13	Power/Other		VSS	AC5	Power/Other	
VSS	A15	Power/Other		VSS	AC7	Power/Other	
VSS	A17	Power/Other		VSS	AC9	Power/Other	
VSS	A19	Power/Other		VSS	AD10	Power/Other	
VSS	A21	Power/Other		VSS	AD12	Power/Other	
VSS	A24	Power/Other		VSS	AD14	Power/Other	
VSS	A26	Power/Other		VSS	AD16	Power/Other	
VSS	A3	Power/Other		VSS	AD18	Power/Other	
VSS	A9	Power/Other		VSS	AD21	Power/Other	
VSS	AA1	Power/Other		VSS	AD23	Power/Other	
VSS	AA11	Power/Other		VSS	AD4	Power/Other	
VSS	AA13	Power/Other		VSS	AD8	Power/Other	
VSS	AA15	Power/Other		VSS	AE11	Power/Other	
VSS	AA17	Power/Other		VSS	AE13	Power/Other	
VSS	AA19	Power/Other		VSS	AE15	Power/Other	
VSS	AA23	Power/Other		VSS	AE17	Power/Other	
VSS	AA26	Power/Other		VSS	AE19	Power/Other	
VSS	AA4	Power/Other		VSS	AE22	Power/Other	
VSS	AA7	Power/Other		VSS	AE24	Power/Other	
VSS	AA9	Power/Other		VSS	AE7	Power/Other	
VSS	AB10	Power/Other		VSS	AE9	Power/Other	
VSS	AB12	Power/Other		VSS	AF1	Power/Other	
VSS	AB14	Power/Other		VSS	AF10	Power/Other	
VSS	AB16	Power/Other		VSS	AF12	Power/Other	
VSS	AB18	Power/Other		VSS	AF14	Power/Other	
VSS	AB20	Power/Other		VSS	AF16	Power/Other	
VSS	AB21	Power/Other		VSS	AF18	Power/Other	
VSS	AB24	Power/Other		VSS	AF20	Power/Other	
VSS	AB3	Power/Other		VSS	AF6	Power/Other	
VSS	AB6	Power/Other		VSS	AF8	Power/Other	

Pin Listing and Signal Descriptions

Pin Name	Pin Number	Signal Buffer Type	Direction	Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	B10	Power/Other		VSS	E26	Power/Other	
VSS	B12	Power/Other		VSS	E4	Power/Other	
VSS	B14	Power/Other		VSS	E7	Power/Other	
VSS	B16	Power/Other		VSS	E9	Power/Other	
VSS	B18	Power/Other		VSS	F10	Power/Other	
VSS	B20	Power/Other		VSS	F12	Power/Other	
VSS	B23	Power/Other		VSS	F14	Power/Other	
VSS	B26	Power/Other		VSS	F16	Power/Other	
VSS	B4	Power/Other		VSS	F18	Power/Other	
VSS	B8	Power/Other		VSS	F2	Power/Other	
VSS	C11	Power/Other		VSS	F22	Power/Other	
VSS	C13	Power/Other		VSS	F25	Power/Other	
VSS	C15	Power/Other		VSS	F5	Power/Other	
VSS	C17	Power/Other		VSS	F8	Power/Other	
VSS	C19	Power/Other		VSS	G21	Power/Other	
VSS	C2	Power/Other		VSS	G24	Power/Other	
VSS	C22	Power/Other		VSS	G3	Power/Other	
VSS	C25	Power/Other		VSS	G6	Power/Other	
VSS	C5	Power/Other		VSS	H1	Power/Other	
VSS	C7	Power/Other		VSS	H23	Power/Other	
VSS	C9	Power/Other		VSS	H26	Power/Other	
VSS	D10	Power/Other		VSS	H4	Power/Other	
VSS	D12	Power/Other		VSS	J2	Power/Other	
VSS	D14	Power/Other		VSS	J22	Power/Other	
VSS	D16	Power/Other		VSS	J25	Power/Other	
VSS	D18	Power/Other		VSS	J5	Power/Other	
VSS	D20	Power/Other		VSS	K21	Power/Other	
VSS	D21	Power/Other		VSS	K24	Power/Other	
VSS	D24	Power/Other		VSS	K3	Power/Other	
VSS	D3	Power/Other		VSS	K6	Power/Other	
VSS	D6	Power/Other		VSS	L1	Power/Other	
VSS	D8	Power/Other		VSS	L23	Power/Other	
VSS	E1	Power/Other		VSS	L26	Power/Other	
VSS	E11	Power/Other		VSS	L4	Power/Other	
VSS	E13	Power/Other		VSS	M2	Power/Other	
VSS	E15	Power/Other		VSS	M22	Power/Other	
VSS	E17	Power/Other		VSS	M25	Power/Other	
VSS	E19	Power/Other		VSS	M5	Power/Other	
VSS	E23	Power/Other		VSS	N21	Power/Other	

	ı	ı	
Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	N24	Power/Other	
VSS	N3	Power/Other	
VSS	N6	Power/Other	
VSS	P2	Power/Other	
VSS	P22	Power/Other	
VSS	P25	Power/Other	
VSS	P5	Power/Other	
VSS	R1	Power/Other	
VSS	R23	Power/Other	
VSS	R26	Power/Other	
VSS	R4	Power/Other	
VSS	T21	Power/Other	
VSS	T24	Power/Other	
VSS	T3	Power/Other	
VSS	T6	Power/Other	
VSS	U2	Power/Other	
VSS	U22	Power/Other	
VSS	U25	Power/Other	
VSS	U5	Power/Other	
VSS	V1	Power/Other	
VSS	V23	Power/Other	
VSS	V26	Power/Other	
VSS	V4	Power/Other	
VSS	W21	Power/Other	
VSS	W24	Power/Other	
VSS	W3	Power/Other	
VSS	W6	Power/Other	
VSS	Y2	Power/Other	
VSS	Y22	Power/Other	
VSS	Y25	Power/Other	
VSS	Y5	Power/Other	
VSSA	AD22	Power/Other	
VSSSENSE	A4	Power/Other	Output

Table 4-2. Numerical Pin Assignment (Sheet 1 of 12)

Signal Buffer Pin# Pin Name **Direction** A2 THERMTRIP# Asynch GTL+ Output VSS А3 Power/Other A4 VSS_SENSE Power/Other Output Α5 VCC_SENSE Power/Other Output A6 TESTHI11 Power/Other Input Α7 RESERVED Α8 VCC Power/Other Α9 VSS Power/Other A10 VCC Power/Other A11 VSS Power/Other A12 VCC Power/Other A13 VSS Power/Other A14 VCC Power/Other A15 VSS Power/Other VCC A16 Power/Other VSS A17 Power/Other VCC A18 Power/Other A19 VSS Power/Other Power/Other A20 VCC A21 VSS Power/Other A22 **RESERVED** A23 D2# Input/Output Source Synch A24 VSS Power/Other A25 D3# Source Synch Input/Output A26 VSS Power/Other B2 **IGNNE#** Asynch GTL+ Input ВЗ THERMDA Power/Other B4 VSS Power/Other Asynch GTL+ B5 SMI# Input В6 FERR#/PBE# Asynch AGL+ Output В7 VCC Power/Other B8 VSS Power/Other В9 VCC Power/Other B10 VSS Power/Other VCC B11 Power/Other B12 VSS Power/Other B13 VCC Power/Other B14 VSS Power/Other B15 VCC Power/Other B16 VSS Power/Other

Table 4-2. Numerical Pin Assignment (Sheet 2 of 12)

Pin#	Pin Name	Signal Buffer Type	Direction
B17	VCC	Power/Other	
B18	VSS	Power/Other	
B19	VCC	Power/Other	
B20	VSS	Power/Other	
B21	D0#	Source Synch	Input/Output
B22	D1#	Source Synch	Input/Output
B23	VSS	Power/Other	
B24	D6#	Source Synch	Input/Output
B25	D9#	Source Synch	Input/Output
B26	VSS	Power/Other	
C1	TDI	TAP	Input
C2	VSS	Power/Other	
C3	PROCHOT#	Asynch GTL+	Input/Output
C4	THERMDC	Power/Other	
C5	VSS	Power/Other	
C6	A20M#	Asynch GTL+	Input
C7	VSS	Power/Other	
C8	VCC	Power/Other	
C9	VSS	Power/Other	
C10	VCC	Power/Other	
C11	VSS	Power/Other	
C12	VCC	Power/Other	
C13	VSS	Power/Other	
C14	VCC	Power/Other	
C15	VSS	Power/Other	
C16	VCC	Power/Other	
C17	VSS	Power/Other	
C18	VCC	Power/Other	
C19	VSS	Power/Other	
C20	VCC	Power/Other	
C21	D4#	Source Synch	Input/Output
C22	VSS	Power/Other	
C23	D7#	Source Synch	Input/Output
C24	D8#	Source Synch	Input/Output
C25	VSS	Power/Other	
C26	D12#	Source Synch	Input/Output
D1	LINT0	Asynch GTL+	Input
D2	BPRI#	Common Clock	Input
D3	VSS	Power/Other	
D4	TCK	TAP	Input

Table 4-2. Numerical Pin Assignment (Sheet 3 of 12)

Signal Buffer Pin# **Pin Name Direction** D5 TDO TAP Output VSS D6 Power/Other VCC D7 Power/Other D8 VSS Power/Other D9 VCC Power/Other VSS D10 Power/Other VCC D11 Power/Other D12 VSS Power/Other D13 VCC Power/Other D14 VSS Power/Other D15 VCC Power/Other D16 VSS Power/Other VCC D17 Power/Other D18 VSS Power/Other D19 VCC Power/Other D20 VSS Power/Other D21 VSS Power/Other D22 D5# Source Synch Input/Output D23 D13# Source Synch Input/Output D24 VSS Power/Other D25 D15# Source Synch Input/Output D26 D23# Input/Output Source Synch VSS E1 Power/Other E2 DEFER# Common Clock Input HITM# E3 Common Clock Input/Output VSS E4 Power/Other E5 LINT1 Asynch GTL+ Input E6 TRST# TAP Input E7 VSS Power/Other E8 VCC Power/Other E9 VSS Power/Other E10 VCC Power/Other E11 Power/Other VSS E12 VCC Power/Other VSS E13 Power/Other E14 VCC Power/Other E15 VSS Power/Other E16 VCC Power/Other E17 VSS Power/Other E18 VCC Power/Other

Table 4-2. Numerical Pin Assignment (Sheet 4 of 12)

Pin#	Pin Name	Signal Buffer Type	Direction
E19	VSS	Power/Other	
E20	VCC	Power/Other	
E21	DBIO#	Source Synch	Input/Output
E22	DSTBN0#	Source Synch	Input/Output
E23	VSS	Power/Other	InputOutput
E24	D17#	Source Synch	Input/Output
E25		-	
E25	D21#	Source Synch	Input/Output
	VSS	Power/Other	I I
F1	RS0#	Common Clock	Input
F2	VSS	Power/Other	
F3	HIT#	Common Clock	Input/Output
F4	RS2#	Common Clock	Input
F5	VSS	Power/Other	
F6	GTLREF	Power/Other	Input
F7	TMS	TAP	Input
F8	VSS	Power/Other	
F9	VCC	Power/Other	
F10	VSS	Power/Other	
F11	VCC	Power/Other	
F12	VSS	Power/Other	
F13	VCC	Power/Other	
F14	VSS	Power/Other	
F15	VCC	Power/Other	
F16	VSS	Power/Other	
F17	VCC	Power/Other	
F18	VSS	Power/Other	
F19	VCC	Power/Other	
F20	GTLREF	Power/Other	Input
F21	DSTBP0#	Source Synch	Input/Output
F22	VSS	Power/Other	
F23	D19#	Source Synch	Input/Output
F24	D20#	Source Synch	Input/Output
F25	VSS	Power/Other	
F26	D22#	Source Synch	Input/Output
G1	ADS#	Common Clock	Input/Output
G2	BNR#	Common Clock	Input/Output
G3	VSS	Power/Other	, a surprise
G4	LOCK#	Common Clock	Input/Output
G5	RS1#	Common Clock	Input
G6	VSS	Power/Other	put
GU	V 33	i owei/Otilei	

43

Table 4-2. Numerical Pin Assignment (Sheet 5 of 12)

Signal Buffer Pin# Pin Name Direction VSS Power/Other G22 D10# Source Synch Input/Output D18# G23 Source Synch Input/Output G24 VSS Power/Other G25 DBI1# Source Synch Input/Output G26 D25# Source Synch Input/Output Н1 VSS Power/Other H2 DRDY# Input/Output Common Clock REQ4# Н3 Source Synch Input/Output Н4 VSS Power/Other Н5 DBSY# Common Clock Input/Output Н6 BR0# Common Clock Input/Output H21 D11# Source Synch Input/Output H22 D16# Source Synch Input/Output H23 VSS Power/Other H24 D26# Source Synch Input/Output H25 D31# Source Synch Input/Output H26 VSS Power/Other .11 REQ0# Input/Output Source Synch J2 VSS Power/Other Source Synch J3 REQ3# Input/Output J4 REQ2# Input/Output Source Synch J5 VSS Power/Other J6 TRDY# Common Clock Input J21 D14# Source Synch Input/Output J22 VSS Power/Other J23 DSTBP1# Source Synch Input/Output D29# J24 Source Synch Input/Output J25 VSS Power/Other J26 DP0# Common Clock Input/Output K1 A6# Source Synch Input/Output K2 A3# Input/Output Source Synch K3 VSS Power/Other K4 A4# Source Synch Input/Output K5 REQ1# Source Synch Input/Output K6 VSS Power/Other K21 VSS Power/Other K22 DSTBN1# Source Synch Input/Output K23 D30# Source Synch Input/Output K24 VSS Power/Other

Table 4-2. Numerical Pin Assignment (Sheet 6 of 12)

Pin#	Pin Name	Signal Buffer Type	Direction
K25	DP1#	Common Clock	Input/Output
K26	DP2#	Common Clock	Input/Output
L1	VSS	Power/Other	
L2	A9#	Source Synch	Input/Output
L3	A7#	Source Synch	Input/Output
L4	VSS	Power/Other	
L5	ADSTB0#	Source Synch	Input/Output
L6	A5#	Source Synch	Input/Output
L21	D24#	Source Synch	Input/Output
L22	D28#	Source Synch	Input/Output
L23	VSS	Power/Other	
L24	COMP0	Power/Other	Input
L25	DP3#	Common Clock	Input/Output
L26	VSS	Power/Other	
M1	A13#	Source Synch	Input/Output
M2	VSS	Power/Other	
M3	A10#	Source Synch	Input/Output
M4	A11#	Source Synch	Input/Output
M5	VSS	Power/Other	
M6	A8#	Source Synch	Input/Output
M21	D27#	Source Synch	Input/Output
M22	VSS	Power/Other	
M23	D32#	Source Synch	Input/Output
M24	D35#	Source Synch	Input/Output
M25	VSS	Power/Other	
M26	D37#	Source Synch	Input/Output
N1	A12#	Source Synch	Input/Output
N2	A14#	Source Synch	Input/Output
N3	VSS	Power/Other	
N4	A15#	Source Synch	Input/Output
N5	A16#	Source Synch	Input/Output
N6	VSS	Power/Other	
N21	VSS	Power/Other	
N22	D33#	Source Synch	Input/Output
N23	D36#	Source Synch	Input/Output
N24	VSS	Power/Other	
N25	D39#	Source Synch	Input/Output
N26	D38#	Source Synch	Input/Output
P1	COMP1	Power/Other	Input
P2	VSS	Power/Other	
	-	-	

Table 4-2. Numerical Pin Assignment (Sheet 7 of 12)

Signal Buffer Pin# **Pin Name Direction** Р3 A19# Source Synch Input/Output P4 A20# Source Synch Input/Output P5 VSS Power/Other P6 A24# Source Synch Input/Output P21 D34# Source Synch Input/Output P22 VSS Power/Other P23 DSTBP#2 Source Synch Input/Output P24 D41# Input/Output Source Synch P25 VSS Power/Other P26 DBI2# Source Synch Input/Output R1 VSS Power/Other R2 A18# Source Synch Input/Output R3 A21# Source Synch Input/Output R4 VSS Power/Other ADSTB1# R5 Source Synch Input/Output R6 A28# Source Synch Input/Output R21 D40# Source Synch Input/Output R22 DSTBN#2 Input/Output Source Synch Power/Other R23 VSS R24 D43# Source Synch Input/Output Source Synch R25 D42# Input/Output R26 VSS Power/Other T1 A17# Source Synch Input/Output T2 A22# Source Synch Input/Output Т3 VSS Power/Other T4 A26# Source Synch Input/Output T5 A30# Source Synch Input/Output VSS T6 Power/Other T21 VSS Power/Other T22 D46# Source Synch Input/Output T23 D47# Source Synch Input/Output T24 VSS Power/Other T25 D45# Source Synch Input/Output T26 D44# Input/Output Source Synch U1 A23# Source Synch Input/Output U2 Power/Other VSS U3 A25# Input/Output Source Synch U4 A31# Source Synch Input/Output U5 VSS Power/Other U6 TESTHI8 Power/Other Input

Table 4-2. Numerical Pin Assignment (Sheet 8 of 12)

(Sheet 8 of 12)					
Pin#	Pin Name	Signal Buffer Type	Direction		
U21	D52#	Source Synch	Input/Output		
U22	VSS	Power/Other			
U23	D50#	Source Synch	Input/Output		
U24	D49#	Source Synch	Input/Output		
U25	VSS	Power/Other			
U26	D48#	Source Synch	Input/Output		
V1	VSS	Power/Other			
V2	A27#	Source Synch	Input/Output		
V3	A32#	Source Synch	Input/Output		
V4	VSS	Power/Other			
V5	AP1#	Common Clock	Input/Output		
V6	MCERR#	Common Clock	Input/Output		
V21	DBI3#	Source Synch	Input/Output		
V22	D53#	Source Synch	Input/Output		
V23	VSS	Power/Other			
V24	D54#	Source Synch	Input/Output		
V25	D51#	Source Synch	Input/Output		
V26	VSS	Power/Other			
W1	A29#	Source Synch	Input/Output		
W2	A33#	Source Synch	Input/Output		
W3	VSS	Power/Other			
W4	TESTHI9	Power/Other	Input		
W5	INIT#	Asynch GTL+	Input		
W6	VSS	Power/Other			
W21	VSS	Power/Other			
W22	DSTBN3#	Source Synch	Input/Output		
W23	DSTBP3#	Source Synch	Input/Output		
W24	VSS	Power/Other			
W25	D57#	Source Synch	Input/Output		
W26	D55#	Source Synch	Input/Output		
Y1	A34#	Source Synch	Input/Output		
Y2	VSS	Power/Other			
Y3	TESTHI10	Power/Other	Input		
Y4	STPCLK#	Asynch GTL+	Input		
Y5	VSS	Power/Other			
Y6	BPM3#	Common Clock	Input/Output		
Y21	D60#	Source Synch	Input/Output		
Y22	VSS	Power/Other			
Y23	D58#	Source Synch	Input/Output		
Y24	D59#	Source Synch	Input/Output		

Table 4-2. Numerical Pin Assignment (Sheet 9 of 12)

Signal Buffer Pin# Pin Name Direction Y25 VSS Power/Other D56# Y26 Source Synch Input/Output VSS Power/Other AA1 AA2 TESTHI1 Power/Other AA3 BINIT# Common Clock Input/Output AA4 VSS Power/Other AA5 BPM4# Common Clock Input/Output AA6 **GTLREF** Power/Other Input AA7 VSS Power/Other AA8 VCC Power/Other AA9 VSS Power/Other AA10 VCC Power/Other AA11 VSS Power/Other AA12 VCC Power/Other AA13 VSS Power/Other AA14 VCC Power/Other AA15 VSS Power/Other AA16 VCC Power/Other Power/Other AA17 VSS VCC AA18 Power/Other AA19 VSS Power/Other TESTHI6 AA20 Power/Other Input AA21 **GTLREF** Power/Other Input AA22 D62# Source Synch Input/Output AA23 VSS Power/Other D63# AA24 Input/Output Source Synch AA25 D61# Source Synch Input/Output AA26 VSS Power/Other AB1 A35# Input/Output Source Synch AB2 RSP# Common Clock Input AB3 VSS Power/Other Common Clock AB4 BPM5# Input/Output BPM1# Common Clock AB5 Input/Output AB6 VSS Power/Other VCC AB7 Power/Other VSS AB8 Power/Other AB9 VCC Power/Other AB10 VSS Power/Other VCC AB11 Power/Other AB12 VSS Power/Other

Table 4-2. Numerical Pin Assignment (Sheet 10 of 12)

Pin#	Pin Name	Signal Buffer Type	Direction
AB13	VCC	Power/Other	
AB14	VSS	Power/Other	
AB15	VCC	Power/Other	
AB16	VSS	Power/Other	
AB17	VCC	Power/Other	
AB18	VSS	Power/Other	
AB19	VCC	Power/Other	
AB20	VSS	Power/Other	
AB21	VSS	Power/Other	
AB22	TESTHI7	Power/Other	Input
AB23	PWRGOOD	Power/Other	Input
AB24	VSS	Power/Other	
AB25	RESET#	Common Clock	Input
AB26	SLP#	Asynch GTL+	Input
AC1	AP0#	Common Clock	Input/Output
AC2	VSS	Power/Other	
AC3	IERR#	Asynch GTL+	Output
AC4	BPM2#	Common Clock	Input/Output
AC5	VSS	Power/Other	
AC6	BPM0#	Common Clock	Input/Output
AC7	VSS	Power/Other	
AC8	VCC	Power/Other	
AC9	VSS	Power/Other	
AC10	VCC	Power/Other	
AC11	VSS	Power/Other	
AC12	VCC	Power/Other	
AC13	VSS	Power/Other	
AC14	VCC	Power/Other	
AC15	VSS	Power/Other	
AC16	VCC	Power/Other	
AC17	VSS	Power/Other	
AC18	VCC	Power/Other	
AC19	VSS	Power/Other	
AC20	TESTHI3	Power/Other	Input
AC21	TESTHI2	Power/Other	Input
AC22	VSS	Power/Other	
AC23	TESTHI5	Power/Other	Input
AC24	TESTHI4	Power/Other	Input
AC25	VSS	Power/Other	
AC26	ITP_CLK0	TAP	Input

Table 4-2. Numerical Pin Assignment (Sheet 11 of 12)

(Sheet 11 of 12)					
Pin#	Pin Name	Signal Buffer Type	Direction		
AD1	BOOTSELECT	Power/Other	Input		
AD2	VIDPWRGD	Power/Other	Input		
AD3	VID5	Power/Other	Output		
AD4	VSS	Power/Other			
AD5	BSEL1	Power/Other	Output		
AD6	BSEL0	Power/Other	Output		
AD7	VCC	Power/Other			
AD8	VSS	Power/Other			
AD9	VCC	Power/Other			
AD10	VSS	Power/Other			
AD11	VCC	Power/Other			
AD12	VSS	Power/Other			
AD13	VCC	Power/Other			
AD14	VSS	Power/Other			
AD15	VCC	Power/Other			
AD16	VSS	Power/Other			
AD17	VCC	Power/Other			
AD18	VSS	Power/Other			
AD19	VCC	Power/Other			
AD20	VCCIOPLL	Power/Other			
AD21	VSS	Power/Other			
AD22	VSSA	Power/Other			
AD23	VSS	Power/Other			
AD24	TESTHI0	Power/Other	Input		
AD25	DPSLP#	Asynch GTL+	Input		
AD26	ITP_CLK1	TAP	Input		
AE1	VID4	Power/Other	Output		
AE2	VID3	Power/Other	Output		
AE3	VID2	Power/Other	Output		
AE4	VID1	Power/Other	Output		
AE5	VID0	Power/Other	Output		
AE6	VCC	Power/Other			
AE7	VSS	Power/Other			
AE8	VCC	Power/Other			
AE9	VSS	Power/Other			
AE10	VCC	Power/Other			
AE11	VSS	Power/Other			
AE12	VCC	Power/Other			
AE13	VSS	Power/Other			
AE14	VCC	Power/Other			

Table 4-2. Numerical Pin Assignment (Sheet 12 of 12)

Pin#	Pin Name	Signal Buffer Type	Direction
AE15	VSS	Power/Other	
AE16	VCC	Power/Other	
AE17	VSS	Power/Other	
AE18	VCC	Power/Other	
AE19	VSS	Power/Other	
AE20	VCC	Power/Other	
AE21	RESERVED		
AE22	VSS	Power/Other	
AE23	VCCA	Power/Other	
AE24	VSS	Power/Other	
AE25	DBR#	Power/Other	Output
AE26	OPTIMIZED/ COMPAT#	Power/Other	Input
AF1	VSS	Power/Other	
AF2	VCC	Power/Other	
AF3	VCCVIDLB	Power/Other	Input
AF4	VCCVID	Power/Other	Input
AF5	VCC	Power/Other	
AF6	VSS	Power/Other	
AF7	VCC	Power/Other	
AF8	VSS	Power/Other	
AF9	VCC	Power/Other	
AF10	VSS	Power/Other	
AF11	VCC	Power/Other	
AF12	VSS	Power/Other	
AF13	VCC	Power/Other	
AF14	VSS	Power/Other	
AF15	VCC	Power/Other	
AF16	VSS	Power/Other	
AF17	VCC	Power/Other	
AF18	VSS	Power/Other	
AF19	VCC	Power/Other	
AF20	VSS	Power/Other	
AF21	VCC	Power/Other	
AF22	BCLK0	Bus Clock	Input
AF23	BCLK1	Bus Clock	Input
AF24	RESERVED		
AF25	RESERVED		
AF26	SKTOCC#	Power/Other	Output

Figure 4-1. Pinout Diagram (Top View—Left Side)

	26	25	24	23	22	21	20	19	18	17	16	15	14	_
AF	SKTOCC#	Reserved	Reserved	BCLK1	BCLK0	vcc	VSS	vcc	VSS	VCC	VSS	vcc	VSS	AF
AE	OPTIMIZED/ COMPAT#	DBR#	VSS	VCCA	VSS	Reserved	VCC	VSS	VCC	VSS	VCC	VSS	VCC	AE
AD	ITP_CLK1	DPSLP#	TESTHI0	VSS	VSSA	VSS	VCCIOPLL	VCC	VSS	VCC	VSS	VCC	VSS	AD
AC	ITP_CLK0	VSS	TESTHI4	TESTHI5	VSS	TESTHI2	TESTHI3	VSS	VCC	VSS	VCC	VSS	VCC	AC
AB	SLP#	RESET#	VSS	PWR GOOD	TESTHI7	VSS	VSS	VCC	VSS	VCC	VSS	VCC	VSS	АВ
AA	VSS	D61#	D63#	VSS	D62#	GTLREF	TESTHI6	VSS	VCC	VSS	VCC	VSS	VCC	AA
Y	D56#	VSS	D59#	D58#	VSS	D60#			_			_		Y
w	D55#	D57#	VSS	DSTBP3#	DSTBN3#	VSS								w
v	VSS	D51#	D54#	VSS	D53#	DBI3#								v
U	D48#	VSS	D49#	D50#	VSS	D52#								U
т	D44#	D45#	VSS	D47#	D46#	VSS								т
R	VSS	D42#	D43#	VSS	DSTBN2#	D40#								R
P	DBI2#	VSS	D41#	DSTBP2#	VSS	D34#								P
N	D38#	D39#	VSS	D36#	D33#	VSS								N
М	D37#	VSS	D35#	D32#	VSS	D27#								М
L	VSS	DP3#	COMP0	VSS	D28#	D24#								L
K	DP2#	DP1#	VSS	D30#	DSTBN1#	VSS								K
J	DP0#	VSS	D29#	DSTBP1#	VSS	D14#								J
н	VSS	D31#	D26#	VSS	D16#	D11#								н
G	D25#	DBI1#	VSS	D18#	D10#	VSS								G
F	D22#	VSS	D20#	D19#	VSS	DSTBP0#	GTLREF	VCC	VSS	VCC	VSS	VCC	VSS	F
E	VSS	D21#	D17#	VSS	DSTBN0#	DBI0#	VCC	VSS	VCC	VSS	VCC	VSS	VCC	E
D	D23#	D15#	VSS	D13#	D5#	VSS	VSS	VCC	VSS	VCC	VSS	VCC	VSS	D
С	D12#	VSS	D8#	D7#	VSS	D4#	VCC	VSS	VCC	VSS	VCC	VSS	VCC	С
В	VSS	D9#	D6#	VSS	D1#	D0#	VSS	VCC	VSS	VCC	VSS	VCC	VSS	В
A	VSS	D3#	VSS	D2#	Reserved	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	A
	26	25	24	23	22	21	20	19	18	17	16	15	14	

Figure 4-2. Pinout Diagram (Top View—Right Side)

_				_		-	_							
	13	12	11	10	9	8	7	6	5	4	3	2	1	
AF	vcc	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCCVID	VCCVIDLB	VCC	VSS	AF
AE	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VID0	VID1	VID2	VID3	VID4	AE
AD	VCC	VSS	VCC	VSS	VCC	VSS	VCC	BSEL0	BSEL1	VSS	VID5	VIDPWRGD	BOOT SELECT	AD
AC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	BPM0#	VSS	BPM2#	IERR#	VSS	AP0#	AC
АВ	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	BPM1#	BPM5#	VSS	RSP#	A35#	АВ
AA	VSS	VCC	VSS	VCC	VSS	VCC	VSS	GTLREF	BPM4#	VSS	BINIT#	TESTHI1	VSS	AA
Y								BPM3#	VSS	STPCLK#	TESTHI10	VSS	A34#	Y
w								VSS	INIT#	TESTHI9	VSS	A33#	A29#	w
v								MCERR#	AP1#	VSS	A32#	A27#	VSS	v
U								TESTHI8	VSS	A31#	A25#	VSS	A23#	U
т								VSS	A30#	A26#	VSS	A22#	A17#	Т
R								A28#	ADSTB1#	VSS	A21#	A18#	VSS	R
P								A24#	VSS	A20#	A19#	VSS	COMP1	P
N								VSS	A16#	A15#	VSS	A14#	A12#	N
M								A8#	VSS	A11#	A10#	VSS	A13#	M
L								A5#	ADSTB0#	VSS	A7#	A9#	VSS	L
K								VSS	REQ1#	A4#	VSS	A3#	A6#	K
J								TRDY#	VSS	REQ2#	REQ3#	VSS	REQ0#	J
Н								BR0#	DBSY#	VSS	REQ4#	DRDY#	VSS	Н
G								VSS	RS1#	LOCK#	VSS	BNR#	ADS#	G
F	VCC	VSS	VCC	VSS	VCC	VSS	TMS	GTLREF	VSS	RS2#	HIT#	VSS	RS0#	F
E	VSS	VCC	VSS	vcc	VSS	VCC	VSS	TRST#	LINT1	VSS	HITM#	DEFER#	VSS	E
D	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	TDO	TCK	VSS	BPRI#	LINT0	D
С	VSS	VCC	VSS	VCC	VSS	VCC	VSS	A20M#	VSS	THERMDC	PROCHOT#	VSS	TDI	С
В	vcc	VSS	VCC	VSS	VCC	VSS	VCC	FERR#/ PBE#	SMI#	VSS	THERMDA	IGNNE#		В
A	VSS	VCC	VSS	VCC	VSS	VCC	Reserved	TESTHI11	VCC_SENSE	VSS_SENSE	VSS	THERMTRIP#		A
	13	12	11	10	9	8	7	6	5	4	3	2	1	

4.2 Alphabetical Signals Reference

Table 4-3. Signal Description (Sheet 1 of 8)

Name	Type		D	escription	Description					
A[35:3]#	Input/ Output									
		On the active-to-inactive trar of the A[35:3]# pins to determore details.								
A20M#	Input	If A20M# (Address-20 Mask bit 20 (A20#) before looking read/write transaction on the processor's address wrap-ar is only supported in real mod	up a lir bus. A ound a	ne in any internal Asserting A20M# (cache and before driving a emulates the 8086					
		A20M# is an asynchronous of following an Input/Output write assertion of the corresponding	te instr	uction, it must be	valid along with the TRDY#					
ADS#	Input/ Output	ADS# (Address Strobe) is as address on the A[35:3]# and activation to begin parity che snoop, or deferred reply ID r transaction.	REQ[4 cking,	4:0]# pins. All bus protocol checking	agents observe the ADS# g, address decode, internal					
		Address strobes are used to falling edges. Strobes are as								
ADSTB[1:0]#	Input/	Signals Associated Strobe								
	Output	REQ[4:0]#, A[16:3]# ADSTB		B0#						
		A[35:17]#	ADST	B1#						
ADI4:01#	Input/	AP[1:0]# (Address Parity) ar A[35:3]#, and the transactior high if an even number of co covered signals are low. This signals are high. AP[1:0]# sh front side bus agents. The fo signals.	n type overed s s allows nould co	on the REQ[4:0]#. signals are low ar s parity to be high onnect the approp	A correct parity signal is and low if an odd number of when all the covered oriate pins of all processor					
AP[1:0]#	Output	Request Signals		subphase 1	subphase 2					
		A[35:24]#		AP0#	AP1#					
		A[23:3]#		AP1#	AP0#					
		REQ[4:0]#		AP1#	AP0#					
BCLK[1:0]	Input	The differential pair BCLK (Bus Clock) determines the front side bus frequency. All processor front side bus agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLK0 crossing V_{CROSS} .								

Table 4-3. Signal Description (Sheet 2 of 8)

Name	Type	Description
		BINIT# (Bus Initialization) may be observed and driven by all processor front side bus agents and if used, must connect the appropriate pins of all such agents. If the BINIT# driver is enabled during power-on configuration, BINIT# is asserted to signal any bus condition that prevents reliable future operation.
BINIT#	Input/ Output	If BINIT# observation is enabled during power-on configuration, and BINIT# is sampled asserted, symmetric agents reset their bus LOCK# activity and bus request arbitration state machines. The bus agents do not reset their IOQ and transaction tracking state machines upon observation of BINIT# activation. Once the BINIT# assertion has been observed, the bus agents will re-arbitrate for the front side bus and attempt completion of their bus queue and IOQ entries.
		If BINIT# observation is disabled during power-on configuration, a central agent may handle an assertion of BINIT# as appropriate to the error handling architecture of the system.
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.
BOOTSELECT	Input	This input is required to determine whether the processor is installed in a platform that supports the processor. The processor will not operate if this pin is low. This input has a weak internal pullup.
		BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[5:0]# should connect the appropriate pins of all processor front side bus agents.
BPM[5:0]#	Input/	BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a processor output used by debug tools to determine processor debug readiness.
1	Output	BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is used by debug tools to request debug operation of the processor.
		Please refer to the Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide for more detailed information.
		These signals do not have on-die termination. Refer to Section 2.4, and the Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide for termination requirements.
BPRI#	Input	BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor front side bus. It must connect the appropriate pins of all processor front side bus agents. Observing BPRI# active (as asserted by the priority agent) causes all other agents to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.
BR0#	Input/ Output	BR0# drives the BREQ0# signal in the system and is used by the processor to request the bus. During power-on configuration this pin is sampled to determine the agent ID = 0.
		This signal does not have on-die termination and must be terminated.
BSEL[1:0]	Output	The BCLK[1:0] frequency select signals BSEL[1:0] are used to select the processor input clock frequency. Table 2-6 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. For more information about these pins, including termination recommendations refer to Section 2.8 and the appropriate platform design guidelines.
COMP[1:0]	Analog	COMP[1:0] must be terminated on the system board using precision resistors. Refer to the Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide for details on implementation.

Table 4-3. Signal Description (Sheet 3 of 8)

Name	Туре		Description							
		D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the processor front side bus agents, and must connect the appropriate pins on all such agents. The data driver asserts DRDY# to indicate a valid data transfer.								
		common clock postrBP[3:0]# and pair of one DSTE	D[63:0]# are quad-pumped signals and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DBI#.							
		Quad-Pumped	Signal Groups							
D[63:0]#	Input/ Output	Data Group	DSTBN#/ DSTBP#	DBI#						
		D[15:0]#	0	0						
		D[31:16]#	1	1						
		D[47:32]#	2	2						
		D[63:48]#	3	3						
		group of 16 data	signals correspon	ds to one D)BI# s	of the data signals. Each signal. When the DBI# signal and therefore sampled active				
DBI[3:0]# are source synchronous and indice signals. The DBI[3:0]# signals are activated inverted. If more than half the data bits, with asserted electrically low, the bus agent may particular sub-phase for that 16-bit group.						ne data on the data bus is bit group, would have been				
		DBI[3:0] Assign	ment To Data Bu	s						
DBI[3:0]#	Input/ Output	Bus Sign	al Data Bus	Signals						
		DBI3#	D[63	:48]#						
		DBI2#	D[47	:32]#						
		DBI1#	D[31	:16]#						
		DBI0#	D[15	5:0]#						
DBR#	Output	the system board probe can drive	d. DBR# is used by	y a debug p debug port i	ort in	debug port is implemented on terposer so that an in-target blemented in the system, processor signal.				
DBSY#	Input/ Output	DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the processor front side bus to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on all processor front side bus agents.								
DEFER#	Input	guaranteed in-or responsibility of the	der completion. As	ssertion of I mory or Inp	DEFE ut/Ou	transaction cannot be R# is normally the tput agent. This signal must side bus agents.				
DP[3:0]#	Input/ Output	driven by the age		driving D[6	3:0]#	ne D[63:0]# signals. They are it, and must connect the nts.				

Table 4-3. Signal Description (Sheet 4 of 8)

Name	Type	Description					
DPSLP#	Input	DPSLP# when asserted on the platform causes the processor to transition from the Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP# must be deasserted and BCLK[1:0] must be running.					
DRDY#	Input/ Output	DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of all processor front side bus agents.					
		Data strobe used to latch in	D[63:0]#.				
		Signals	Associated Strobe				
DOTDNIG-01#	Input/	D[15:0]#, DBI0#	DSTBN0#				
DSTBN[3:0]#	Output	D[31:16]#, DBI1#	DSTBN1#				
		D[47:32]#, DBI2#	DSTBN2#				
		D[63:48]#, DBI3#	DSTBN3#				
		Data strobe used to latch in	D[63:0]#.				
	Input/ Output	Signals	Associated Strobe				
		D[15:0]#, DBI0#	DSTBP0#				
DSTBP[3:0]#		D[31:16]#, DBI1#	DSTBP1#				
		D[47:32]#, DBI2#	DSTBP2#				
		D[63:48]#, DBI3#	DSTBP3#				
FERR#/PBE#	Output	FERR#/PBE# (floating point error/pending break event) is a multiplexed signal and its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating-point error and will be asserted when the processor detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/PBE# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. For additional information on the pending break event functionality, including the identification of support of the feature and enable/disable information, refer to volume 3 of the Intel Architecture Software Developer's Manual and the Intel Processor Identification and the CPUID Instruction application note.					
GTLREF	Input	GTLREF determines the signal reference level for GTL+ input pins. GTLREF is used by the GTL+ receivers to determine if a signal is a logical 0 or logical 1. Refer to the Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide for more information.					
HIT# HITM#	Input/ Output Input/ Output	HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Any front side bus agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.					

Table 4-3. Signal Description (Sheet 5 of 8)

Name	Туре	Description
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the processor front side bus. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#.
		This signal does not have on-die termination. Refer to Section 2.4 for termination requirements.
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
		IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal and must connect the appropriate pins of all processor front side bus agents. If INIT# is sampled active on the active to inactive transition of RESET#, then the
		processor executes its Built-in Self-Test (BIST).
ITP_CLK[1:0]	Input	ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where no debug port is implemented on the system board. ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port implemented on an interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the system. These are not processor signals.
LINT[1:0]	Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous.
	·	Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration.
LOCK#	Input/	LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of all processor front side bus agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction.
LOOK	Output	When the priority agent asserts BPRI# to arbitrate for ownership of the processor front side bus, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the processor front side bus throughout the bus locked operation and ensure the atomicity of lock.

Table 4-3. Signal Description (Sheet 6 of 8)

Name	Type	Description
		MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error without a bus protocol violation. It may be driven by all processor front side bus agents.
		MCERR# assertion conditions are configurable at a system level. Assertion options are defined by the following options:
MOEDD#	Input/	Enabled or disabled.
MCERR#	Output	Asserted, if configured, for internal errors along with IERR#.
		 Asserted, if configured, by the request initiator of a bus transaction after it observes an error.
		Asserted by any bus agent when it observes an error in a bus transaction.
		For more details regarding machine check architecture, please refer to the IA-32 Software Developer's Manual, Volume 3: System Programming Guide.
OPTIMIZED/ COMPAT#	Input	This is an input to the processor to determine if the processor is in an optimized platform or a compatible platform. This input has a weak internal pullup. This pin must be left unconnected on platforms designed for use with the processor. SeeIntel® 852GME and Intel® 852PM Chipset Platforms Design Guide for more details.
PROCHOT#	Input/ Output	As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled. The TCC will remain active until the system deasserts PROCHOT#. See Section 5.2.4 for more details.
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. The PWRGOOD signal must be supplied to the processor; it is used to protect
		internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation.
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins of all processor front side bus agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB0#. Refer to the AP[1:0]# signal description for a details on parity checking of these signals.
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least one millisecond after V _{CC} and BCLK have reached their proper specifications. On observing active RESET#, all front side bus agents will deassert their outputs within two clocks. RESET# must not be kept asserted for more than 10 ms while PWRGOOD is asserted.
		A number of bus signals are sampled at the active-to-inactive transition of RESET# for power-on configuration. These configuration options are described in the Section 6.1.
		This signal does not have on-die termination and must be terminated on the system board.
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of all processor front side bus agents.

Table 4-3. Signal Description (Sheet 7 of 8)

Name	Туре	Description
RSP#	Input	RSP# (Response Parity) is driven by the response agent (the agent responsible for completion of the current transaction) during assertion of RS[2:0]#, the signals for which RSP# provides parity protection. It must connect to the appropriate pins of all processor front side bus agents.
NOT#	Прис	A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also high, since this indicates it is not being driven by any agent guaranteeing correct parity.
SKTOCC#	Output	SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System board designers may use this pin to determine if the processor is present.
SLP#	Input	SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP# signal, and assertion of DPSLP# input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If the DPSLP# signal is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the deassertion of RESET# the processor will tristate
		its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the front side bus and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
тск	Input	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).
TDI	Input	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.
TDO	Output	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support.
TESTHI[11:0]	Input	TESTHI[11:0] must be connected to a $V_{\rm CC}$ power source through a resistor for proper processor operation. See Section 2.4 for more details.
THERMDA	Other	Thermal Diode Anode. See Section 5.2.7.
THERMDC	Other	Thermal Diode Cathode. See Section 5.2.7.

Table 4-3. Signal Description (Sheet 8 of 8)

Name	Type	Description
THERMTRIP#	Output	In the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature approximately 20 °C above the maximum $T_{\rm C}$. Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction temperature has reached a level beyond which permanent silicon damage may occur. Upon assertion of THERMTRIP#, the processor will shut off its internal clocks (thus halting program execution) in an attempt to reduce the processor junction temperature. To protect the processor, its core voltage ($V_{\rm CC}$) must be removed following the assertion of THERMTRIP#. Driving of the THERMTRIP# signal is enabled within 10 μ s of the assertion of PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated, THERMTRIP# remains latched until PWRGOOD is de-asserted. While the deassertion of the PWRGOOD signal will de-assert THERMTRIP#, if the processor's junction temperature remains at or above the trip level, THERMTRIP# will again be asserted within 10 μ s of the assertion of PWRGOOD.
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of all front side bus agents.
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset.
V _{CCA}	Input	V _{CCA} provides isolated power for the internal processor core PLLs. Refer to the <i>Intel</i> ® 852GME and <i>Intel</i> ® 852PM Chipset Platforms Design Guide for complete implementation details.
V _{CCIOPLL}	Input	V _{CCIOPLL} provides isolated power for internal processor front side bus PLLs. Follow the guidelines for V _{CCA} , and refer to the <i>Intel</i> ® <i>852GME</i> and <i>Intel</i> ® <i>852PM</i> Chipset Platforms Design Guide for complete implementation details.
V _{CCSENSE}	Output	V_{CCSENSE} is an isolated low impedance connection to processor core power (V_{CC}). It can be used to sense or measure voltage near the silicon with little noise.
VCCVID	Input	1.2 V is required to be supplied to the VCCVID pin if the platform is going to support the processor. Refer to the <i>Intel</i> ® 852GME and <i>Intel</i> ® 852PM Chipset Platforms Design Guide for more information.
VCCVIDLB	Input	1.2 V is required to be supplied to the VCCVIDLB pin if the platform is going to support the processor. Refer to the <i>Intel</i> ® 852GME and <i>Intel</i> ® 852PM Chipset Platforms Design Guide for more information.
VID[5:0]	Output	VID[5:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (V $_{\rm CC}$). These are open drain signals that are driven by the processor and must be pulled up to 3.3 V with 1-k Ω 5% resistors. The voltage supply for these pins must be valid before the VR can supply V $_{\rm CC}$ to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 2-2 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself.
VIDPWRGD	Input	The processor requires this input to determine that the VCCVID and VCCVIDLB voltages are stable and within specification.
V _{SSA}	Input	V _{SSA} is the isolated ground for internal PLLs.
V _{SSSENSE}	Output	$V_{\rm SSSENSE}$ is an isolated low impedance connection to processor core $V_{\rm SS}$. It can be used to sense or measure ground near the silicon with little noise.

Pin Listing and Signal Descriptions

5 Thermal Specifications and Design Considerations

5.1 Processor Thermal Specifications

The processor requires a thermal solution to maintain temperatures within operating limits as set forth in Section 5.1.1. Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components within the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation.

A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions can include active or passive heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system level thermal solutions may consist of system fans combined with ducting and venting.

This section provides data necessary for developing a complete thermal solution. For more information on designing a component level thermal solution, consult your Intel field sales representative.

5.1.1 Thermal Specifications

To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor remains within the minimum and maximum case temperature (T_C) specifications at the corresponding Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not designed to provide this level of thermal capability may affect the long-term reliability of the processor and system. For more details on thermal solution design, please refer to the appropriate processor thermal design guidelines.

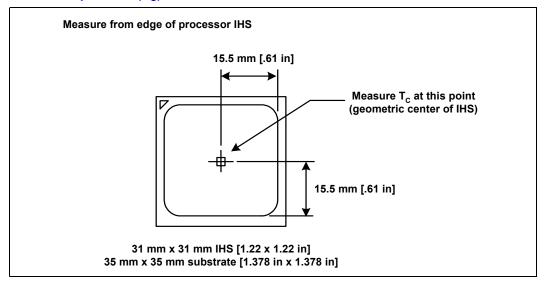
The processor introduces a new methodology for managing processor temperatures through fan speed control. Selection of the appropriate fan speed will be based on the temperature reported by the processor's Thermal Diode. The fan must be turned on to full speed when Tdiode is at or above Tcontrol and T_C must be maintained at or below T_C (max) as defined by the processor thermal specifications in Table 5-1. The fan speed may be lowered when the processor temperature can be maintained below Tcontrol as measured by the thermal diode. Systems implementing fan speed control must be designed to read temperature values from the diode and Tcontrol register and take appropriate action. Systems that do not alter the fan speed (always at full speed) only need to guarantee the case temperature meets specifications in Table 5-1.

The case temperature is defined at the geometric top center of the processor IHS. Analysis indicates that real applications are unlikely to cause the processor to consume maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the TDP indicated in Table 5-1 instead of the maximum processor power consumption. The Intel[®] Thermal Monitor feature is intended to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.2. To ensure maximum flexibility for future

requirements, systems should be designed to the Fixed Mobile Solution (FMS) guidelines, even if a processor with a lower thermal dissipation is currently planned. In all cases, the Intel Thermal Monitor or Intel Thermal Monitor 2 feature must be enabled for the processor to remain within specification.

Table 5-1. Processor Thermal Specifications

Processor Number	Core Frequency (GHz)	Thermal Design Power (W)	Minimum T _C (°C)	Maximum T _C (°C)	Notes
518	2.80	88	5	75	1
532	3.06	88	5	75	1
538	3.20	88	5	75	1
548	3.33	88	5	75	1
552	3.46	88	5	75	1
	FMS0.5	94	5	76	1, 2


NOTES

- 1. TDP should be used for processor thermal solution design targets. The TDP is not the maximum power that the processor can dissipate.
- 2. FMS, or Fixed Mobile Solution guidelines provide a design target for meeting future thermal requirements.

5.1.2 Thermal Metrology

The maximum and minimum case temperatures (T_C) are specified in Table 5-1. These temperature specifications are meant to help ensure proper operation of the processor. Figure 5-1 illustrates where Intel recommends T_C thermal measurements should be made.

Figure 5-1. Case Temperature (T_C) Measurement Location

5.2 Processor Thermal Features

5.2.1 Intel Thermal Monitor

The Intel Thermal Monitor feature helps control the processor temperature by activating the TCC when the processor silicon reaches its maximum operating temperature. The TCC reduces processor power consumption as needed by modulating (starting and stopping) the internal processor core clocks. **The Intel Thermal Monitor or Intel Thermal Monitor 2 feature must be enabled for the processor to be operating within specifications.** The temperature at which the Intel Thermal Monitor activates the thermal control circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

When the Intel Thermal Monitor feature is enabled, and a high temperature situation exists (i.e. TCC is active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle specific to the processor (typically 30-50%). Clocks often will not be off for more than 3.0 microseconds when the TCC is active. Cycle times are processor speed dependent and will decrease as processor core frequencies increase. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would be immeasurable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and in some cases may result in a $T_{\rm C}$ that exceeds the specified maximum temperature and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under-designed may not be capable of cooling the processor even when the TCC is active continuously. Consult your Intel field sales representative for information on designing a thermal solution.

The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and cannot be modified. The Thermal Monitor does not require any additional hardware, software drivers, or interrupt handling routines.

5.2.2 Thermal Monitor 2

The Mobile processor also supports an additional power reduction capability known as Thermal Monitor 2. This mechanism provides an efficient means for limiting the processor temperature by reducing the power consumption within the processor. Consult your Intel field sales representative for information on determining whether a given processor supports Thermal Monitor 2 and for configuration information.

When the Intel Thermal Monitor 2 is enabled, and a high temperature situation is detected, the Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust its operating frequency (via the bus multiplier) and input voltage (via the VID signals). This combination of reduced frequency and VID results in a reduction to the processor power consumption.

A processor enabled for the Intel Thermal Monitor 2 includes two operating points, each consisting of a specific operating frequency and voltage. The first operating point represents the normal operating condition for the processor. Under this condition, the core-frequency-to-FSB multiple utilized by the processor is that contained in the IA32_CR_FLEX_BRVID_SEL MSR and the VID is that specified in Table 2-8. These parameters represent normal system operation.

The second operating point consists of both a lower operating frequency and voltage. When the TCC is activated, the processor automatically transitions to the new frequency. This transition occurs very rapidly (on the order of $5~\mu S$). During the frequency transition, the processor is unable to service any bus requests, and consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and kept pending until the processor resumes operation at the new frequency.

Once the new operating frequency is engaged, the processor will transition to the new core operating voltage by issuing a new VID code to the voltage regulator. The voltage regulator must support dynamic VID steps in order to support the Intel Thermal Monitor 2. During the voltage change, it will be necessary to transition through multiple VID codes to reach the target operating voltage. Each step will likely be one VID table entry (see Table 2-8). The processor continues to execute instructions during the voltage transition. Operation at the lower voltage reduces the power consumption of the processor.

A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the operating frequency and voltage transition back to the normal system operating point. Transition of the VID code will occur first, in order to insure proper operation once the processor reaches its normal operating frequency. Refer to Figure 5-2 for an illustration of this ordering.

Temperature

fMAX
fTM2

Frequency

VNOM
VTM2

VCC

Time
T(hysteresis)

Figure 5-2. Intel Thermal Monitor 2 Frequency and Voltage Ordering

The PROCHOT# signal is asserted when a high temperature situation is detected, regardless of whether the Intel Thermal Monitor or Intel Thermal Monitor 2 is enabled.

5.2.3 On-Demand Mode

The processor provides an auxiliary mechanism that allows system software to force the processor to reduce its power consumption. This mechanism is referred to as "On-Demand" mode and is distinct from the Intel Thermal Monitor feature. On-Demand mode is intended as a means to reduce system level power consumption. Systems utilizing the processor must not rely on software usage of this mechanism to limit the processor temperature.

If bit 4 of the ACPI P_CNT Control Register (located in the processor IA32_THERM_CONTROL MSR) is written to a 1, the processor will immediately reduce its power consumption via modulation (starting and stopping) of the internal core clock, independent of the processor temperature. When using On-Demand mode, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI P_CNT Control register. In On-Demand mode, the duty cycle can be programmed from 12.5% on/87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be used in conjunction with the Intel Thermal Monitor. If the system tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty cycle of the TCC will override the duty cycle selected by the On-Demand mode.

5.2.4 PROCHOT# Signal Pin

An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature has reached its maximum operating temperature. If the Intel Thermal Monitor or Intel Thermal Monitor 2 is enabled (note that the Thermal Monitor or Thermal Monitor 2 must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#. Refer to the Intel® Architecture Software Developer's Manuals and consult your Intel field sales representative for specific register and programming details.

The processor implements a bidirectional PROCHOT# capability to allow system designs to protect various components from over-temperature situations. The PROCHOT# signal is bidirectional in that it can either signal when the processor has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

One application is the thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR can cool down as a result of reduced processor power consumption. Bidirectional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bidirectional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP. With a properly designed and characterized thermal solution, it is anticipated that bidirectional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss.

Refer to the *Intel*® 852GME and *Intel*® 852PM Chipset Platforms Design Guide for details on implementing the bidirectional PROCHOT# feature.

5.2.5 THERMTRIP# Signal Pin

Regardless of whether or not the Intel Thermal Monitor feature is enabled, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in Table 4-3). At this point, the front side bus signal THERMTRIP# will go active and stay active as described in Table 4-3. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. If THERMTRIP# is asserted, processor core voltage (Vcc) must be removed.

5.2.6 Tcontrol and Fan Speed Reduction

Tcontrol is a temperature specification based on a temperature reading from the thermal diode. The value for Tcontrol will be calibrated in manufacturing and configured for each processor. The Tcontrol temperature for a given processor can be obtained by reading the IA32_TEMPERATURE_TARGET MSR in the processor. The Tcontrol value that is read from the IA32_TEMPERATURE_TARGET MSR needs to be converted from Hexadecimal to Decimal and added to a base value of 50 °C.

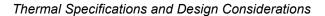
The value of Tcontrol may vary from 00 h to 1E h (0 to 30 °C).

The fan must be turned on to the max rated speed of the fan or fan speed necessary to meet Tc,max at TDP when Tdiode is at or above Tcontrol and T_C must be maintained at or below T_C (max) as defined by the processor thermal specifications in Table 5-1. The fan speed may be lowered when the processor temperature can be maintained below Tcontrol as measured by the thermal diode.

5.2.7 Thermal Diode

The processor incorporates an on-die thermal diode. A thermal sensor located on the system board may monitor the die temperature of the processor for thermal management/long term die temperature change purposes. Table 5-2 and Table 5-3 provide the diode parameter and interface specifications. This thermal diode is separate from the Intel Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the Intel Thermal Monitor.

Table 5-2. Thermal Diode Parameters


Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	11		187	uA	1
n	Diode Ideality Factor	1.0083	1.011	1.0183		2, 3, 4
R _T	Series Resistance	3.242	3.33	3.594	Ω	2, 3, 5

NOTES:

- 1. Intel does not support or recommend operation of the thermal diode under reverse bias.
- 2. Characterized at 75 °C.
- 3. Not 100% tested. Specified by design characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

$$I_{FW} = I_S * (e^{qV_D/nkT} - 1)$$

where I_S = saturation current, q = electronic charge, V_D = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

5. The series resistance, R_T , is provided to allow for a more accurate measurement of the diode temperature. R_T , as defined, includes the pins of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:

$$T_{error} = [R_T * (N-1) * I_{FWmin}] / [nk/q * In N]$$

where T_{error} = sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic charge.

Table 5-3. Thermal Diode Interface

Pin Name	Pin Number	Pin Description
THERMDA	В3	diode anode
THERMDC	C4	diode cathode

§

Thermal Specifications and Design Considerations

6 Features

6.1 Power-On Configuration Options

Several configuration options can be configured by hardware. The processor samples the hardware configuration at reset, on the active-to-inactive transition of RESET#. For specifications on these options, please refer to Table 6-1.

The sampled information configures the processor for subsequent operation. These configuration options cannot be changed except by another reset. All resets reconfigure the processor; for reset purposes, the processor does not distinguish between a "warm" reset and a "power-on" reset.

Frequency determination functionality will exist on engineering sample processors which means that samples can run at varied frequencies. Production material will have the bus to core ratio locked and can only be operated at the rated frequency.

Table 6-1. Power-On Configuration Option Pins

Configuration Option	Pin ^{1,2}
Output tristate	SMI#
Execute BIST	INIT#
In Order Queue pipelining (set IOQ depth to 1)	A7#
Disable MCERR# observation	A9#
Disable BINIT# observation	A10#
APIC Cluster ID (0-3)	A[12:11]#
Disable bus parking	A15#
Disable Hyper-Threading Technology	A31#
Symmetric agent arbitration ID	BR0#
RESERVED	A[6:3]#, A8#, A[14:13]#, A[16:30]#, A[32:35]#

NOTES:

- 1. Asserting this signal during RESET# will select the corresponding option.
- 2. Address pins not identified in this table as configuration options should not be asserted during RESET#.

6.2 Clock Control and Low Power States

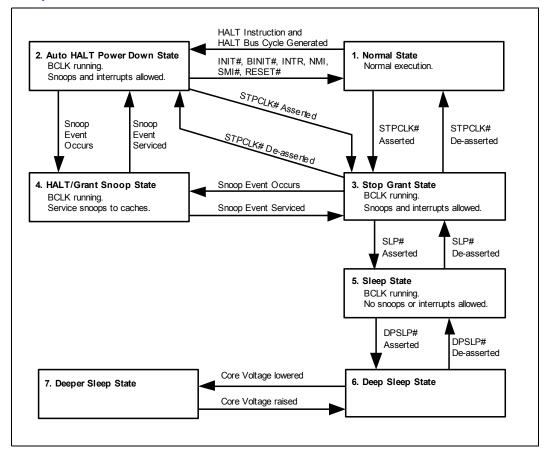
The processor allows the use of AutoHALT, Stop-Grant, Sleep, Deep Sleep, and Deeper Sleep states to reduce power consumption by stopping the clock to internal sections of the processor, depending on each particular state. See Figure 6-1 for a visual representation of the processor low power states.

6.2.1 Normal State—State 1

This is the normal operating state for the processor.

Features

6.2.2 AutoHALT Power-Down State—State 2


AutoHALT is a low-power state entered when the processor executes the HALT instruction. The processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize itself.

The return from a System Management Interrupt (SMI) handler can be to either Normal mode or the AutoHALT Power-Down state. See the *Intel*® *Architecture Software Developer's Manual, Volume III: System Programmer's Guide* for more information.

The system can generate a STPCLK# while the processor is in the AutoHALT Power-Down state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in AutoHALT Power-Down state, the processor will process front side bus snoops and interrupts.

Figure 6-1. Stop Clock State Machine

6.2.3 Stop-Grant State—State 3

When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.

Since the GTL+ signal pins receive power from the front side bus, these pins should not be driven (allowing the level to return to $V_{\rm CC}$) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the front side bus should be driven to the inactive state.

BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched and can be serviced by software upon exit from the Stop-Grant state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the STPCLK# signal. When re-entering the Stop Grant state from the Sleep state, STPCLK# should only be deasserted ten or more bus clocks after the de-assertion of SLP#.

A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the front side bus (see Section 6.2.4). A transition to the Sleep state (see Section 6.2.5) will occur with the assertion of the SLP# signal.

While in the Stop-Grant State, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal state. Only one occurrence of each event will be recognized upon return to the Normal state.

While in Stop-Grant state, the processor will process snoops on the front side bus and it will latch interrupts delivered on the front side bus.

The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that it should return the processor to the Normal state.

6.2.4 HALT/Grant Snoop State—State 4

The processor will respond to snoop or interrupt transactions on the front side bus while in Stop-Grant state or in AutoHALT Power Down state. During a snoop or interrupt transaction, the processor enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the front side bus has been serviced (whether by the processor or another agent on the front side bus) or the interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will return to the Stop-Grant state or AutoHALT Power-Down state, as appropriate.

6.2.5 Sleep State—State 5

The Sleep state is a very low power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can only be entered from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state upon the assertion of the SLP# signal. The SLP# pin should only be asserted when the processor is in the Stop Grant state. SLP# assertions while the processor is not in the Stop Grant state is out of specification and may result in erroneous processor operation.

Snoop events that occur while in Sleep State or during a transition into or out of Sleep state will cause unpredictable behavior.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP# or RESET#) are allowed on the front side bus while the processor is in Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

Features

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the reset sequence.

While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state, by asserting the DPSLP# pin (See Section 6.2.6). Once in the Sleep or Deep Sleep state, the SLP# pin must be de-asserted if another asynchronous front side bus event needs to occur. The SLP# pin has a minimum assertion of one BCLK period.

When the processor is in the Sleep state, it will not respond to interrupts or snoop transactions.

6.2.6 Deep Sleep State—State 6

Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. The DPSLP# pin must be de-asserted to re-enter the Sleep state. A period of 30 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep State. Once in the Sleep state, the SLP# pin can be deasserted to re-enter the Stop-Grant state.

The clock may be stopped when the processor is in the Deep Sleep state in order to support the ACPI S1 state. The clock may only be stopped after DPSLP# is asserted and must be restarted before DPSLP# is deasserted. To provide maximum power conservation when stopping the clock during Deep Sleep, hold the BCLK0 input at V_{OL} and the BCLK1 input at V_{OH} .

While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the front side bus while the processor is in Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behaviour.

6.2.7 Deeper Sleep State—State 7

The Deeper Sleep State is the lowest power state the processor can enter. This state is functionally identical to the Deep Sleep state but at a lower core voltage. The control signals to the voltage regulator to initiate a transition to the Deeper Sleep state are provided on the platform. Please refer the Intel® 852GME and Intel® 852PM Chipset Platforms Design Guide for details.

6.3 Enhanced Intel SpeedStep® Technology

The processor will feature Enhanced Intel SpeedStep technology. Unlike previous implementations of Intel SpeedStep technology, this technology will enable the processor to switch between multiple voltage and operating frequency points instead of two. This will enable superior performance with optimal power savings. Switching between states will be software controlled unlike previous generation processor implementations where the GHI# pin was used to toggle between two states. Following are the key features of Enhanced Intel SpeedStep technology:

- Multiple voltage/frequency operating points provide optimal performance at the lowest power.
- Voltage/Frequency selection will be software controlled by writing to processor MSRs (Model Specific Registers) thus eliminating chipset dependency.

- If the target frequency is higher than the current frequency, Vcc is ramped up in incremental steps (+12.5 mV VID step) by placing a new value on the VID signals and the PLL then locks to the new frequency. Note that the top frequency for the processor can not be exceeded.
- If the target frequency is lower than the current frequency, the PLL locks to the new frequency and then Vcc is ramped down in decremental steps (-12.5 mV VID step) by changing the target VID through the VID signals.
- The processor will control voltage ramp rates internally to ensure glitch free transitions.
- Low transition latency and large number of transitions possible per second.
 - Processor core (including L2 cache) are unavailable for up to 10 μs during the frequency transition
 - The bus protocol (BNR# mechanism) is used to block snooping
- No bus master arbiter disable required prior to transition and no processor cache flush necessary.

§

Features

7 Debug Tools Specifications

Please refer to the appropriate platform design guidelines for information regarding debug tools specifications. The *ITP700 Debug Port Design Guide* is located on http://developer.intel.com.

7.1 Logic Analyzer Interface (LAI)

Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in debugging processor systems. Tektronix and Agilent should be contacted to obtain specific information about their logic analyzer interfaces. The following information is general in nature. Specific information must be obtained from the logic analyzer vendor.

Due to the complexity of mobile processor systems, the LAI is critical in providing the ability to probe and capture front side bus signals. There are two sets of considerations to keep in mind when designing a processor system that can make use of an LAI: mechanical and electrical.

7.1.1 Mechanical Considerations

The LAI is installed between the processor socket and the mobile processor. The LAI pins plug into the socket, while the processor pins plug into a socket on the LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between the processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor. System designers must make sure that the keepout volume remains unobstructed inside the system. Note that it is possible that the keepout volume reserved for the LAI may differ from the space normally occupied by the processor heatsink. If this is the case, the logic analyzer vendor will provide a cooling solution as part of the LAI.

7.1.2 Electrical Considerations

The LAI will also affect the electrical performance of the front side bus; therefore, it is critical to obtain electrical load models from each of the logic analyzers to be able to run system level simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for electrical specifications and load models for the LAI solution they provide.

Debug Tools Specifications

