

GENERAL DESCRIPTION

The MSF6N70 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-220F package is universally preferred for all commercial-industrial applications

FEATURES

- · Low On Resistance
- · Simple Drive Requirement
- · Low Gate Charge
- Fast Switching Characteristic
- RoHS compliant / Halogen free package available

CONFLIANT
HALOGEN
FREE
Avaliable

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)					
Parameter	Symbol	Value	Unit		
Drain-Source Voltage	VDS	700	V		
Continuous Drain Current @ TC=25°C	ID	6.0	А		
Continuous Drain Current @ TC=100°C	ID	3.5	А		
Pulsed Drain Current	IDM	22	А		
Gate-Source Voltage	VGS	±30	V		
Single Pulsed Avalanche Energy	EAS	350	mJ		
Avalanche Current	IAR	5.5	А		
Repetitive Avalanche Energy	EAR	14.7	mJ		
Peak Diode Recovery dV/dt	dV/dt	5.5	V/ns		
Power Dissipation (TC=25°C)	DD.	48	W		
Power Dissipation (TC=100°C)	PD -	0.38	W		
Operating Junction and Storage Temperature	Tj, Tstg	-55~+150	°C		

NOTE:

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. IAS=5.5A, VDD=50V, RG=25 Ω , Starting TJ =25 $^{\circ}$ C
- 3. ISD≤5.5A, di/dt≤300A/µs, VDD≤BVDSS, Starting TJ =25 °C
- 4. Pulse Test : Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%
- 5. Essentially Independent of Operating Temperature

Brückewell MSF6N70 700V N-Channel MOSFET

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Charact	eristics				
VGS	VDS = VGS, ID=250μA	2.0	-	4.0	V
*RDS(ON)	VGS =10V,ID =2.8A	-	1.5	1.8	Ω
BVDSS	VGS=0, ID=250μA	700	-	-	V
ΔBVDSS/ΔTj	Reference to 25°C, ID=250μA		0.70		
IDSS	VDS =700V,VGS =0V	-	-	1	uA
	VDS =560V, VGS =0, Tj=125°C	-	-	10	
IGSSF	VGS =30V,VDS =0V	-	-	100	nA
IGSSR	VGS =-30V,VDS =0V	-	-	-100	nA
Dynamic Char	acteristics				
Ciss	VGS=0V, VDS=25V, f=1MHz	-	1100	1500	pF
Coss		-	110	150	
Crss		-	12	16	
td(ON)	VDS =350V,ID =5.5A, RG = 25 Ω	-	10	30	
tr		-	35	80	no
td(OFF)		-	45	100	ns
tf		-	40	90	
Qg	VDS =560V,ID =5.5A, VGS =10V	-	29	37	nC
Qgs		-	5	-	
Qgd		-	11	-	
Source-Drain I	Diode Characteristics				
IS		-	-	5.5	
ISM		-	-	22	A
VSD	IS = 5.5A, VGS = 0 V	-	-	1.5	V
trr	IS = 5.5 A, VGS = 0 V diF/dt = 100 A/μs	-	390	-	nS
Qrr		-	3.6	-	nC

· Characteristic Curves

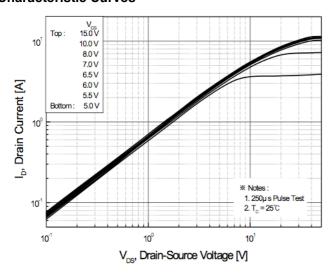


Figure 1. On Region Characteristics

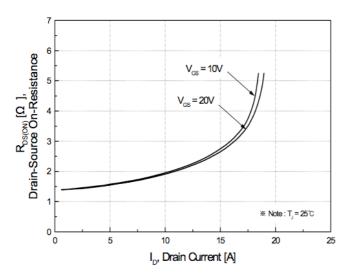


Figure 3. On Resistance Variation vs Drain Current and Gate Voltage

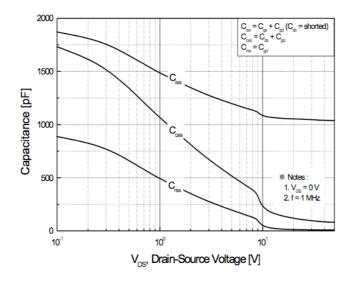


Figure 5. Capacitance Characteristics

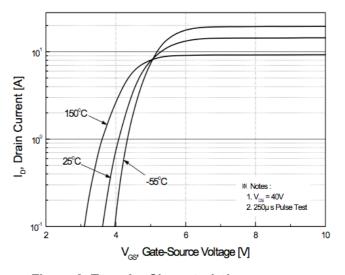


Figure 2. Transfer Characteristics

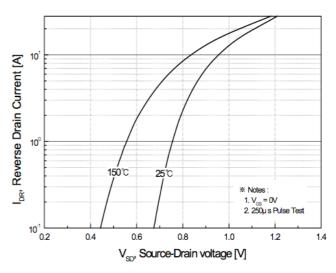


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

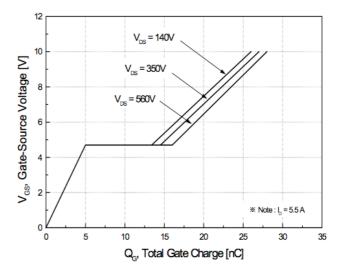


Figure 6. Gate Charge Characteristics

· Characteristic Curves

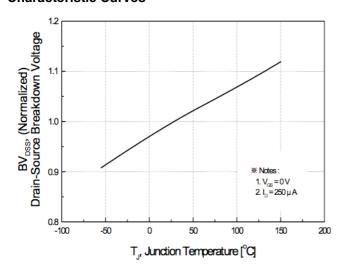


Figure 7. Breakdown Voltage Variation vs. Temperature

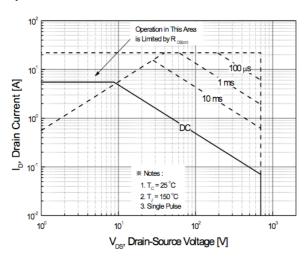


Figure 8. On-Resistance Variation vs. Temperature

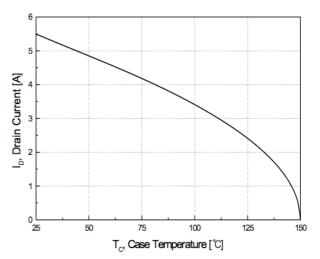
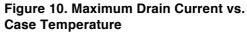



Figure 9. Maximum Safe Operating Area

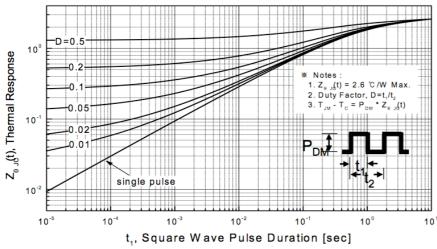


Figure 11. Transient Thermal Response Curve

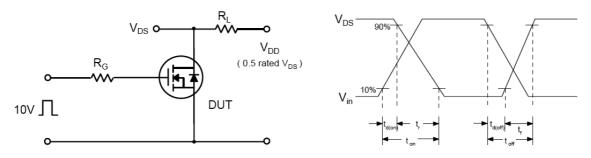


Fig 12. Resistive Switching Test Circuit & Waveforms

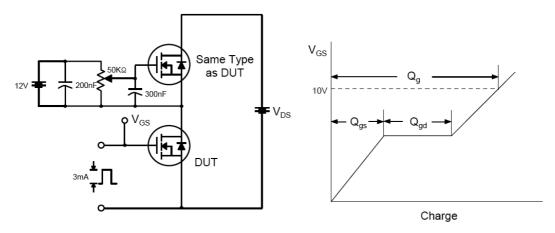


Fig 13. Gate Charge Test Circuit & Waveform

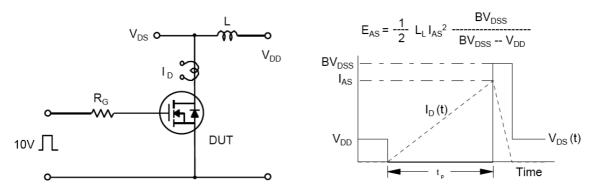


Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

Brückewell MSF6N70 700V N-Channel MOSFET

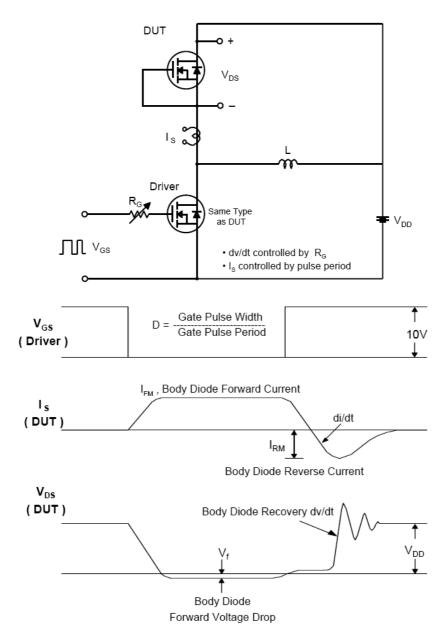
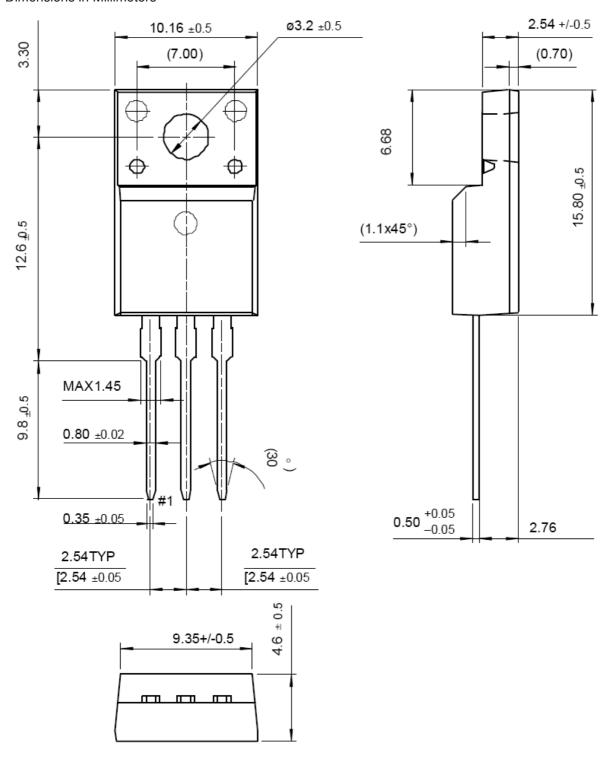



Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Package Dimensions

Dimensions in Millimeters

Legal Disclaimer Notice

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.