16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90980 Series

MB90982/MB90F983/MB90V485B

■ DESCRIPTION

The MB90980 series is a 16-bit general-purpose FUJITSU microcontroller designed for process control in consumer devices and other applications requiring high-speed real-time processing.

The F²MC-16LX CPU core instruction set retains the AT architecture of the F²MC*¹ family, with additional instructions for high-level languages, expanded addressing mode, enhanced multiply-drive instructions, and complete bit processing. In addition, a 32-bit accumulator is provided to enable long-word processing.

The MB90980 series features embedded peripheral resources including 8/16-bit PPG, expanded I/O serial interface, UART, 10-bit A/D converter, 16-bit I/O timer, 8/16-bit up/down-counter, PWC timer, I²C*² interface, DTP/ external interrupt, chip select, and 16-bit reload timer.

- *1 : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.
- *2 : Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C standard Specification as defined by Philips.

■ FEATURES

- Clock
 - Minimum instruction execution time:

40.0 ns/6.25 MHz base frequency multiplied \times 4 (25 MHz internal operating frequency/3.3 V \pm 0.3 V) 62.5 ns/4 MHz base frequency multiplied \times 4 (16 MHz internal operating frequency/3.0 V \pm 0.3 V) PLL clock multiplier

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL: http://jp.fujitsu.com/microelectronics/products/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

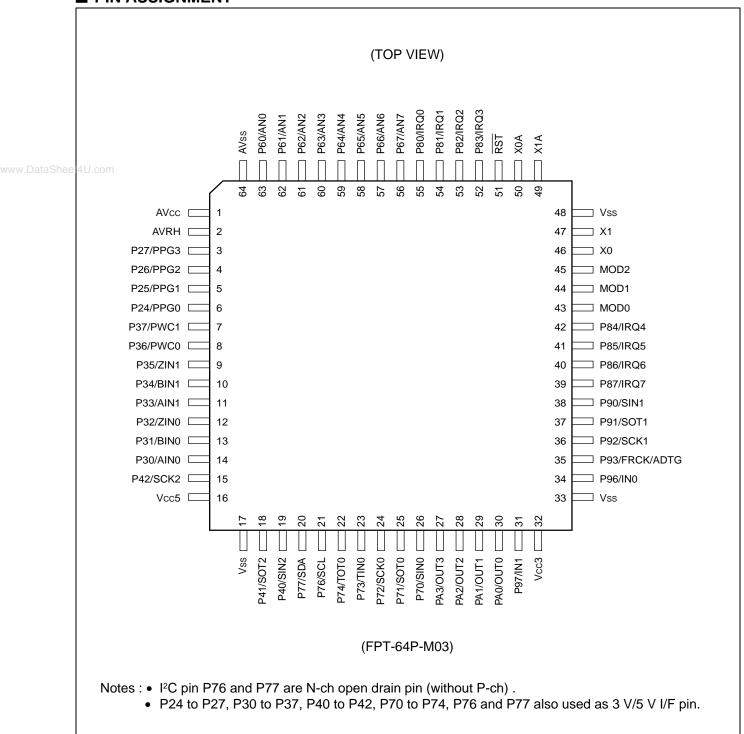
- · Maximum memory space
 - 16 Mbytes
- Instruction set optimized for controller applications
 - Supported data types (bit, byte, word, or long word)
 - Typical addressing modes (23 types)
 - Enhanced signed multiplication/division instruction and RETI instruction functions
 - 32-bit accumulator for enhanced high-precision calculation
- Instruction set designed for high-level language (C) and multi-task operations
 - System stack pointer adopted
- www.DataSheet4U.co. Instruction set compatibility and barrel shift instructions
 - Enhanced execution speed
 - 4 byte instruction queue
 - · Enhanced interrupt functions
 - 8 levels setting with programmable priority, 8 external interrupt pins
 - Data transmission function (μDMAC)
 - Up to 16 channels
 - Embedded ROM
 - Flash versions: 192 Kbytes, Mask versions: 128 Kbytes
 - Embedded RAM
 - Flash versions: 12 Kbytes, Mask versions: 10 Kbytes
 - General purpose ports
 - Up to 48 ports
 - (10 ports with output open-drain settings)
 - 8/10-bit A/D converter
 - 8-channel RC sequential comparison type (10-bit resolution, 3.68 μs conversion time (at 25 MHz))
 - I2C interface
 - 1 channel, P76/P77 N-ch open drain pin (without P-ch)
 - UART
 - 1 channel
 - Extended I/O serial interface (SIO)
 - 2 channels
 - 8/16-bit PPG
 - 2 channels (with 8-bit × 4 channels/16-bit × 2 channels mode switching function)
 - 8/16-bit up/down timer
 - 1 channel (with 8-bit × 2 channels/16-bit × 1-channel mode switching function)
 - 16-bit PWC
 - 2 channels (Capable of compare the inputs)
 - 16-bit reload timer
 - 1 channel
 - 16-bit I/O timer
 - 2 channels input capture, 4 channels output compare, 1 channel free run timer
 - On chip dual clock generator system
 - Low-power consumption (standby) mode
 - With stop mode, sleep mode, CPU intermittent operation mode, watch timer mode, timebase timer mode

- Packages
 - LQFP 64
- Process
 - CMOS technology
- Power supply voltage
 - 3 V, single source (some ports can be operated by 5 V power supply.)

■ PRODUCT LINEUP

Item	Part number	MB90982	MB90F983	MB90V485B	
Classifica	tion	Mask ROM product	Flash memory product	Evaluation product	
ROM size	1	128 Kbytes	192 Kbytes		
RAM size CPU function 4U.com		10 Kbytes	12 Kbytes	16 Kbytes	
		Number of instructions Instruction bit length Instruction length Data bit length Minimum execution time	Instruction bit length : 8-bit, 16-bit Instruction length : 1 byte to 7 bytes Data bit length : 1-bit, 8-bits, 16-bits		
Ports		General-purpose I/O ports: General-purpose I/O ports General-purpose I/O ports General-purpose I/O ports	(CMOS output) (with pull-up resistance Inp	ut)	
UART		1 channel, start-stop synch	ronized		
8/16-bit P	PG	8-bit × 4 channels/16-bit ×	2 channels	8-bit \times 6 channels/ 16-bit \times 3 channels	
8/16-bit up counter/tir		6 event input pins, 8-bit up, 8-bit reload/compare regist			
	16-bit free run timer	Number of channels : 1 Overflow interrupt			
16-bit I/O timers		Number of channels : 4 Pin input factor : A match s	ignal of compare register	Number of channels : 6 Pin input factor : A mat signal of compare regis	
	Input capture (ICU)	Number of channels : 2 Rewriting a register value u	ıpon a pin input (rising, falliı	ng, or both edges)	
	· ·	Number of external interrup	ot channels : 8 (edge or leve	el detection)	
		2 channels, embedded			
I ² C interfa	ce*2	1 channel			
PWC		2 channels		3 channels	
Timebase	timer	18-bit counter Interrupt cycles: 1.0 ms, 4.	1 ms, 16.4 ms, 131.1 ms (a	t 4 MHz base oscillator)	
A/D conve	erter	Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated pause)			
Watchdog timer		Reset generation interval : 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator)			
	er consumption		PU intermittent mode, watch	timer mode, timebase tir	
(standby)	modes	mode		·	
Process			OS		
Туре		Flash model 3V/5V power supply*1	Mask model 3V/5V power supply*1	3V/5V power supply	
Case datas	power supply*3	_		Yes	

(Continued)


(Continued)

- *1: 3V/5V I/F pin: All pins should be for 3 V power supply without P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76, and P77.
- *2: P76/P77 pins are N-ch open drain pins (without P-ch) at built-in I2C.
- *3: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the hardware manual of MB2147-01 or MB2147-20 ("3.3 Emulator-dedicated Power Supply Switching") about details.

Note: Ensure that you must write to Flash at Vcc = 3.13 V to 3.60 V (3.3 V + 10%, -5%).

nunu DataShaat411 aa

■ PIN ASSIGNMENT

■ PIN DESCRIPTIONS

Pin No.	Pin name	I/O Circuit type*	Function
46	X0	А	Oscillator pin
47	X1	А	Oscillator pin
50	X0A	А	32 kHz oscillator pin
49	X1A	А	32 kHz oscillator pin
51	RST	В	Reset input pin
4U.com 3 to 6	P27 to P24	Е	General purpose I/O port
3100	PPG3 to PPG0	(CMOS/H)	PPG timer output pin
14	P30	Е	General purpose I/O port
14	AIN0	(CMOS/H)	8/16-bit up/down timer counter input pin (ch.0)
13	P31	Е	General purpose I/O port
13	BIN0	(CMOS/H)	8/16-bit up/down timer counter input pin (ch.0)
12	P32	Е	General purpose I/O port
12	ZIN0	(CMOS/H)	8/16-bit up/down timer counter input pin (ch.0)
11	P33	Е	General purpose I/O port
''	AIN1	(CMOS/H)	8/16-bit up/down timer counter input pin (ch.1)
10	P34	Е	General purpose I/O port
10	BIN1	(CMOS/H)	8/16-bit up/down timer counter input pin (ch.1)
9	P35	Е	General purpose I/O port
9	ZIN1	(CMOS/H)	8/16-bit up/down timer counter input pin (ch.1)
7, 8	P37, P36	Е	General purpose I/O port
7,0	PWC1, PWC0	(CMOS/H)	PWC input pin
19	P40	G	General purpose I/O port
19	SIN2	(CMOS/H)	Simple serial I/O 2-input pin
18	P41	F	General purpose I/O port
10	SOT2	(CMOS)	Simple serial I/O 2-output pin
15	P42	G	General purpose I/O port
13	SCK2	(CMOS/H)	Simple serial I/O 2-clock I/O pin
60 to 63	P63 to P60	Н	General purpose I/O port
00 10 03	AN3 to AN0	(CMOS)	Analog input pin
56 to 50	to 59 P67 to P64 F General purpose I/O port AN7 to AN4 (CMOS) Analog input pin		General purpose I/O port
30 10 39			Analog input pin
26	P70	G	General purpose I/O port
20	SIN0	(CMOS/H)	UART data input pin
25	P71	F	General purpose I/O port
23	SOT0	(CMOS)	UART data output pin

(Continued)

Pin No.	Pin name	I/O Circuit type*	Function
24	P72	G	General purpose I/O port
24	SCK0	(CMOS/H)	UART clock I/O pin
00	P73	G	General purpose I/O port
23	TIN0	(CMOS/H)	16-bit reload timer event input pin
00	P74	F	General purpose I/O port
22	TOT0	(CMOS)	16-bit reload timer output pin
4U.com	P76		General purpose I/O port
21	SCL	(NMOS/H)	This pin functions as the I ² C interface clock I/O pin. Set port output to Hi-Z during the I ² C interface operation.
	P77	-	General purpose I/O port
20	SDA	(NMOS/H)	This pin functions as the I ² C interface data I/O pin. Set port output to Hi-Z during the I ² C interface operation.
50 to 55	P83 to P80	Е	General purpose I/O port
52 to 55	IRQ3 to IRQ0	(CMOS/H)	External interrupt input pin
00.110	P87 to P84	Е	General purpose I/O port
39 to 42	IRQ7 to IRQ4	(CMOS/H)	External interrupt input pin
00	P90	E	General purpose I/O port
38	SIN1	(CMOS/H)	Simple serial I/O1-data input pin
07	P91	D	General purpose I/O port
37	SOT1	(CMOS)	Simple serial I/O-1 data output pin
00	P92	Е	General purpose I/O port
36	SCK1	(CMOS/H)	Simple serial I/O-1 data I/O pin
	P93		General purpose I/O port
35	FRCK	E (CMOS/H)	When using free-run timer, this pin functions as the external clock input pin.
	ADTG	(811186711)	When using A/D converter, this pin fuctions as the external trigger input pin.
34	P96	Е	General purpose I/O port
34	IN0	(CMOS/H)	Input capture ch.0 trigger input pin
31	P97	Е	General purpose I/O port
31	IN1	(CMOS/H)	Input capture ch.1 trigger input pin
27 to 30	PA3 to PA0	D	General purpose I/O port
27 10 30	OUT3 to OUT0	(CMOS)	Output compare event output pin
1	AVcc	_	A/D converter power supply pin
2	AVRH	_	A/D converter external reference power supply pin
64	AVss	_	A/D converter power supply pin
43 to 45	MD0 to MD2	J (CMOS/H)	Operating mode selection input pins
32	Vcc3	_	$3.3~\text{V} \pm 0.3~\text{V}$ power supply pins (Vcc3)

(Continued)

(Continued)

Pin No.	Pin name	I/O Circuit type*	Function		
16	Vcc5	_	3 V/5 V power supply pin. 5 V power supply pin when P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76 and P77 are used as 5 V I/F pins. Usually, use $Vcc = Vcc3 = Vcc5$ as a 3 V power supply (when the 3 V power supply is used alone) .		
17, 33, 48	Vss	_	Power supply input pins (GND)		

www.DataSheetᡮURefer to "■ I/O CIRCUIT TYPES" for I/O circuit types.

■ I/O CIRCUIT TYPES

Туре	Circuit	Remarks
А	X1, X1A X0, X0A Hard/soft standby	 Oscillator feedback resistance X1, X0 : approx. 1 MΩ X1A, X0A : approx. 10 MΩ With standby control
neet4U.com	control signal	
В	T HYS	Hysteresis input with pull-up resistance
С	P-ch P-ch N-ch CMOS Standby control signal	With input pull-up resistance control CMOS level input/output
D	P-ch N-ch CMOS Standby control signal	CMOS level input/output
E	P-ch N-ch CMOS Standby control signal	Hysteresis input CMOS level output

(Continued)

(Continued)		
Туре	Circuit	Remarks
F	P-ch Open drain control signal N-ch ———————————————————————————————————	 CMOS level input/output With open drain control
G	Open drain control signal N-ch N-ch Standby control signal	CMOS level output Hysteresis input With open drain control
Н	P-ch N-ch N-ch CMOS Standby control signal Analog input	CMOS level input/output Analog input
ı	Digital output HYS Standby control signal	Hysteresis input N-ch open drain output
J	Flash memory model Control signal Mask ROM model	CMOS level input With high voltage control for flash testing Hysteresis input
	Mask ROM model Hysteresis input	Trysteresis iriput

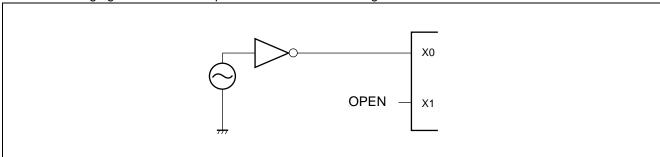
■ CAUTION OF USING DEVICES

1. Maximum rated voltages (preventing latchup)

In CMOS IC devices, a condition known as latchup may occur if voltages higher than V_{CC} or lower than V_{SS} are applied to input or output pins other than medium-or high-voltage pins, or if the voltage applied between V_{CC} and V_{SS} exceeds the rated voltage level.

When latchup occurs, the power supply current increases rapidly causing the possibility of thermal damage to circuit elements. Therefore it is necessary to ensure that maximum ratings are not exceeded in circuit operation. Similarly, when turning the analog power supply on or off, it is necessary to ensure that the analog power supply voltages (AV $_{\rm CC}$ and AVRH) and analog input voltages do not exceed the digital power supply (V $_{\rm CC}$).

ataSheet4U.com


2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latchup, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least $2 \text{ k}\Omega$. Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins.

3. Notes on Using External Clock

Even when using an external clock signal, an oscilltion stabilization delay is applied after a power-on reset or when recovering from sub-clock or stop mode. When using an external clock, 25 MHz should be the upper frequency limit.

The following figure shows a sample use of external clock signals.

4. Treatment of Power Supply Pins (Vcc/Vss)

When multiple Vcc pins or Vss pins are present, device design considerations for prevention of latch-up and unwanted electromagnetic interference, abnormal storobe signal operation due to ground level rise, and conformity with total output current ratings require that all power supply pins must be externally connected to power supply or ground.

Consideration should be given to connecting power supply sources to the V_{CC} pin or V_{SS} pin of this device with as low impedane as possible. It is also recommended that a bypass capacitor of approximately 0.1 μ F be placed between the V_{CC} and V_{SS} lines as close to this device as possible.

5. Crystal Oscillator Circuits

Noise around the high-speed oscillation pins (X0 and X1) and low-speed oscillation pins (X0A and X1A) may cause this device to operate abnormally. Design the printed circuit board so that the crystal oscillator (or ceramic oscillator) and bypass capacitor to the ground are located as close to the high-speed oscillation pins and low-speed oscillation pins as possible. Also, design the printed circuit board to prevent the wiring from crossing another writing.

It is highly recommended to provide a printed circuit board artwork surrounding the high-speed oscillation pins and low-speed oscillation pins with a ground area for stabilizing the operation.

6. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

7. Proper power-on/off sequence

The A/D converter power (AVcc, AVRH) and analog input (AN0 to AN7) must be turned on after the digital power supply (Vcc) is turned on. The A/D converter power (AVcc, AVRH) and analog input (AN0 to AN7) must be shut off before the digital power supply (Vcc) is shut off. Care should be taken that AVRH does not exceed AVcc. Even when pins used as analog input pins are doubled as input ports, be sure that the input voltage does not exceed AVcc.

8. Treatment of power supply pins on models with A/D converters

Even when the A/D converters are not in use, be sure to make the necessary connections AVcc = AVRH = Vcc, and AVss = Vss.

9. Precautions when turning the power supply on

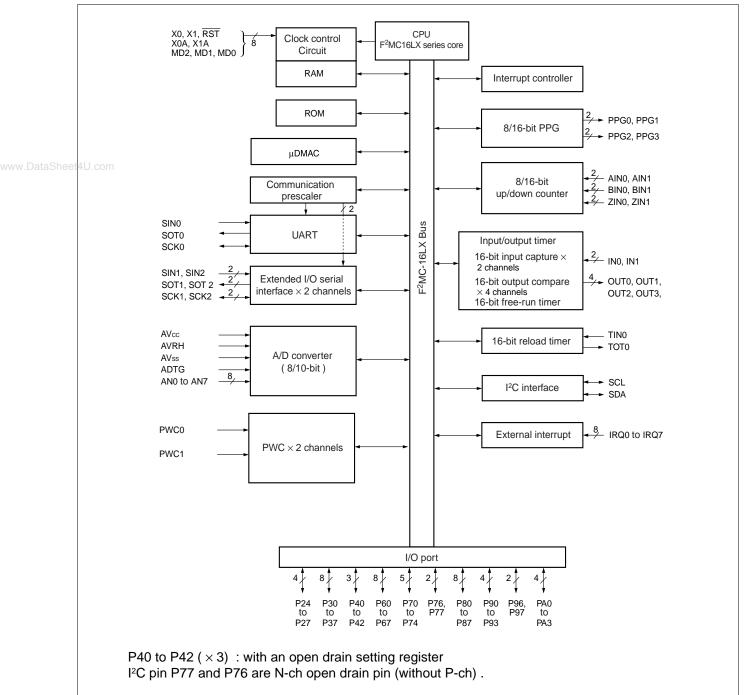
In order to prevent abnormal operation in the chip's internal step-down circuits, a voltage rise time during poweron of 50 μ s (0.2 V to 2.7 V) or greater should be assured.

10. Supply Voltage Stabilization

Even within the operating range of $V_{\rm CC}$ supply voltage, rapid voltage fluctuations may cause abnormal operation. As a standard for power supply voltage stability, it is recommended that the peak-to-peak $V_{\rm CC}$ ripple voltage at commercial supply frequency (50 Hz/60 Hz) be 10 % or less of $V_{\rm CC}$, and that the transient voltage fluctuation be no more than 0.1 V/ms or less when the power supply is turned on or off.

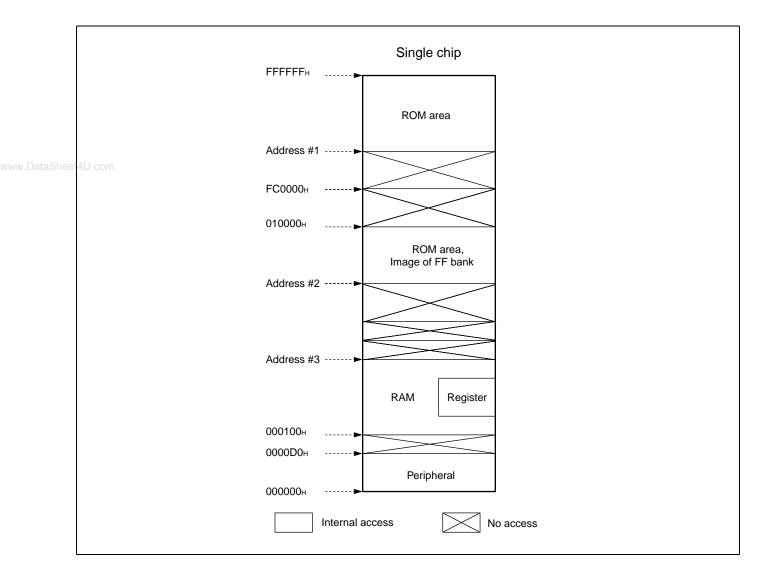
11. Notes on Using Power Supply

Only the MB90980 series usually uses a 3 V power supply. By setting Vcc3 = 3 V power supply and Vcc5 = 5 V power supply, P24 to P27, P30 to P37, P40 to P42 and P70 to P74, P76, P77 can be intefaced as 5 V power supplies separately from the main 3 V power supply. Note that the analog power supplies (such as AVcc and AVss) for the A/D converter can be used only as 3 V power supplies.


12. Treatment of NC pins

NC (internally connected) pins should always be left open.

13. Writing to Flash memory

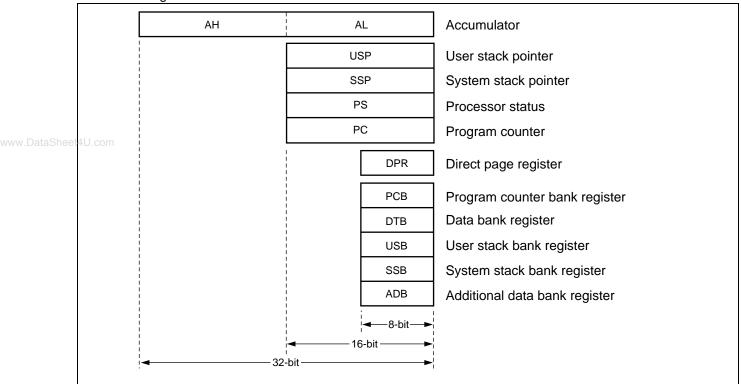

For serial writing to Flash memory, always ensure that the operating voltage V_{CC} is between 3.13 V and 3.6 V. For normal writing to Flash memory, always ensure that the operating voltage V_{CC} is between 3.0 V and 3.6 V.

■ BLOCK DIAGRAM

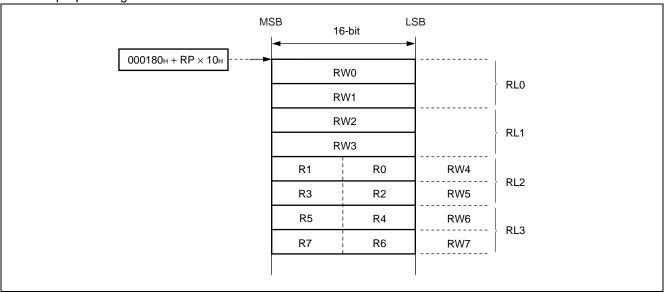
Note: In the above diagram, I/O ports share internal function blocks and pins. However, when a set of pins is used with an internal module, it cannot also be used as an I/O port.

■ MEMORY MAP

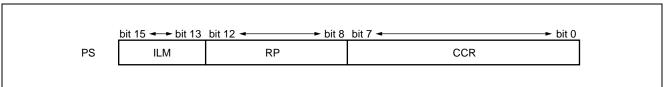
Model	Address #1	Address #2	Address #3
MB90F983	FC0000 _H *1	004000н от 008000н,	003100н
MB90982	FD0000 _H *2	selected by the MS bit in the ROMM register	002900н


^{*1:} No memory cells from FC0000H to FC7FFFH and FE0000H to FE7FFFH.

*2: No memory cells from FE0000_H to FEFFFF_H. The upper part of the 00 bank is set up to mirror the image of FF bank ROM, to enable efficient use of small model C compilers. Because the lower 16-bit address of the FF bank and the lower 16-bit address of the 00 bank is the same, enabling reference to tables in ROM without the "far" pointer declaration.


For example, in accessing address $00C000_H$ it is actually the contents of ROM at FFC000_H that are accessed. If the MS bit in the ROMM register is set to "0", the ROM area in the FF bank will exceed 48 Kbytes and it is not possible to reflect the entire area in the image in the 00 bank. Therefore the image from FF4000_H to FFFFFFH is reflected in the 00 bank and the area from FF0000_H to FF3FFFH can be seen in the FF bank only.

■ F²MC-16LX CPU PROGRAMMING MODEL


Dedicated registers

•General purpose registers

Processor status

■ I/O MAP

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
000000н,		Reserve	d area		
000001н					
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н		Reserve	Reserved area		
000006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXXB
000007н	PDR7	Port 7 data register	R/W	Port 7	11XXXXXXв
н800000	PDR8	Port 8 data register	R/W	Port 8	XXXXXXXXB
000009н	PDR9	Port 9 data register	R/W	Port 9	XXXXXXXX
00000Ан	PDRA	Port A data register	R/W	Port A	XXXX _B
00000Вн	UDER	Up/down timer input enable register	R/W	Up/down timer input control	XX 0 0 0 0 0 0 _B
00000Сн	ENIR	Interrupt/DTP enable register	R/W		0 0 0 0 0 0 0 0 В
00000Дн	EIRR	Interrupt/DTP source register	R/W	DTP/external	XXXXXXXXB
00000Ен	ELVR	Request level setting register	R/W	interrupts	0 0 0 0 0 0 0 0 _B
00000Fн	ELVK	Request level setting register	R/W		0 0 0 0 0 0 0 0 _B
000010н, 000011н		Reserve	d area		
000012н	DDR2	Port 2 direction register	R/W	Port 2	0 0 0 0 XXXXB
000013н	DDR3	Port 3 direction register	R/W	Port 3	0 0 0 0 0 0 0 0 0
000014н	DDR4	Port 4 direction register	R/W	Port 4	0 0 0 0 0 0 0 0 0в
000015н		Reserve			
000016н	DDR6	Port 6 direction register	R/W	Port 6	0 0 0 0 0 0 0 0 _B
000017н	DDR7	Port 7 direction register	R/W	Port 7	XX 0 0 0 0 0 0 _B
000018н	DDR8	Port 8 direction register	R/W	Port 8	0 0 0 0 0 0 0 0 _B
000019н	DDR9	Port 9 direction register	R/W	Port 9	0 0 XX 0 0 0 0 _B
00001Ан	DDRA	Port A direction register	R/W	Port A	0000B
00001Вн	ODR4	Port 4 output pin register	R/W	Port 4 (Open-drain control)	ХХХХХ 0 0 0в
00001Сн, 00001Dн		Reserve	d area		
00001Ен	ODR7	Port 7 output pin register	R/W	Port 7 (Open-drain control)	XXX 0 0 0 0 0 _B
00001Fн	ADER	Analog input enable register	R/W	Port 6, A/D	1111111 В
000020н	SMR	Serial mode register	R/W		0 0 0 0 0 X 0 0 _B
000021н	SCR	Serial control register	W, R/W	LIADT	0 0 0 0 0 1 0 0 _B
000022н	SIDR/SODR	Serial input/output register	R/W	UART	XXXXXXXX
000023н	SSR	Serial status register	R, R/W		0 0 0 0 1 0 0 0 _B
000024н		Reserve			
	CDCR	Communication prescaler control	R/W	Communication	000000в

(Continued)

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
000026н	SMCS0	Serial mode control status register 0	R, R/W		ООООВ
000027н	SMCS0	Serial mode control status register 0	R, R/W	SIO1 (ch.0)	0000010в
000028н	SDR0	Serial data register 0	R/W		XXXXXXXXB
000029н	SDCR0	Communication prescaler control register 0	R/W	Communication prescaler SIO1 (ch.0)	0 0 0 0 0в
00002Ан	SMCS1	Serial mode control status register 1	R, R/W		ООООВ
00002Вн	SMCS1	Serial mode control status register 1	R, R/W	SIO2 (ch.1)	0000010в
00002Сн	SDR1	Serial data register 1	R/W		XXXXXXXX
00002Dн	SDCR1	Communication prescaler control register 1	R/W	Communication prescaler SIO2 (ch.1)	0 0 0 0 0в
00002Ен	PRLL0	Reload register L (ch.0)	R/W		XXXXXXXXB
00002Fн	PRLH0	Reload register H (ch.0)	R/W		XXXXXXXXB
000030н	PRLL1	Reload register L (ch.1)	R/W		XXXXXXXX
000031н	PRLH1	Reload register H (ch.1)	R/W	8/16-bit PPG	XXXXXXXX
000032н	PRLL2	Reload register L (ch.2)	R/W	(ch.0 to ch.3)	XXXXXXXX
000033н	PRLH2	Reload register H (ch.2)	R/W		XXXXXXXX
000034н	PRLL3	Reload register L (ch.3)	R/W		XXXXXXXX
000035н	PRLH3	Reload register H (ch.3)	R/W		XXXXXXXX
000036н to 000039н	DDC 0.0	Reserved a			1
00003Ан	PPGC0	PPG0 operating mode control register	R/W		0 X 0 0 0XX 1в
00003Вн	PPGC1	PPG1 operating mode control register	R/W	8/16-bit PPG	0 Х 0 0 0 0 1в
00003Сн	PPGC2	PPG2 operating mode control register	R/W	(ch.0 to ch.3)	0 X 0 0 0XX 1в
00003Dн	PPGC3	PPG3 operating mode control register	R/W		0 Х 0 0 0 0 1в
00003Eн, 00003Fн		Reserved a	rea		
000040н	PPG01	PPG0, PPG1 output control register	R/W	8/16-bit PPG	0 0 0 0 0 0 0 0 _B
000041н		Reserved a	rea		
000042н	PPG23	PPG2, PPG3 output control register	R/W	8/16-bit PPG	0 0 0 0 0 0 0 0 _B
000043н to 000045н		Reserved area			
000046н	ADCS1	Control status register	R/W		00000000
000047н	ADCS2	Control status register	W, R/W	8/10-bit	0000000
000048н	ADCR1	Data register	R	A/D converter	XXXXXXXX
		TURNE (EUISIE)	W, R	1	0 0 0 0 0 XXX _B

(Continued)

A	Address	Abbreviated register name	Register name	R/W	Resource name	Initial value	
C	0004Ан	OCCP0	Output compare register (ch.0) lower digits	R/W		0 0 0 0 0 0 0 0в	
C	0004Вн	OCCPU	Output compare register (ch.0) upper digits	K/VV		0000000	
0	0004Сн	000004	Output compare register (ch.1) lower digits	DAM		0 0 0 0 0 0 0 0в	
0	0004Дн	OCCP1	Output compare register (ch.1) upper digits	R/W	16-bit I/O timer	0000000	
C	0004Ен	OCCP2	Output compare register (ch.2) lower digits	R/W	output compare (ch.0 to ch.3)	0 0 0 0 0 0 0 0в	
C	0004Fн	UCCP2	Output compare register (ch.2) upper digits	K/VV	(611.0 to 611.0)	0000000	
eel40	00050н	OCCD2	Output compare register (ch.3) lower digits	R/W		0 0 0 0 0 0 0 0в	
_	000051н	OCCP3	Output compare register (ch.3) upper digits	K/VV		0000000	
	000052н to 000055н		Reserved area				
C	00056н	OCS01	Output compare control register (ch.0, ch.1) lower digits	R/W		0 0 0 0 0 Ов	
C	000057н	00001	Output compare control register (ch.0, ch.1) upper digits	R/W	16-bit I/O timer output compare	ОООООВ	
000058н	00058н	OCS23	Output compare control register (ch.2, ch.3) lower digits	R/W	(ch.0 to ch.3)	0 0 0 0 0 Ов	
C	00059н	00323	Output compare control register (ch.2, ch.3) upper digits	R/W	'	ОООООВ	
	0005Ан, 00005Вн	Reserved area					
0	0005Сн	IPCP0	Input capture data register (ch.0) lower digits	R		XXXXXXXXB	
0	0005Dн	IFCFU	Input capture data register (ch.0) upper digits	R	16-bit I/O timer	XXXXXXXXB	
C	0005Ен	IPCP1	Input capture data register (ch.1) lower digits	R	input capture	XXXXXXXXB	
C)0005Fн	11 01 1	Input capture data register (ch.1) upper digits	R	(ch.0, ch.1)	XXXXXXXXB	
C	00060н	ICS01	Input capture control status register	R/W		0 0 0 0 0 0 0 0в	
C	000061н		Reserved area				
C	000062н	TCDT	Timer counter data register lower digits	R/W		$0\ 0\ 0\ 0\ 0\ 0\ 0$ B	
C	00063н	TCDT	Timer counter data register upper digits	R/W		0 0 0 0 0 0 0 0в	
C	00064н	TCCS	Timer counter control status register	R/W	16-bit I/O timer	0 0 0 0 0 0 0 0в	
C	000065н	TCCS	Timer counter control status register	R/W	free-run timer	0 0 0 0 0 0в	
C	00066н	CPCLR	Compare clear register lower digits	R/W		XXXXXXXXB	
C	00067н	OFCLIN	Compare clear register upper digits	11/ / / /		XXXXXXXXB	
C	00068н	UDCR0	Up/down count register (ch.0)	R		0 0 0 0 0 0 0 0в	
000069н	UDCR1	Up/down count register (ch.1)	R		00000000		
C	0006Ан	RCR0	Reload/compare register (ch.0)	W	8/16-bit up/	0 0 0 0 0 0 0 0в	
C	0006Вн	RCR1	Reload/compare register (ch.1)	W	down counter/	0 0 0 0 0 0 0 0в	
0	0006Сн	CCRL0	Counter control register (ch.0) lower digits	W, R/W	timer	0 X 0 0 X 0 0 0в	
0	0006Dн	CCRH0	Counter control register (ch.0) upper digits	R/W		00000000	

(Continued)

www.DataSheet44.gom

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value	
00006Ен		Reserved	area			
00006Fн	ROMM	ROM mirror function select register	R/W	ROM mirroring function	0 1в	
000070н	CCRL1	Counter control register (ch.1) lower digits	R/W	9/16 hit un/down	0 X 0 0 X 0 0 0E	
000071н	CCRH1	Counter control register (ch.1) upper digits	R/W	8/16-bit up/down counter/timer	- 0 0 0 0 0 0 0в	
000072н	CSR0	Counter status register (ch.0)	R/W]	0 0 0 0 0 0 0 0 _B	
000073н		Reserved	area			
000074н	CSR1	Counter status register (ch.1)	R, R/W	8/16-bit UDC	0 0 0 0 0 0 0 0 _B	
000075н		Reserved	area			
000076н 000077н	PWCSR0	PWC control/status register	R, R/W	PWC timer (ch.0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000078н 000079н	PWCR0	PWC data buffer register	R/W	1 WO timer (cn.o)	0 0 0 0 0 0 0 0 0B	
00007Ан 00007Вн	PWCSR1	PWC control/status register	R, R/W	PWC timer (ch. 1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
00007Сн 00007Dн	PWCR1	PWC data buffer register	R/W	T WO times (on: 1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
00007Eн to 000081н		Reserved	Reserved area			
000082н	DIVR0	Dividing ratio control register	R/W	PWC (ch.0)	О Ов	
000083н		Reserved	area			
000084н	DIVR1	Dividing ratio control register	R/W	PWC (ch.1)	О Ов	
000085н to 000087н		Reserved	d area			
000088н	IBSR	Bus status register	R		00000000	
000089н	IBCR	Bus control register	R/W		00000000	
нА80000	ICCR	Clock control register	R/W	I ² C	0 X X X X X E	
00008Вн	IADR	Address register	R/W]	- X X X X X X X	
00008Сн	IDAR	Data register	R/W		XXXXXXXX	
00008Dн, 00008Ен		Reserved	d area			
00008Fн to		Disabled				
00009BH	DSRL	L.DMAC atatus register	D AA	DMAC		
00009Сн 00009Dн	DSRL	μDMAC status register μDMAC status register	R/W R/W	μDMAC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
00009Бн	PACSR	Program address detection control	R/W	μDMAC Address match	0 0 0 0 0 0 0 0	
00009Fн	DIRR	status resister Dilayed interrupt source generator/ cancel register	R/W	Delayed interruput generator module	Ов	

(Continued)

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value		
0000А0н	LPMCR	Low-power consumption mode control register	W, R/W	Low-power operation	0 0 0 1 1 0 0 0в		
0000А1н	CKSCR	Clock select register	R, R/W	Low-power operation	1 1 1 1 1 1 0 Ов		
0000А2н			1				
to 0000A7н	Reserved area						
.0000А7н	WDTC	Watchdog timer control register	R, W	Watchdog timer	XXXXX 1 1 1в		
0000А9н	TBTC	Timebase timer control register	W, R/W	Timebase timer	1 X X 0 0 1 0 0 _B		
0000ААн	WTC	Watch timer control register	R, R/W	Watch timer	1 0 0 0 1 0 0 0 _B		
0000АВн	*****	Reserved a	·	Water time	10001000		
0000ACн	DERL	μDMAC enable register	R/W	μDMAC	00000000		
0000АДн	DERH	μDMAC enable register	R/W	μDMAC	0 0 0 0 0 0 0 0 0в		
0000АЕн	FMCS	Flash memory control status register	W, R/W	Flash memory I/F	0 0 0 X 0 0 0 0 _B		
0000AFн	155	Disabled	,	1 laon momory w			
0000ВОн	ICR00	Interrupt control register 00	W, R/W		00000111в		
0000В1н	ICR01	Interrupt control register 01	W, R/W		00000111В		
0000В2н	ICR02	Interrupt control register 02	W, R/W		00000111в		
0000ВЗн	ICR03	Interrupt control register 03	W, R/W		00000111в		
0000В4н	ICR04	Interrupt control register 04	W, R/W		00000111в		
0000В5н	ICR05	Interrupt control register 05	W, R/W		00000111в		
0000В6н	ICR06	Interrupt control register 06	W, R/W		00000111в		
0000В7н	ICR07	interrupt control register 07	W, R/W		00000111в		
0000В8н	ICR08	Interrupt control register 08	W, R/W	Interrupt controller	00000111в		
0000В9н	ICR09	Interrupt control register 09	W, R/W		00000111в		
0000ВАн	ICR10	Interrupt control register 10	W, R/W		00000111в		
0000ВВн	ICR11	Interrupt control register 11	W, R/W		00000111в		
0000ВСн	ICR12	Interrupt control register 12	W, R/W		00000111в		
0000ВДн	ICR13	Interrupt control register 13	W, R/W		00000111в		
0000ВЕн	ICR14	Interrupt control register 14	W, R/W		00000111в		
0000ВFн	ICR15	Interrupt control register 15	W, R/W		00000111в		
0000C0н to 0000C9н		Reserved area					
0000САн					0000000		
0000СВн	TMCSR	Timer control status register	R/W		ООООВ		
0000ССн		16-bit timer register/		16-bit reload timer			
0000СДн	TMR/TMRLR	16-bit reload register	R/W		XXXXXXX		
0000СЕн		ı					

(Continued)

(Continued)

Ad	ldress	Abbreviated register name	Register name	R/W	Resource name	Initial value
000	00СГн	PLLOS	PLL output select register	W	Low-power operation	0 Ов
	00D0н to 00FFн		External are	a		
	0100н to 000#н		RAM area			
00	1FF0н		Program address detection resister 0 (Low order address)			
00	1FF1н	PADR0	Program address detection resister 0 (Middle order address)	R/W	Address match detection function	XXXXXXXXB
00	1FF2н		Program address detection resister 0 (High order address)			
00	1FF3н		Program address detection resister 1 (Low order address)			
00	1FF4н	PADR1	Program address detection resister 1 (Middle order address)	R/W	Address match detection function	XXXXXXX
00	1FF5н		Program address detection resister 1 (High order address)			

Notes: • Descriptions for R/W

R/W: Enabled to read and write

R : Read only W : Write only

• Descriptions for initial value

0 : The initila value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

- : This bit is not used.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Intonumet a service	Clear of	μDMAC	Interru	pt vector	Interrupt co	Interrupt control register	
Interrupt source	El ² OS	cnannel number	Number	Address	Number	Address	
Reset	×	_	#08	FFFFDCH	—	_	
INT9 instruction	×	_	#09	FFFFD8 _H	_	_	
Exception	×	_	#10	FFFFD4 _H	_	_	
INT0 (IRQ0)	0	0	#11	FFFFD0 _H	ICR00	000000	
JNT1 (IRQ1)	0	×	#12	FFFFCCH	ICRUU	0000B0	
INT2 (IRQ2)	0	×	#13	FFFFC8 _H	ICR01	0000B1	
INT3 (IRQ3)	0	×	#14	FFFFC4 _H	ICRUI	000061	
INT4 (IRQ4)	0	×	#15	FFFFC0 _H	ICDO2	00000	
INT5 (IRQ5)	0	×	#16	FFFFBCH	ICR02	0000B2	
INT6 (IRQ6)	0	×	#17	FFFFB8 _H	ICDO2	000000	
INT7 (IRQ7)	0	×	#18	FFFFB4 _H	ICR03	0000B3	
PWC1	0	×	#19	FFFFB0 _H	ICD04	0000B4	
_	_	_	#20	FFFFACH	ICR04	0000B4	
PWC0	0	1	#21	FFFFA8 _H	ICDOF	00000	
PPG0/PPG1 counter borrow	×	2	#22	FFFFA4 _H	ICR05	0000B5	
PPG2/PPG3 counter borrow	×	3	#23	FFFFA0 _H	ICDOS	00000	
	_	_	#24	FFFF9C _H	ICR06	0000B6	
8/16-bit up/down counter/ timer (ch.0, ch.1) compare/ underflow/overflow/inversion	0	×	#25	FFFF98 _H	ICR07	0000B7	
Input capture (ch.0) load	0	5	#26	FFFF94 _H			
Input capture (ch.1) load	0	6	#27	FFFF90 _H	ICDOO	000000	
Output compare (ch.0) match	0	8	#28	FFFF8C _H	ICR08	0000B8	
Output compare (ch.1) match	0	9	#29	FFFF88 _H	ICDOO	000000	
Output compare (ch.2) match	0	10	#30	FFFF84 _H	ICR09	0000B9	
Output compare (ch.3) match	0	×	#31	FFFF80 _H	ICD10	0000BA	
_	_	_	#32	FFFF7C _H	ICR10	UUUUBA	
_	_	_	#33	FFFF78⊦	ICR11	000000	
UART sending completed	0	11	#34	FFFF74 _H	ICKII	0000BE	
16-bit free run timer overflow, 16-bit reload timer underflow*2	0	12	#35	FFFF70 _H	ICR12	0000BC	
UART receiving compleated	0	7	#36	FFFF6C _H			
SIO1 (ch.0)	0	13	#37	FFFF68⊦	ICD42	0000BD	
SIO2 (ch.1)	0	14	#38	FFFF64⊦	ICR13	UUUUBL	

(Continued)

www.DataSheet4bู๋.gom

(Continued)

	Clear of	μDMAC	Interru	pt vector	Interrupt control register		
Interrupt source	El ² OS	channel number	Number	Address	Number	Address	
I ² C interface	×	×	#39	FFFF60⊦	ICR14	0000ВЕн	
8/10-bit A/D converter	0	15	#40	FFFF5C _H	ICK 14		
Flash write/erase, timebase timer,watch timer *1	×	×	#41	FFFF58 _H	ICR15	0000BFн	
Delay interrupt generator module	×	×	#42	FFFF54 _H	ICKIS	ООООВГН	

- \times : Interrupt request flag is not cleared by the interrupt clear signal.
- : Interrupt request flag is cleared by the interrupt clear signal.
- Interrupt request flag is cleared by the interrupt clear signal (stop request present).
- *1: Caution: The Flash write/erase, timebase timer, and watch timer cannot be used at the same time.
- *2: When the 16-bit reload timer underflow interrupt is changed from enable (TMCSR: INTE = 1) to disable (TMCSR: INTE = 0), disable the interrupt in the interrupt control register (ICR12: IL2 to IL0: 111_B), then set the INTE bit to 0.

Note: If there are two interrupt sources for the same interrupt number, the interrupt request flags of both resources are cleared by the El²OS/ μ DMAC. Therefore if either of the two sources uses the El²OS/ μ DMAC function, the other interrupt function cannot be used. The interrupt request enable bit for the resource that does not use the El²OS/ μ DMAC function should be set to "0" and the interrupt function should be handled by software polling.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Ra	ting	Unit	Remarks
Farameter	Syllibol	Min	Max	Offic	Remarks
	Vcc3	Vss - 0.3	Vss + 4.0	V	
Power supply voltage*1	Vcc5	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss - 0.3	Vss + 4.0	V	*2
	AVRH	Vss - 0.3	Vss + 4.0	V	
Input voltage*1	Vı	Vss - 0.3	Vss + 4.0	V	*3
input voltage	VI	Vss - 0.3	Vss + 7.0	V	*3, *8, *9
Output volatage*1	Vo	Vss - 0.3	Vss + 4.0	V	*3
Output voiatage	Vo	Vss - 0.3	Vss + 7.0	V	*3, *8, *9
Maximum clamp current	I CLAMP	-2.0	+2.0	mA	*7
Total maximum clamp current	Σ CLAMP	_	20	mA	*7
"L" level maximum output current	loL		10	mA	*4
"L" level average output current	lolav		3	mA	*5
"L" level maximum total output current	ΣΙοι	_	60	mA	
"L" level total average output current	Σ lolav		30	mA	*6
"H" level maximum output current	Іон		-10	mA	*4
"H" level average output current	Іонаv		-3	mA	*5
"H" level maximum total output current	ΣІон	_	-60	mA	
"H" level total average output current	Σ lohav		-30	mA	*6
Power consumption	Po	—	320	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	–55	+150	°C	

- *1 : This parameter is based on Vss = AVss = 0.0 V.
- *2 : AVcc and AVRH must not exceed Vcc. Also, AVRH must not exceed AVcc.
- *3 : V₁ and V₀ must not exceed V_{CC} + 0.3 V. However, if the maximum current to/from input is limited by some means with external components, the I_{CLAMP} rating supersedes the V₁ rating.
- *4 : Maximum output current is defined as the peak value for one of the corresponding pins.
- *5 : Average output current is defined as the average current flow in a 100 ms interval at one of the corresponding pins.
- *6 : Average total output current is defined as the average current flow in a 100 ms interval at all corresponding pins.
- *7 : Applicable to pins : P24 to P27, P30 to P37, P40 to P42, P60 to P67, P70 to P74, P76, P77, P80 to P87, P90 to P93, P96, P97, PA0 to PA3
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

*8: P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76, P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin.

P76 and P77 is N-ch open drain pin.

*9: As for P76 and P77 (N-ch open drain pin), even if using at 3 V simplicity (Vcc3 = Vcc5), the ratings are applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Doromotor	Cumbal	Va	lue	Unit	Remarks		
Parameter	Symbol	Min	Max	Unit	Kemarks		
	Vcc3	2.7	3.6	V	During normal operation		
Supply voltage	VCC3	1.8	3.6	V	To maintain RAM state in stop mode		
Supply voltage	Vcc5	2.7	5.5	V	During normal operation*		
	VCC3	1.8	5.5	V	To maintain RAM state in stop mode*		
#0.com	Vıн	0.7 Vcc	Vcc + 0.3	V	All pins other than V _{IH2} , V _{IHS} , V _{IHM} and V _{IHX}		
	V _{IH2}	0.7 Vcc	Vss + 5.8	V	P76, P77 pins (N-ch open drain pins)		
"H" level input voltage	VIHS	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins		
	V _{IHM}	Vcc - 0.3	Vcc + 0.3	V	MD pin input		
	VIHX	0.8 Vcc	Vcc + 0.3	V	X0A pin, X1A pin		
	VıL	Vss - 0.3	0.3 Vcc	V	All pins other than V _{ILS} , V _{ILM} and V _{IHX}		
"L" level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins		
L level input voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input		
	VILX	Vss - 0.3	0.1	V	X0A pin, X1A pin		
Operating temperature	TA	-40	+85	°C			

^{*:} P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76, P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

www.DataSheet4b.zom

3. DC Characteristics

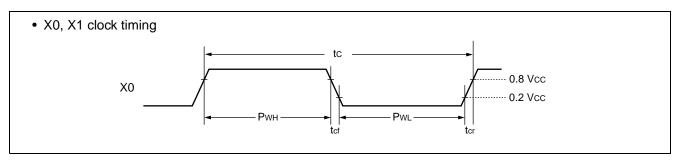
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

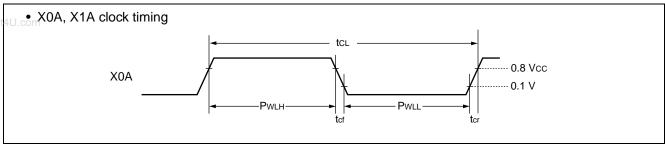
	Parameter	Symbol	Pin name	Condition	V	/alue		Unit	Remarks
	i arameter	Symbol	1 III IIaiiic		Min	Тур	Max	Oiiit	Nemarks
	"H" level	Vон	All output	Vcc = 2.7 V, Іон = -1.6 mA	Vcc3 - 0.3	_	_	V	
	output voltage	VOH	pins	Vcc = 4.5 V, Іон = -4.0 mA	Vcc5 - 0.5		_	V	At using 5 V power supply
ww.Data	"L" level	Vol	All output	$V_{CC} = 2.7 \text{ V},$ $I_{OL} = 2.0 \text{ mA}$	_		0.4	٧	
	output voltage	VOL	pins	Vcc = 4.5 V, Іон = 4.0 mA	_	_	0.4		At using 5 V power supply
	Input leakage current	lıL	All input pins	Vcc = 3.3 V, Vss < V _I < Vcc	-10	_	+10	μΑ	
	Pull-up resistance	Rpull	_	Vcc = 3.0 V, at T _A = +25 °C	20	53	200	kΩ	
	Open drain output current	lleak	P40 to P42, P70 to P74, P76, P77	_	_	0.1	10	μА	
			At Vcc = 3.3 V, internal 25 MHz operation, normal operation	_	45	60	mA		
		Icc	_	At Vcc = 3.3 V, internal 25 MHz operation, Flash programming	_	55	70	mA	
		Iccs	_	At $Vcc = 3.3 \text{ V}$, internal 25 MHz operation, sleep mode	_	17	35	mA	
	Power supply current	Iccl	_	At Vcc = 3.3 V, external 32 kHz, internal 8 kHz operation, sub clock operation (T _A = +25 °C)	_	15	140	μΑ	
		Ісст	_	At $Vcc = 3.3 \text{ V}$, external 32 kHz, internal 8 kHz operation, watch mode ($T_A = +25 \text{ °C}$)	_	1.8	40	μΑ	
		Іссн	_	$T_A = +25$ °C, stop mode, at $V_{CC} = 3.3$ V	_	0.8	40	μΑ	
	Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	5	15	pF	

Notes: • Pins P40 to P42, P70 to P74, P76, and P77 are N-ch open drain pins with control, which are usually used as CMOS.

- P76 and P77 are open drain pins without P-ch.
- For use as a single 3 V power supply products, set Vcc = Vcc3 = Vcc5.
- When the device is used with dual power supplies, P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76 and P77 serve as 5 V pins while the other pins serve as 3 V I/O pins.

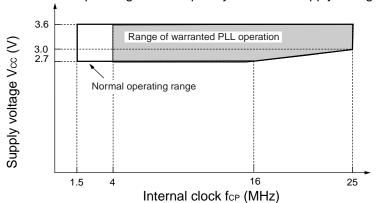
4. AC Characteristics


(1) Clock Timing

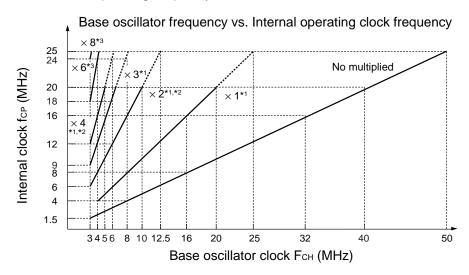

(Vss = 0.0 V, $T_A = -40$ °C to +85 °C)

Parameter	Sym-	Pin name	Condi-		Value		Unit	Remarks	
Parameter	bol	Pili lialile	tion	Min	Тур	Max	Omit	Remarks	
			_	3	_	25		External crystal oscillator	
				3	_	50		External clock input	
el4U.com				4	_	25		1 multiplied PLL	
	Fсн	X0, X1		3	_	12.5	MHz	2 multiplied PLL	
Clock frequency				3	_	6.66		3 multiplied PLL	
				3	_	6.25		4 multiplied PLL	
				3	_	4.16		6 multiplied PLL	
			_	3	_	3.12		8 multiplied PLL	
	FcL	X0A, X1A		_	32.768	_	kHz		
Clock cycle time	t c	X0, X1	_	20	_	333	ns	*1	
Clock cycle time	t cL	X0A, X1A		_	30.5	_	μs		
Input alogk pulgo width	Pwh Pwl	X0		5	_	_	ns		
Input clock pulse width	Pwlh Pwll	X0A		_	15.2	_	μs	*2	
Input clock rise, fall time	t _{cr}	X0		_	_	5	ns	With external clock	
Internal operating clock	fсР			1.5	_	25	MHz	*1	
frequency	fcpl	_	_	_	8.192	_	kHz		
Internal operating clock	t CP	_	_	40.0	_	666	ns	*1	
cycle time	t CPL				122.1		μs		

^{*1 :} Be careful of the operating voltage.


^{*2 :} Duty raito should be 50 $\% \pm 3~\%.$

Range of warranted PLL operation


Internal operating clock frequency vs. Power supply voltage

www.DataSheel4U.com

Notes: • Only at 1 multiplied PLL, use with more than fcp = 4 MHz.

• For A/D operating frequency, refer to "5. A/D Converter Electrical Characteristics".

*1 : In setting as 1, 2, 3 and 4 multiplied PLL, when the internal clock is used at 20 MHz < fcp ≤ 25 MHz, set the PLLOS register to "DIV2 bit = 1" and "PLL2 bit = 1".

[Example] When using the base oscillator frequency of 24 MHz at 1 multiplied PLL:

CKSCR register: CS1 bit = "0", CS0 bit = "0" PLLOS register: DIV2 bit = "1", PLL2 bit = "1"

[Example] When using the base oscillator frequency of 6 MHz at 3 multiplied PLL:

CKSCR register: CS1 bit = "1", CS0 bit = "0" PLLOS register: DIV2 bit = "1", PLL2 bit = "1"

*2: In setting as 2 and 4 multiplied PLL, when the internal clock is used at 20 MHz < fcp ≤ 25 MHz, the following setting is also enabled.

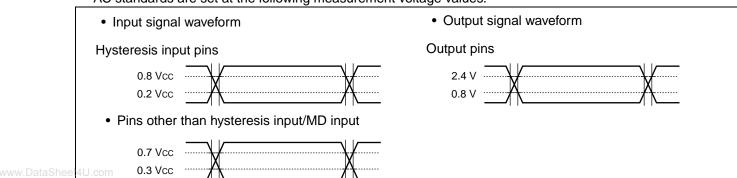
2 multiplied PLL: CKSCR register: CS1 bit = "0", CS0 bit = "0"

PLLOS register : DIV2 bit = "0", PLL2 bit = "1"

4 multiplied PLL: CKSCR register: CS1 bit = "0", CS0 bit = "1"

PLLOS register : DIV2 bit = "0", PLL2 bit = "1"

*3: When using in setting as 6 and 8 multiplied PLL, set the PLLOS register to "DIV2 bit = 0" and "PLL2 bit = 1". [Example] When using the base oscillator frequency of 4 MHz at 6 multiplied PLL:

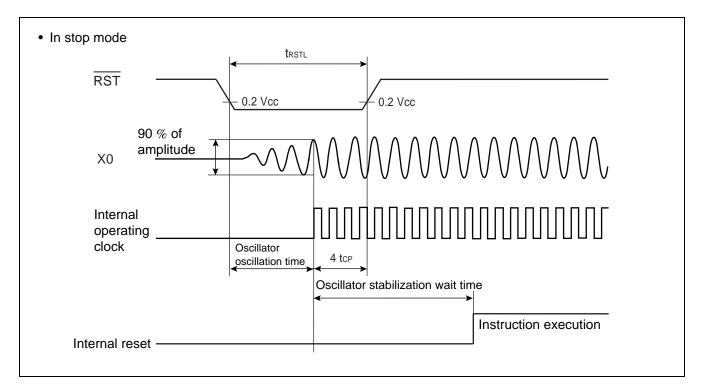

When using the base oscillator frequency of 4 MHz at 6 multiplied PLL:

CKSCR register: CS1 bit = "1", CS0 bit = "0" PLLOS register: DIV2 bit = "0", PLL2 bit = "1"

[Example] When using the base oscillator frequency of 3 MHz at 8 multiplied PLL:

CKSCR register: CS1 bit = "1", CS0 bit = "1" PLLOS register: DIV2 bit = "0", PLL2 bit = "1"

AC standards are set at the following measurement voltage values.



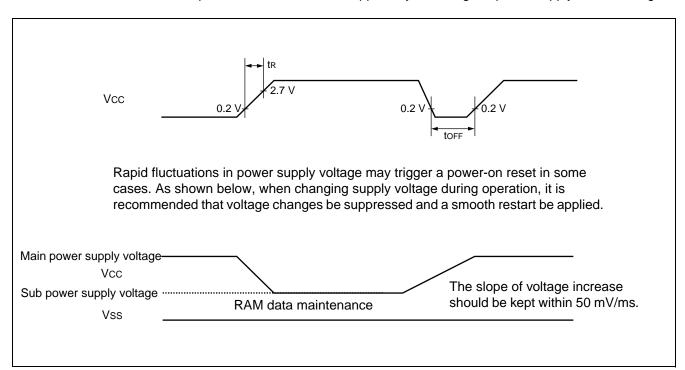
(2) Reset Input Standards

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol Pin		Condi-	Value		Unit	Remarks	
Parameter	Syllibol	name	tions	Min	Max	Ollit	iveillai ks	
				16 tcp*1	_	ns	Normal operation	
Reset input time	t RSTL	RST		Oscillator oscillation time*2 + 4 tcp*1	_	ms	Stop mode	

- *1: tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".
- *2: Oscillator oscillation time is the time to 90 % of amplitude. For a crystal oscillator this is on the order of several milliseconds to tens of milliseconds. For a FAR/ceramic oscillator, this is several hundred microseconds to several milliseconds. For an external clock signal the value is 0 ms.

(3) Power-on Reset Standards


 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

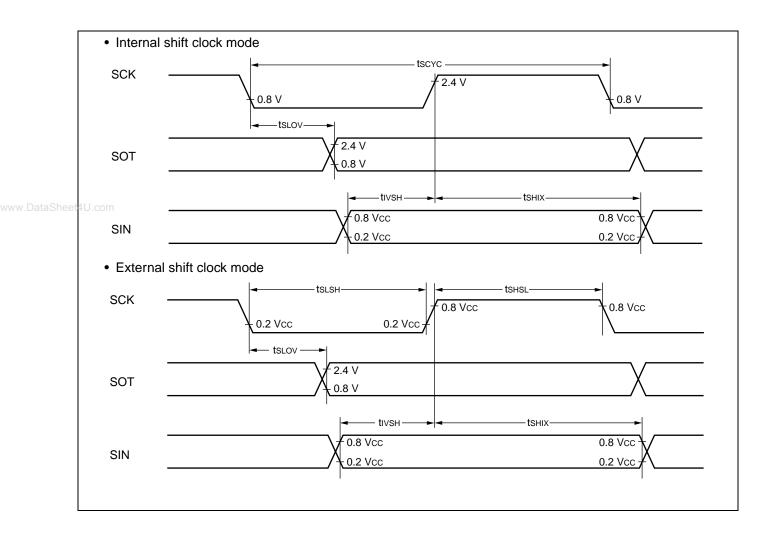
Parameter	Symbol	Din name	Conditions		lue	Unit	Remarks	
raiametei	Symbol	Fili lialile	Conditions	Min	Max	Offic	Remarks	
Power rise time	t R	Vcc		_	30	ms	*	
Power down time	t off	Vcc		1		ms	In repeated operation	

^{*:} Power rise time requires Vcc < 0.2 V.

Notes: • The above standards are for the application of a power-on reset.

DataSheet4U.com • Within the device, the power-on reset should be applied by switching the power supply off and on again.

(4) UART Timing


 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

	Parameter	Symbol	Pin	Conditions	Val	ue	Unit	Remarks	
	rarameter	Symbol	PIII	Conditions	Min	Max	Unit	Remarks	
	Serial clock cycle time	tscyc	_		8 tcp*2	_	ns		
	SCK↓→SOT delay time	t slov			-80	+80	ns		
	30N↓→301 delay time	ISLOV		Internal shift clock	-120	+120	ns	fcp = 8 MHz	
	Valid SIN→SCK↑	t ıvsh	_	mode output pins : $C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	100		ns		
www.DataSheel	valid SIN→SCK	UVSH		·	200		ns	fcp = 8 MHz	
	SCK [↑] →valid SIN hold time	t sнıx	_		tcp*2	_	ns		
	Serial clock "H" pulse width	t shsl			4 tcp*2		ns		
	Serial clock "L" pulse width	t slsh	_		4 tcp*2	_	ns		
	SCK↓→SOT delay time	t sLov			_	150	ns		
	30N↓→301 delay time	ISLOV		External shift clock mode output pins :		200	ns	fcp = 8 MHz	
	Valid SIN→SCK↑	tıvsн		$C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	60		ns		
	valid SIN→SON	LIVSH		·	120	_	ns	fcp = 8 MHz	
	SCK↑→valid SIN hold time	t sнıx			60		ns		
		L SHIX	_		120		ns	fcp = 8 MHz	

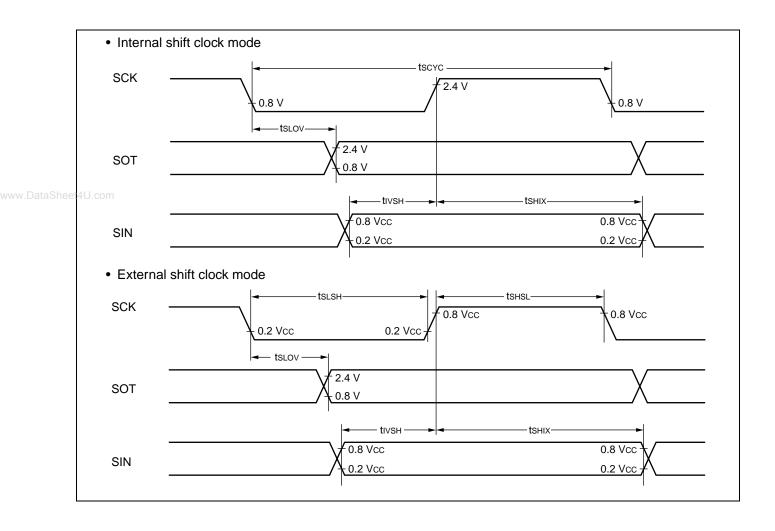
^{*1 :} C_L is the load capacitance applied to pins for testing.

Note: AC ratings are for CLK synchronized mode.

^{*2 :} tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

(5) Extended I/O Serial Interface Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, T_A = -40 $^{\circ}C$ to +85 $^{\circ}C)$

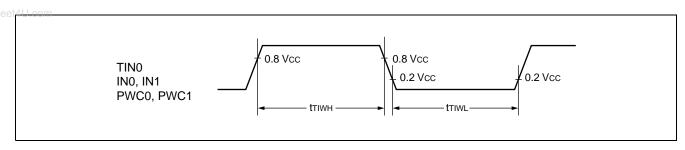

	Doromotor	Symbol	Pin	Conditions	Value		Unit	Domorko
	Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
	Serial clock cycle time	t scyc	_		8 tcp*2		ns	
	SCK↓→SOT delay time	tslov			-80	+ 80	ns	
	30N↓→301 delay lilile	ISLOV		Internal shift clock mode output pins : CL*1 = 80 pF + 1 TTL	-120	+ 120	ns	fcp = 8 MHz
	Valid SIN→SCK↑	tıvsн			100		ns	
www.DataShee	valid SIN→SCK1	UVSH			200		ns	$f_{CP} = 8 \text{ MHz}$
	SCK↑→valid SIN hold time	t shix	_		t cp*2		ns	
	Serial clock "H" pulse width	t shsl	_		4 tcp*2		ns	
	Serial clock "L" pulse width	t slsh			4 tcp*2		ns	
	SCK↓→SOT delay time	t slov				150	ns	
	JON \$\to \to \to \to \to \to \to \to \to \to	L SLOV	_	External shift clock mode output pins :		200	ns	$f_{\text{CP}} = 8 \text{ MHz}$
	Valid SIN→SCK↑	t ıvsh		$C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	60	_	ns	
	valid Silv—3SSK1	UVSH	_		120	_	ns	$f_{\text{CP}} = 8 \text{ MHz}$
	SCK↑→valid SIN hold time	t shix			60		ns	
	JOCK valid SIN Hold tillle	L SHIX			120	_	ns	fcp = 8 MHz

^{*1 :} C_L is the load capacitance applied to pins for testing.

Notes: • AC ratings are for CLK synchronized mode.

• Values on this table are target values.

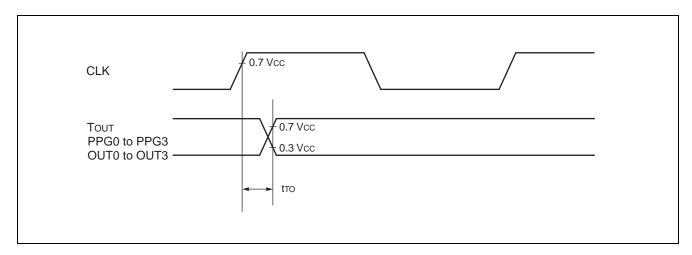
^{*2 :} tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".



(6) Timer Input Timing

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

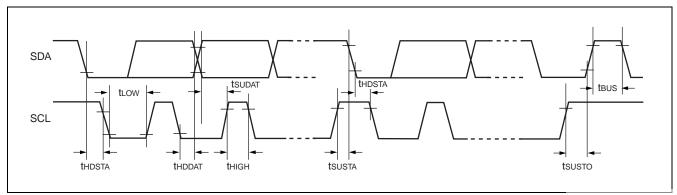
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
raiailletei	Syllibol	Finitianie	Conditions	Min	Max	Oilit	iveillai ks
Input pulse width	tтıwн tтıwL	TINO, INO, IN1, PWC0, PWC1	_	4 t _{CP} *		ns	


^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

(7) Timer Output Timing

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Sym- Pin name		Conditions	Value		Unit	Remarks
Farameter	bol	Fill Hallie	Conditions	Min	Max	Oilit	iveillai va
CLK↑→Tout change time PPG0 to PPG3 change time OUT0 to OUT3 change time		TOT0, PPG0 to PPG3, OUT0 to OUT3	Load conditions 80 pF	30		ns	


(8) I²C Timing

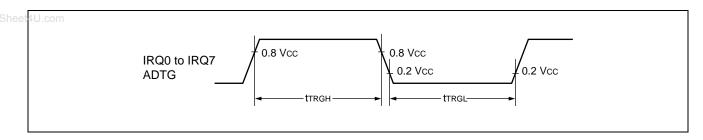
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, TA = -40 $^{\circ}C$ to +85 $^{\circ}C)$

Parameter		Symbol	Condition	Standar	Unit	
	Parameter Symbol		Condition	Min	Max	Unit
SCL clock	frequency	fscL		0	100	kHz
Hold time (SDA↓→SC	repeated) START condition $CL\!\!\downarrow$	t hdsta	When power supply voltage of	4.0	_	μs
"L" width of	f the SCL clock	tLOW	external pull-up resistance is 5.5 V $R = 1.3 \text{ k}\Omega$, $C = 50 \text{ pF}^{*2}$	4.7	_	μs
e "H" width o	of the SCL clock	t HIGH	When power supply voltage of	4.0		μs
	e (repeated) START SCL↑→SDA↓	t susta	external pull-up resistance is 3.6 V R = 1.6 k Ω , C = 50 pF* ²	4.7		μs
Data hold t SCL↓→SD		t hddat		0	3.45*3	μs
Data set-u	Data set-up time SDA↓↑→SCL↑		When power supply voltage of external pull-up resistance is 5.5 V fcP*\(^1\) \leq 20 MHz, R = 1.3 k\(\Omega\), C = 50 pF*\(^2\) When power supply voltage of external pull-up resistance is 3.6 V fcP*\(^1\) \leq 20 MHz, R = 1.6 k\(\Omega\), C = 50 pF*\(^2\)	250	_	ns
SDA↓↑→S			When power supply voltage of external pull-up resistance is 5.5 V fcp*1 > 20 MHz, R = 1.3 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistance is 3.6 V fcp*1 > 20 MHz, R = 1.6 k Ω , C = 50 pF*2	200	_	ns
Set-up time SCL↑→SD	e for STOP condition 0A↑	t susto	When power supply voltage of external pull-up resistance is 5.5 V	4.0	_	μs
Bus free tir START cor	me between a STOP and ndition	t BUS	$R=1.3~k\Omega,~C=50~pF^{*2}$ When power supply voltage of external pull-up resistance is 3.6 V $R=1.6~k\Omega,~C=50~pF^{*2}$	4.7		μs

^{*1 :} fcp is internal operation clock frequency. Refer to " (1) Clock Timing".

Note : Vcc = Vcc3 = Vcc5

^{*2:} R,C: Pull-up resistor and load capacitor of the SCL and SDA lines.

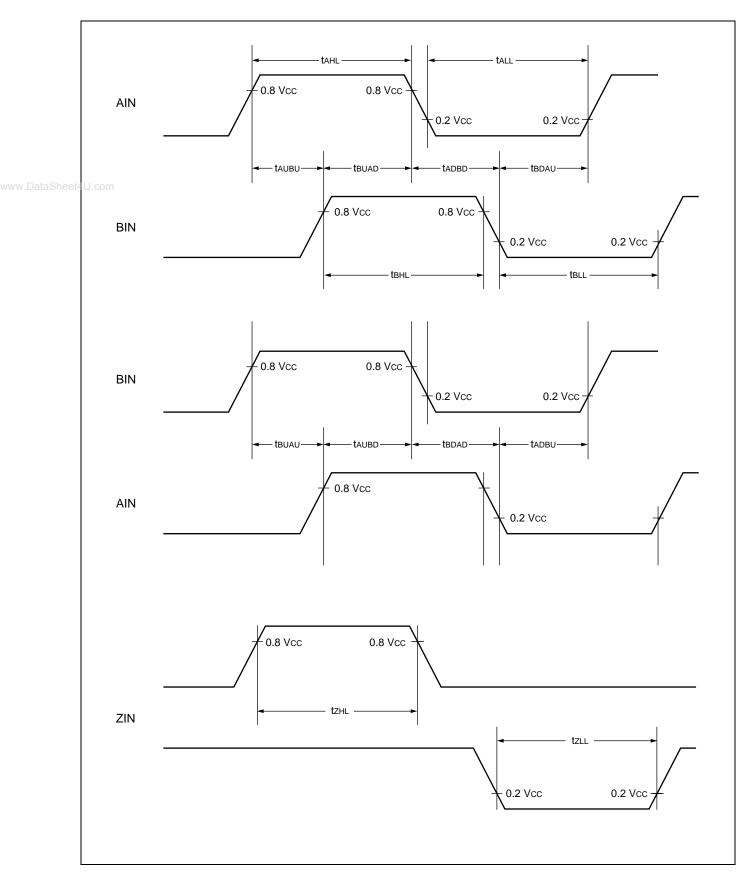

^{*3:} The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

(9) Trigger Input Timing

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condi-	Va	ue	Unit	Remarks	
rarameter	Syllibol	riii iiaiiie	tions	Min	Max	Oilit	I/Gillal KS	
Input pulse width	t тrgн,	ADTG,		5 tcp*		ns	Normal operation	
input puise width	trrgL IRQ0 to IRQ7	IRQ0 to IRQ7		1		μs	Stop mode	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".



(10) Up-down Counter Timing

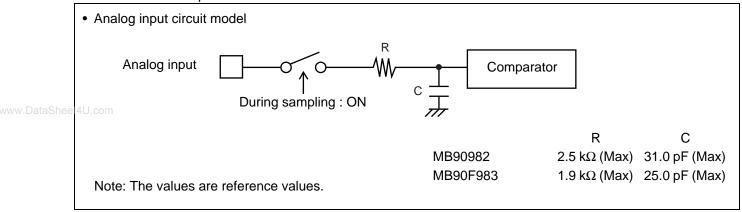
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)

Developed Street of		Dia nome	0 1111	Va	lue	l los id	Damanla
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	Remarks
AIN input "H" pulse width	t ahl			8 tcp*	_	ns	
AIN input "L" pulse width	t all			8 tcp*	_	ns	
BIN input "H" pulse width	t BHL			8 tcp*	_	ns	
BIN input "L" pulse width	t BLL			8 tcp*	_	ns	
AIN↑→BIN↑ rise time	t aubu	AINO, AIN1,	Load conditions 80 pF	4 tcp*	_	ns	
BIN↑→AIN↓ fall time	t buad			4 tcp*	_	ns	
AIN↓→BIN↑ rise time	t adbd	BIN0, BIN1		4 tcp*	_	ns	
BIN↓→AIN↑ rise time	t bdau			4 tcp*	_	ns	
BIN↑→AIN↑ rise time	t buau			4 tcp*	_	ns	
AIN↑→BIN↓ fall time	t aubd			4 tcp*	_	ns	
BIN↓→AIN↑ rise time	t BDAD			4 tcp*		ns	
AIN↓→BIN↑ rise time	t adbu			4 tcp*	_	ns	
ZIN input "H" pulse width	t zhl	ZIN0, ZIN1		4 tcp*	_	ns	
ZIN input "L" pulse width	t zll	ZIINU, ZIIN I		4 tcp*	_	ns	

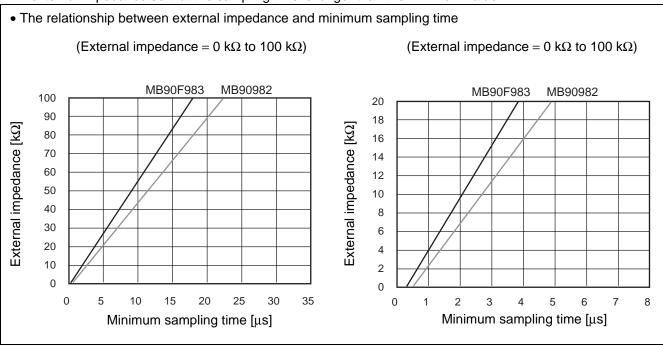
^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

5. A/D Converter Electrical Characteristics

(Vcc = AVcc = 2.7 V to 3.6 V, Vss = AVss = 0.0 V, 2.7 V \leq AVRH, T_A = -40 °C to +85 °C)


	Parameter	Symbol	Pin name	Value				Remarks
	Parameter	Symbol Pin name		Min Typ		Max	Unit	Remarks
	Resolution	_	_	_	_	10	bit	
	Total error	_		_	_	±3.0	LSB	
	Non-linear error		_	_	_	±2.5	LSB	
. Dat	Differential linearity error e ∈		_	_	_	±1.9	LSB	
	Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	
	Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV	
	Conversion time	_	_	3.68 *1	_	_	μs	
	Analog port input current	lain	AN0 to AN7	_	0.1	10	μА	
	Analog input voltage	Vain	AN0 to AN7	AVss	_	AVRH	V	
	Reference voltage	_	AVRH	AVss + 2.2	_	AVcc	V	
	Power supply current	lΑ	AVcc	_	1.4	3.5	mA	
	Fower Supply current	Іан	AVcc	_	_	5 *2	μΑ	
	Reference voltage	IR	AVRH	_	94	150	μΑ	
	supply current	lпн	AVRH	_	_	5 *2	μΑ	
	Offset between channels	_	AN0 to AN7	_	_	4	LSB	

^{*1 :} At machine clock frequency of 25 MHz.


^{*2 :} CPU stop mode current when A/D converter is not operating (at Vcc = AVcc = AVRH = 3.0 V).

About the external impedance of the analog input and its sampling time

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

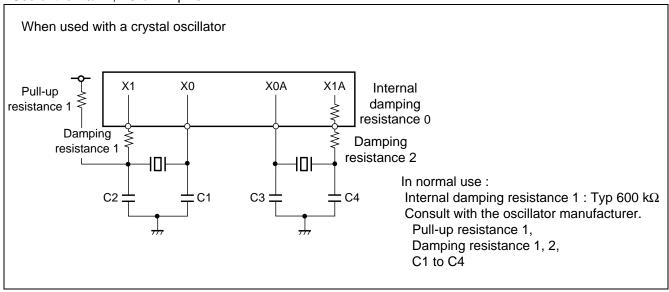
About errors

As |AVRH – AVss| becomes smaller, values of relative errors grow larger.

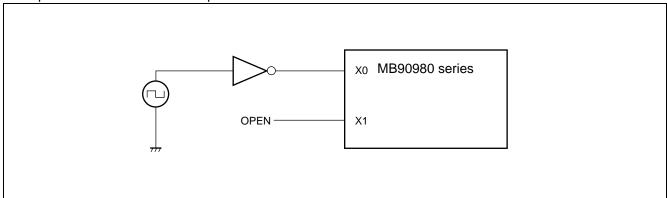
Note: Concerning sampling time, and compare time

When 3.6 V \geq AVcc \geq 2.7 V, then

Sampling time : 1.92 μs , compare time : 1.1 μs


Settings should ensure that actual values do not go below these values due to operating frequency changes.

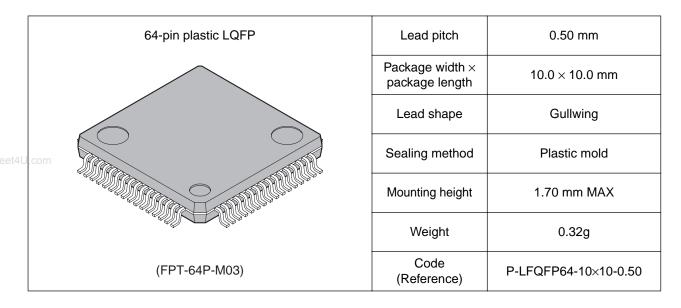
• Flash Memory Program/Erase Characteristics

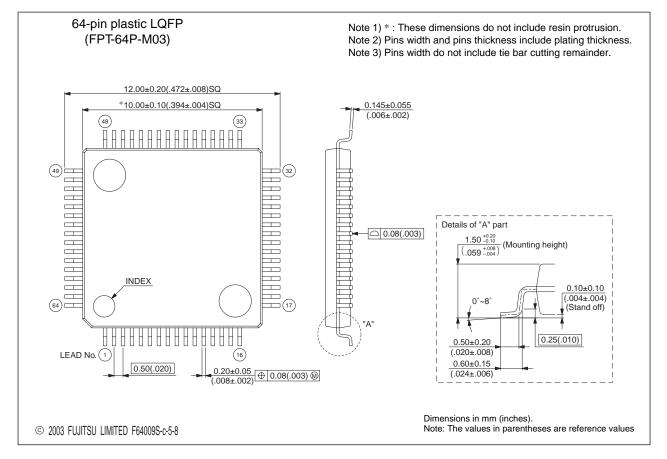

Parameter	Conditions		Value		Unit	Remarks
Farameter	Conditions	Min	Тур	Max	Offic	Kemarks
Sector erase time		_	1	15	s	Excludes 00 _H programming prior erasure
Chip erase time	$T_A = +25 ^{\circ}C,$ $V_{CC} = 3.0 V$	_	7	_	s	Excludes 00 _H programming prior erasure
Word (16-bit) programming time		_	16	3600	μs	Excludes system-level overhead
Program/Erase cycle	_	10000	_		cycle	
Flash Memory Data hold time	Average T _A = + 85 °C	10	_	_	year	*

 $^{^*}$: The value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 $^\circ\text{C}$) .

• Use of the X0/X1, X0A/X1A pins

• Sample use with external clock input




■ ORDERING INFORMATION

Model	Package	Remarks
MB90F983 MB90982	64-pin plastic LQFP (FPT-64P-M03)	

www.DataSheet4LL.com

■ PACKAGE DIMENSIONS

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

Edited Business Promotion Dept.