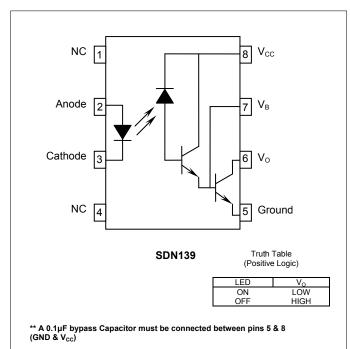


Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

Description


The SDN139 consists of a highly efficient AlGaAs Light Emitting Diode and an integrated high gain photo detector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltage and high speed operation. Where desired the V_{CC} and V_0 terminals may be tied together to achieve conventional photo Darlington operation. A base access terminal allows a gain bandwidth adjustment to be made.

The SDN139 comes standard in an 8 pin DIP package.

Applications

- Digital Logic Ground Isolation
- Replace Slower Speed Optocouplers
- Low Input Current Line Receivers
- Ring Detector Circuitry
- Loop Current Receiver
- High Common Mode Noise Line Receiver

Schematic Diagram

Features

- TTL Compatible
- Low Control Current Requirements (0.5mA)
- High Output Current (60mA)
- High CTR Performance (2000%)
- High Isolation Voltage (5000V_{RMS})
- Instantaneous Common Mode Rejection (10kV/µS)
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

UL / C-UL:	File # E201932
VDE:	File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

Storage Temperature	55 to +125°C
Operating Temperature	40 to +85°C
Continuous Input Current	40mA
Transient Input Current	400mA
Reverse Input Control Voltage	5V
Max Input Current (I _F)	40mA
Input Power Dissipation	40mW
Supply Voltage, Output Voltage (V _{CC} , V _O)	0.5 to 7V
Average Output Current (I ₀)	50mA
Emitter-Base Reverse Voltage (VER)	0.5V
Output Power Dissipation	100mW

Ordering Information

Part Number	Description
Part Number	Description

SDN139	8 pin DIP, (50/Tube)
SDN139-H	0.40" (10.16mm) Lead Spacing (VDE0884)
SDN139-S	8 pin SMD, (50/Tube)
SDN139-STR	8 pin SMD, Tape and Reel (1000/Reel)

NOTE: Suffixes listed above are not included in marking on device for part number identification

Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

Electrical Characteristics, T_A = 25°C (unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input Specifications						
Input Forward Voltage	VF	-	1.1	1.7	V	I _F = 1.6mA
Input Forward Voltage Temp Coefficient	$\Delta V_F / \Delta T$	-	-1.9	-	mV/°C	I _F = 1.6mA
Input Reverse Voltage	BV _R	5	-	-	V	I _R = 10μA
Input Capacitance	CIN	-	60	-	pF	f=1MHz, V _F =0V
Output Specifications						
Current Transfer Ratio	CTR	400	2000	5000	%	I _F =0.5mA, V _O =0.4V, V _{CC} =4.5V
	UIK	500	1600	2600	%	I _F =1.6mA, V _O =0.4V, V _{CC} =4.5V
		-	0.1	0.4	V	I _F =0.5mA, V _{CC} =4.5V, I _O =2mA
Logic LOW Output Voltage	V _{OL}	-	0.1	0.4	V	I_F =1.6mA, V_{CC} =4.5V, I_O =8mA
Logic LOW Output Voltage	V OL	-	0.1	0.4	V	I_F =5mA, V_{CC} =4.5V, I_O =15mA
		-	0.2	0.4	V	I _F =12mA, V _{CC} =4.5V, I ₀ =24mA
Logic HIGH Output Current	I _{ОН}	-	0.1	100	μA	I _F =0mA, V _{CC} =18V, V _O =18V
Logic LOW Supply Current	I _{CCL}	-	0.4	1.5	mA	I _F =1.6mA, V _O =Open, V _{CC} =18V
Logic HIGH Supply Current	I _{CCH}	-	0.01	10	mA	V_{E} =0.5V, V_{CC} =5.5V, I_{F} =0mA
Switching Specifications, V _{CC} = 5V (unless	otherwise specifi	ed)				
Propagation Delay Time to		-	5	25	μS	I _F =0.5mA, R _L =4.7kΩ
Low Output Level	t _{PHL}	-	0.1	1	μS	I_F =12mA, R _L =270 Ω
Propagation Delay Time to		-	18	60	μS	$I_F=0.5mA$, $R_L=4.7k\Omega$
High Output Level	t _{PLH}	-	2	7	μS	I _F =12mA, R _L =270Ω
Logic HIGH Common Mode Transient Immunity	CM _H	1	10	-	V/µS	I_{F} =0mA, $ V_{CM} $ =10 V_{P-P} , R_{L} =2.2k Ω
Logic LOW Common Mode Transient Immunity	CM∟	1	10	-	V/µS	$I_{\text{F}}\text{=}1.6\text{mA}, V_{\text{CM}} \text{=}10V_{\text{P}\text{-P}}, \text{R}_{\text{L}}\text{=}2.2\text{k}\Omega$
Isolation Specifications						
Input-Output Insulation Leakage Current	I _{I-O}	-	-	1.0	μA	45% RH, t=5s, V _{I-0} =3kV
Withstand Insulation Test Voltage	V _{ISO}	5000	-	-	V _{RMS}	RH ≤ 50%, t=1min
Input-Output Resistance	R _{I-0}	-	10 ¹²	-	Ω	V _{I-0} = 500V _{DC}
Input-Output Capacitance	CI-O	-	1.0	-	pF	f=1MHz

Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

SDN139 Electrical Test Circuits

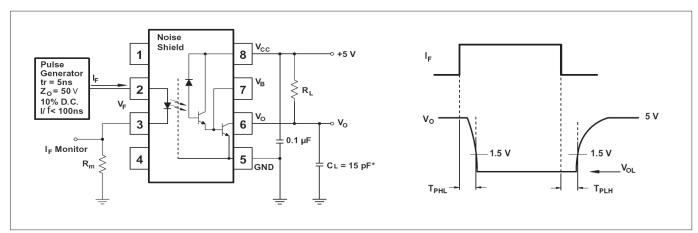
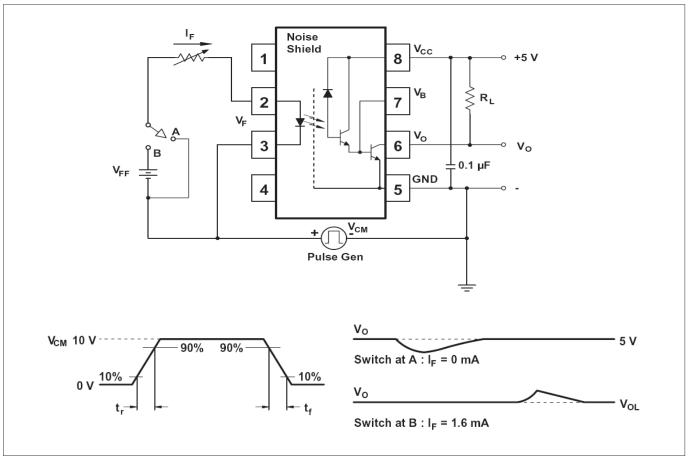
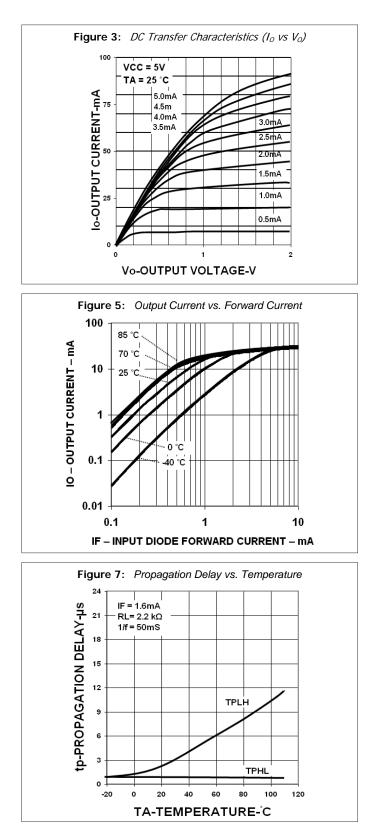
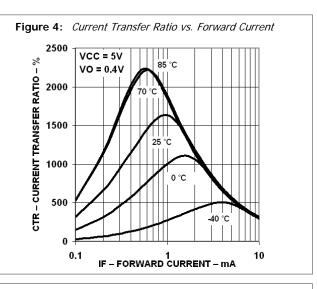
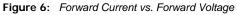
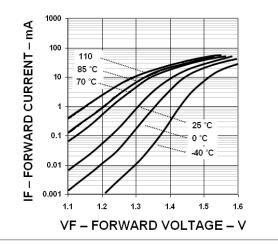


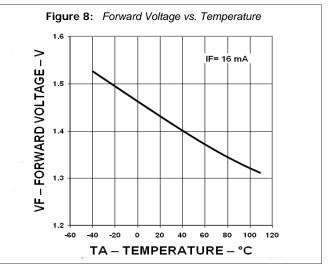
Figure 1: Single Channel Test Circuit for t_{PHL} and t_{PLH}

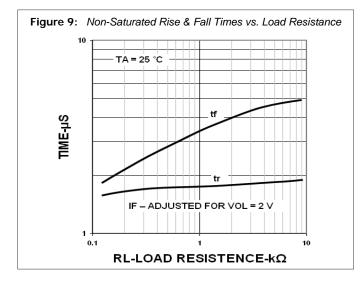



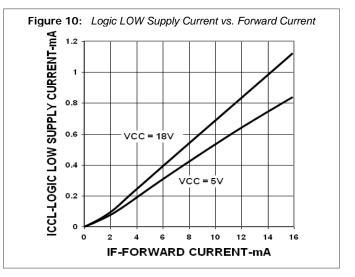

Figure 2: Single Channel Test Circuit for t_{EHL} and t_{ELH}




Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output


SDN139 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)

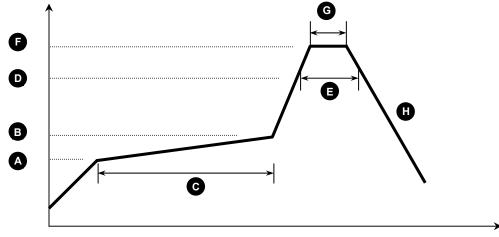




Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

SDN139 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)

SOLID STATE



SOLID STATE OPTRONICS

SDN139 Solder Reflow Temperature Profile Recommendations

(1) Infrared Reflow:

Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

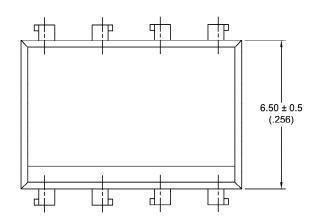
Figure	1	1
riguie	1	I

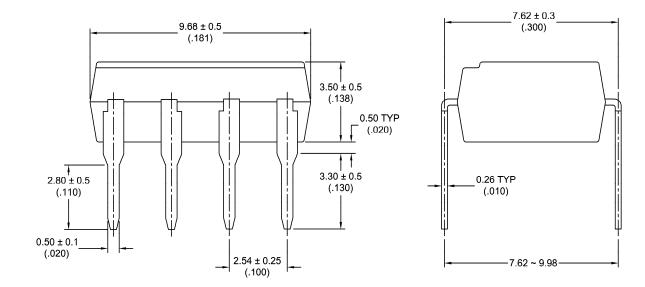
Process Step	Description	Parameter	
Α	Preheat Start Temperature (°C)	150°C	
В	Preheat Finish Temperature (°C)	180°C	
С	Preheat Time (s)	90 - 120s	
D	Melting Temperature (°C)	230°C	
E	Time above Melting Temperature (s)	30s	
F	Peak Temperature, at Terminal (°C)	260°C	
G	Dwell Time at Peak Temperature (s)	10s	
Н	Cool-down (°C/s)	<6°C/s	

(2) Wave Solder:

Maximum Temperature:	260°C (at terminal)
Maximum Time:	10s
Pre-heating:	100 - 150°C (30 - 90s)
Single Occurrence	

(3) Hand Solder:

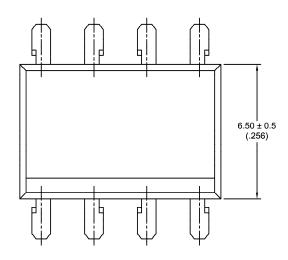

Maximum Temperature:	350°C	(at tip of soldering iron)
Maximum Time:	3s	
Single Occurrence		

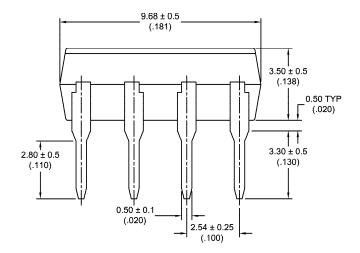


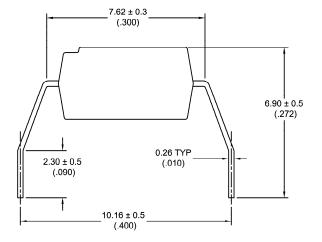
Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

SDN139 Package Dimensions

8 PIN DIP Package

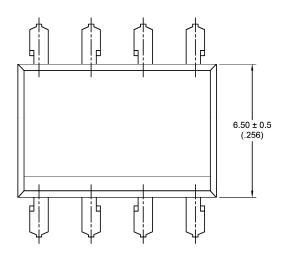


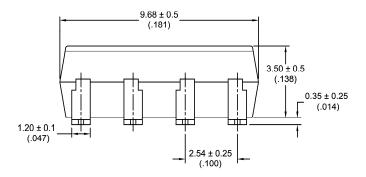


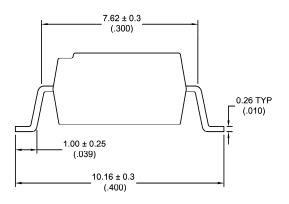

Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

SDN139 Package Dimensions

8 PIN WIDE Lead Space Package (-H)

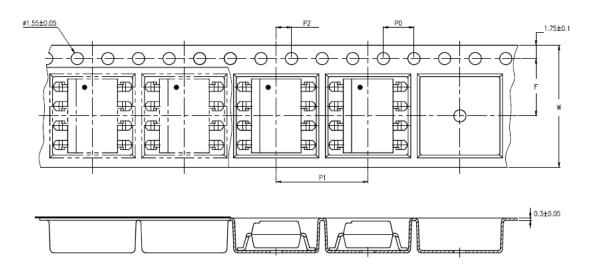





Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

SDN139 Package Dimensions

8 PIN SMD Surface Mount Package (-S)



Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

SDN139 Packaging Specifications

Tape & Reel Specifications (T&R)

Specification	Symbol	Dimensions, mm (inches)
Tape Width	W	16 ± 0.3 (0.63)
Sprocket Hole Pitch	P0	4 ± 0.1 (0.15)
Compartment Location	F P2	$\begin{array}{c} 7.5\pm 0.1 \;(\; 0.295\;) \\ 2\pm 0.1 \;(\; 0.079\;) \end{array}$
Compartment Pitch	P1	12 ± 0.1 (0.472)

Analog High Speed Optocoupler 100KBd, Photodiode with Darlington Output

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices.

SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.