DESCRIPTION

The STS710 is a multi-function telecommunications switch. It combines a 1 Form A solid state relay, phototransistor, zener diode, darlington transistor and a bridge rectifier in a 16-pin SOIC package. The solid state relay is comprised of an infrared LED optically coupled to a Photo Diode Array that drives two back-to-back MOSFETs. The optocoupler consists of back-to-back infrared LEDs coupled to a Photo-Transistor. Its small outline and low height make the STS710 an ideal choice in telecom circuits where function integration and reduction of board space are essential.

FEATURES

- Miniature 16pin SOIC package
- Function integration, including Zener Diode protection
- High Blocking Voltage (400V, relay portion)
- Low input control current (2.5mA TYP, relay portion)
- Low On-Resistance (30 ohms MAX, relay portion)
- High Load Current (120mA MAX, relay portion)
- High Input - Ouptut Isolation (1.5kV MIN, relay portion)
- Long life / high reliability

OPTIONS/SUFFIXES*

- -TR Tape \& Reel Packaging

NOTE: Suffixes listed above are not included in marking on device for part number identification.

SCHEMATIC DIAGRAM

APPLICATIONS

- Telecom switching
- PCMCIA cards
- Fax/modem modules
- Set-top boxes
- DAA arrangements
- Hookswitch
- Loop current detect
- Pulse dialing

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	UNIT	MIN	TYP	MAX
Storage Temperature	${ }^{\circ} \mathrm{C}$	-55		120
Operating Temperature	${ }^{\circ} \mathrm{C}$	-40		85
Continuous Input Current	mA			40
Transient Input Current	mA			400
Reverse Input Control Voltage	V	6		
Output Power Dissipation	mW			500

*The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to Absolute Ratings may cause permanent damage to the device and may adversely affect reliability.

APPROVALS

- BABT APPROVED TO (BSI) EN60950, (BSI) EN60065
- UL/ C-UL Approved

PARAMETER	UNIT	MIN	TYP	MAX	TEST CONDITIONS
RELAY INPUT SPECIFICATIONS					
LED Forward Voltage	V		1.2	1.5	If $=10 \mathrm{~mA}$
LED Reverse Voltage	V	6	12		$\mathrm{Ir}=10 \mathrm{uA}$
Turn-On Current	m A		2.5	10	$\mathrm{Io}=120 \mathrm{~mA}$
Turn-Off Current	m A		0.5		
RELAY OUTPUT SPECIFICATIONS					
Blocking Voltage	V	400			$\mathrm{lo}=1 \mathrm{uA}$
Continuous Load Current	m A			120	If $=10 \mathrm{~mA}$
On-Resistance	Ω		18	30	Io $=120 \mathrm{~mA}$
Leakage Current	$\mu \mathrm{A}$		0.2	1	$\mathrm{Vo}=400 \mathrm{~V}$
Output Capacitance	p F		25	50	$\mathrm{Vo}=25 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
Offset Voltage	m V			0.2	$\mathrm{lf}=10 \mathrm{~mA}$
RELAY COUPLED SPECIFICATIONS					
Turn-On Time	ms		2	5	If $=10 \mathrm{~mA}, \mathrm{lo}=120 \mathrm{~mA}$
Turn-Off Time	m s		0.5	1	If $=10 \mathrm{~mA}$, $\mathrm{lo}=120 \mathrm{~mA}$
OPTOCOUPLER INPUT SPECIFICATIONS					
LED Forward Voltage	V		1.2	1.5	If $=10 \mathrm{~mA}$
Turn-On Current	m A	2			$\mathrm{lo}=0.5 \mathrm{~mA}$
Reverse Current	$\mu \mathrm{A}$			10	$\mathrm{Vr}=4 \mathrm{~V}$
Terminal Capacitance	p F		30	250	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{kHz}$
OPTOCOUPLER OUTPUT SPECIFICATIONS					
Collector - Emitter Breakdown Voltage	V	60			$\mathrm{lo}=10 \mathrm{uA}, \mathrm{If}=0$
Emitter - Collector Breakdown Voltage	V	5			$\mathrm{lo}=100 \mathrm{uA}$, If $=0$
Collector Dark Current	$\mu \mathrm{A}$			0.1	Vce $=20 \mathrm{~V}$, If $=0$
Floating Capacitance	p F		0.6	1	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
Vce Saturation Voltage	V		0.1	0.3	If $=20 \mathrm{~mA}, \mathrm{lc}=1 \mathrm{~mA}$
Current Transfer Ratio	\%	30	100	800	If $=5 \mathrm{~mA}$, Vce $=5 \mathrm{~V}$
Rise Time	$\mu \mathrm{S}$		5	20	$\mathrm{Ic}=2 \mathrm{~mA}, \mathrm{Vce}=2 \mathrm{~V}, \mathrm{RL}=100$ ohms
Fall Time	$\mu \mathrm{S}$		4	20	$\mathrm{Ic}=2 \mathrm{~mA}, \mathrm{Vce}=2 \mathrm{~V}, \mathrm{RL}=100$ ohms
FULL WAVE BRIDGE RECTIFIER					
Reverse Voltage	V	100			$\mathrm{lo}=10 \mathrm{uA}$
Forward Voltage Drop	V		1.5	1.8	$\mathrm{Io}=120 \mathrm{~mA}$
Reverse Leakage Current	$\mu \mathrm{A}$			10	$\mathrm{Vr}=100 \mathrm{~V}$

Continuous Load Current	m A			140	
Peak Forward Current	m A			500	$\mathrm{~T}=10 \mathrm{us}$
DARLINGTON TRANSISTOR					
Collector-Emitter Breakdown Voltage	V	40			$\mathrm{Ic}=10 \mathrm{uA}, \mathrm{Ib}=0$
Continuous Collector Current	m A			120	$\mathrm{Vce}=5 \mathrm{~V}$
Collector-Emitter Leakage Current	$\mu \mathrm{A}$		0.5	1	$\mathrm{Vce}=10 \mathrm{~V}$
Saturation Voltage	V			1.5	$\mathrm{Ic}=120 \mathrm{~mA}, \mathrm{Ib}=10 \mathrm{~mA}$
ZENER DIODE SPECIFICATIONS					
Zener Voltage	V		15		$\mathrm{Izt}=20 \mathrm{~mA}$
DEVICE SPECIFICATIONS					
Contact Transient Ratio	$\mathrm{V} /$	$\mu \mathrm{s}$	2000	7000	
Coupled Capacitance	p F			2	$\mathrm{dV}=50 \mathrm{~V}$
Isolation Voltage	V	1500			$\mathrm{~T}=1$ minute

STS710 (Optocoupler Portion)

Collector Power Dissipation vs. Ambient Temperature $\mathrm{N}=100$

Ambient Temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

STS710 (Optocoupler Portion)

Current Transfer Ratio vs. Forward Current $\mathrm{N}=\mathbf{1 0 0}$, Ambient Temperature $=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

STS710 (Optocoupler Portion)

Collector Dark Current vs. Ambient Temperature $\mathrm{N}=100$

Ambient Temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

STS710 (Optocoupler Portion)

Forward Current vs. Ambient Temperature
$\mathrm{N}=100$. Ambient Temberature $=25^{\circ} \mathrm{C}$

Multifunction
Telecommunications Switch

16 PIN SMALL OUTLINE INTEGRATED CIRCUIT

TOP VIEW

BOTTOM VIEW/
BOARD PATTERN

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notice. SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.
Except as specified in SSO's Standard Terms \& Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component in any component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.

