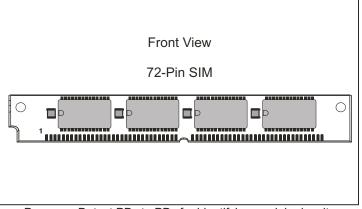


AK632256AW-72 262.144 x 32 Bit CMOS/BiCMOS 72 Pin Format **Static Random Access Memory**

DESCRIPTION


The Accutek AK632256AW-72 SRAM Module consists of fast high performance SRAMs mounted on a low profile, 72 pin SIM Board. The module utilizes four 28 pin 256K x 4 SRAMs in 300 mil SOJ packages and four decoupling capacitors mounted on each side of a printed circuit board.

The SRAMs used have common I/O functions and single output enable functions. Also, four separate chip select (\overline{CE}) connections are used to independently enable the four bytes. The modules can be supplied in a variety of access time values from 12 nSEC to 45 nSEC in CMOS or BiCMOS technology.

The Accutek module is designed to have a maximum seated height of 0.600 inch to provide for the lowest height off the board. By offset-mounting the back surface SRAMs the module can be mounted in either angled or straight-up SIM sockets. The module conforms to JEDEC standard sizes and pin-out configurations. Using four pins for module memory density identification, PD₀ to PD₃, minimizes interchangeability and design considerations when changing from one module size to another in customer applications.

FEATURES

- 262,144 x 32 bit organization
- JEDEC Standardized 72 pin SIM or ZIP pinout
- Common I/O, single OE functions with four separate chip selects (CE)
- Low height, 0.605 inch maximum
- Upward compatible with 512K x 32 (AK632512) and 1 Meg x 32 (AK6321024)
- Downward compatible with 32K x 32 (AK63232), 64K x 32 (AK63264) and 128K x 32 AK632128

- Presence Detect PD₀ to PD₃ for identifying module density
- Fast access times range from 12 nSEC BiCMOS to 45 nSEC CMOS
- TTL-compatible inputs and outputs
- Single 5 volt power supply AK632256AW-72
- Single 3.3 volt power supply AK632256AW-72/3.3
- Operating temperature range in free air, 0°C to 70°C

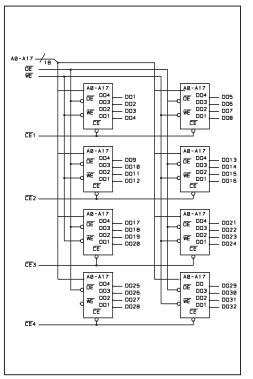
ELECTRICAL SPECIFICATIONS

Timing diagrams and basic electrical characteristics are those of the standard 256K x 4 SRAMs used to construct these modules. Accutek's module design allows the flexibility of selecting industry-compatible 256K x 4 SRAMs from several semiconductor manufacturers.

PIN NOMENCLATURE

PIN ASSIGNMENT

A ₀ - A ₁₇	Address Inputs		
CE ₁ - CE ₄	Chip Enable		
DQ ₁ - DQ ₃₂	Data In/Data Out		
ŌE	Output Enable		
PD ₀ - PD ₃	Presence Detect		
Vcc	5v Supply		
Vss	Ground		
WE	Write Enable		
NC	No Connect		


MODULE OPTIONS

Leadless SIM: AK632256AW-72

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	NC	19	A1	37	CE4	55	A5
2	NC	20	A8	38	CE3	56	A12
3	PD2/NC	21	A2	39	A17	57	Vcc
4	PD3/NC	22	A9	40	A16	58	A13
5	Vss	23	DQ13	41	OE	59	A6
6	PD0	24	DQ5	42	Vss	60	DQ21
7	PD1	25	DQ14	43	DQ25	61	DQ29
8	DQ1	26	DQ6	44	DQ17	62	DQ22
9	DQ9	27	DQ15	45	DQ26	63	DQ38
10	DQ2	28	DQ7	46	DQ18	64	DQ23
11	DQ10	29	DQ16	47	DQ27	65	DQ31
12	DQ3	30	DQ8	48	DQ19	66	DQ24
13	DQ11	31	Vss	49	DQ28	67	DQ32
14	DQ4	32	WE	50	DQ20	68	Vss
15	DQ12	33	A15	51	A3	69	A18/NC
16	Vcc	34	A14	52	A10	70	A19/NC
17	A0	35	CE2	53	A4	71	NC
18	A7	36	CE1	54	A11	72	NC

PD0 = Vss PD2 = Open PD1 = Vss PD3 = Open

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

PART NUMBER CODING INTERPRETATION

Position

Product

AK = Accutek Memory

2 Type

4 = Dynamic RAM

5 = CMOS Dynamic RAM

6 = Static RAM

Organization/Word Width

1 = by 1 16 = by 16

4 = by 4 32 = by 32

 $8 = by 8 \quad 36 = by 36$

9 = by 9

Size/Bits Depth

64 = 64K4096 = 4 MEG

256 = 256K8192 = 8 MEG

1024 = 1 MEG 16384 = 16 MEG

Package Type

G = Single In-Line Package (SIP)

S = Single In-Line Module (SIM)

D = Dual In-Line Package (DIP)

W = .050 inch Pitch Edge Connect

Z = Zig-Zag In-Line Package (ZIP)

Special Designation

P = Page Mode

N = Nibble Mode

K = Static Column Mode

W = Write Per Bit Mode

V = Video Ram

Separator

- = Commercial 0^{0} C to $+70^{0}$ C

M = Military Equivalent Screened

(-55°C to +125°C)

I = Industrial Temperature Tested

 $(-45^{\circ}C \text{ to } +85^{\circ}C)$

X = Burned In

Speed (first two significant digits)

DRAMS SRAMS

 $50 = 50 \, \text{nS}$ 8 = 8 nS

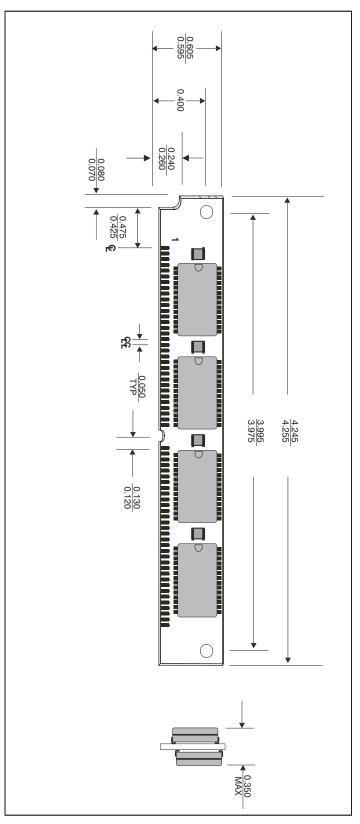
 $60 = 60 \, \text{nS}$ 10 = 10 nS

12 = 70 = 70 nS12 nS

 $80 = 80 \, \text{nS}$ 15 = 15 nS

The numbers and coding on this page do not include all variations available but are shown as examples of the most widely used variations. Contact Accutek if other information is required.

EXAMPLES:


AK632256AW72-12

5 NEW PASTURE ROAD NEWBURYPORT, MA 01950-4040 PHONE: 978-465-6200 FAX: 978-462-3396 Email: sales@accutekmicro.com Internet: www.accutekmicro.com

MECHANICAL DIMENSIONS

Inches

Accutek reserves the right to make changes in specifications at any time and without notice. Accutek does not assume any responsibility for the use of any circuitry described; no circuit patent licenses are implied. Preliminary data sheets contain minimum and maximum limits based upon design objectives, which are subject to change upon full characterization over the specific operating conditions.