16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90980 Series

MB90982/MB90F983/MB90V485B

■ DESCRIPTION

The MB90980 series is a 16-bit general-purpose FUJITSU microcontroller designed for process control in consumer devices and other applications requiring high-speed real-time processing.

The $\mathrm{F}^{2} \mathrm{MC}$-16LX CPU core instruction set retains the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{* 1}$ family, with additional instructions for high-level languages, expanded addressing mode, enhanced multiply-drive instructions, and complete bit processing. In addition, a 32-bit accumulator is provided to enable long-word processing.
The MB90980 series features embedded peripheral resources including $8 / 16$-bit PPG, expanded I/O serial interface, UART, 10-bit A/D converter, 16 -bit I/O timer, 8/16-bit up/down-counter, PWC timer, $I^{2} \mathrm{C}^{* 2}$ interface, DTP/ external interrupt, chip select, and 16-bit reload timer.
*1 : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.
*2 : Purchase of Fujitsu $I^{2} C$ components conveys a license under the Philips $I^{2} C$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ standard Specification as defined by Philips.

- FEATURES

- Clock
- Minimum instruction execution time:
$40.0 \mathrm{~ns} / 6.25 \mathrm{MHz}$ base frequency multiplied $\times 4(25 \mathrm{MHz}$ internal operating frequency/3.3 $\mathrm{V} \pm 0.3 \mathrm{~V})$
$62.5 \mathrm{~ns} / 4 \mathrm{MHz}$ base frequency multiplied $\times 4(16 \mathrm{MHz}$ internal operating frequency $/ 3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$)
PLL clock multiplier
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.
"Check Sheet" is seen at the following support page
URL : http://jp.fujitsu.com/microelectronics/products/micom/support/index.html
"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB90980 Series

(Continued)

- Maximum memory space
- 16 Mbytes
- Instruction set optimized for controller applications
- Supported data types (bit, byte, word, or long word)
- Typical addressing modes (23 types)
- Enhanced signed multiplication/division instruction and RETI instruction functions
- 32-bit accumulator for enhanced high-precision calculation
- Instruction set designed for high-level language (C) and multi-task operations
- System stack pointer adopted
- Instruction set compatibility and barrel shift instructions
- Enhanced execution speed
- 4 byte instruction queue
- Enhanced interrupt functions
- 8 levels setting with programmable priority, 8 external interrupt pins
- Data transmission function ($\mu \mathrm{DMAC}$)
- Up to 16 channels
- Embedded ROM
- Flash versions : 192 Kbytes, Mask versions : 128 Kbytes
- Embedded RAM
- Flash versions : 12 Kbytes, Mask versions : 10 Kbytes
- General purpose ports
- Up to 48 ports
(10 ports with output open-drain settings)
- 8/10-bit A/D converter
- 8 -channel RC sequential comparison type (10-bit resolution, 3.68μ s conversion time (at 25 MHz))
- $I^{2} \mathrm{C}$ interface
- 1 channel, P76/P77 N-ch open drain pin (without P-ch)
- UART
- 1 channel
- Extended I/O serial interface (SIO)
- 2 channels
- 8/16-bit PPG
- 2 channels (with 8 -bit $\times 4$ channels/16-bit $\times 2$ channels mode switching function)
- 8/16-bit up/down timer
- 1 channel (with 8 -bit $\times 2$ channels/16-bit $\times 1$-channel mode switching function)
- 16-bit PWC
- 2 channels (Capable of compare the inputs)
- 16-bit reload timer
- 1 channel
- 16-bit I/O timer
- 2 channels input capture, 4 channels output compare, 1 channel free run timer
- On chip dual clock generator system
- Low-power consumption (standby) mode
- With stop mode, sleep mode, CPU intermittent operation mode, watch timer mode, timebase timer mode

MB90980 Series

- Packages
- LQFP 64
- Process
- CMOS technology
- Power supply voltage

3 V , single source (some ports can be operated by 5 V power supply.)

MB90980 Series

- PRODUCT LINEUP

Item Part number		MB90982	MB90F983	MB90V485B
Classification		Mask ROM product	Flash memory product	Evaluation product
ROM size		128 Kbytes	192 Kbytes	-
RAM size		10 Kbytes	12 Kbytes	16 Kbytes
CPU function		Number of instructions Instruction bit length Instruction length Data bit length Minimum execution time	: 351 8-bit, 16-bit : 1 byte to 7 bytes : 1-bit, 8-bits, 16-bits : $40 \mathrm{~ns}(25 \mathrm{MHz}$ machine	clock)
Ports		General-purpose I/O ports: General-purpose I/O ports General-purpose I/O ports General-purpose I/O ports	p to 48 (MOS output) with pull-up resistance Inp -ch open drain output)	
UART		1 channel, start-stop sync	nized	
8/16-bit PPG		8 -bit $\times 4$ channels/16-bit	hannels	8-bit $\times 6$ channels/ 16 -bit $\times 3$ channels
8/16-bit up/down counter/timer		6 event input pins, 8 -bit up 8-bit reload/compare regis	own counters : 2 $\text { rs : } 2$	
16-bit I/O timers	16-bit free run timer	Number of channels : 1 Overflow interrupt		
	Output compare (OCU)	Number of channels : 4 Pin input factor: A match	al of compare register	Number of channels : 6 Pin input factor: A match signal of compare register
	Input capture (ICU)	Number of channels : 2 Rewriting a register value	on a pin input (rising, fal	g, or both edges)
DTP/external interrupt circuit		Number of external interru	channels : 8 (edge or leve	detection)
Extended I/O serial interface		2 channels, embedded		
$1^{2} \mathrm{C}$ interface*2		1 channel		
PWC		2 channels		3 channels
Timebase timer		18-bit counter Interrupt cycles: $1.0 \mathrm{~ms}, 4$	$\mathrm{ms}, 16.4 \mathrm{~ms}, 131.1 \mathrm{~ms}(\mathrm{a}$	4 MHz base oscillator)
A/D converter		Conversion resolution : 8/ One-shot conversion mod Scan conversion mode (ca Continuous conversion mod Stop conversion mode (co	bit, switchable converts selected channe version of multiple consec grammable up to 8 chann (repeated conversion of ersion of selected channe	1 time only) tive channels, s) selected channels) s with repeated pause)
Watchdog timer		Reset generation interval	$58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}$ minimum value, at 4 MHz	$\mathrm{ms}, 458.75 \mathrm{~ms}$ base oscillator)
Low-power consumption (standby) modes		Sleep mode, stop mode, C mode	intermittent mode, watch	timer mode, timebase timer
Process				
Type		Flash model $3 \mathrm{~V} / 5 \mathrm{~V}$ power supply*1	Mask model 3V/5V power supply*1	3V/5V power supply*1
Emulator power supply ${ }^{* 3}$		-	-	Yes

(Continued)

MB90980 Series

(Continued)
*1: 3V/5V I/F pin : All pins should be for 3 V power supply without P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76, and P77.
*2 : P76/P77 pins are N -ch open drain pins (without P -ch) at built-in $\mathrm{I}^{2} \mathrm{C}$.
*3 : It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used.
Please refer to the hardware manual of MB2147-01 or MB2147-20 ("3.3 Emulator-dedicated Power Supply Switching") about details.
Note : Ensure that you must write to Flash at $\mathrm{V} \mathrm{cc}=3.13 \mathrm{~V}$ to $3.60 \mathrm{~V}(3.3 \mathrm{~V}+10 \%,-5 \%)$.

MB90980 Series

PIN ASSIGNMENT

-

(FPT-64P-M03)
Notes : - ${ }^{2} \mathrm{C}$ pin P76 and P77 are N-ch open drain pin (without P-ch) .

- P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76 and P77 also used as $3 \mathrm{~V} / 5 \mathrm{~V} \mathrm{I} / \mathrm{F}$ pin.

MB90980 Series

■ PIN DESCRIPTIONS

Pin No.	Pin name	I/O Circuit type*	Function
46	X0	A	Oscillator pin
47	X1	A	Oscillator pin
50	X0A	A	32 kHz oscillator pin
49	X1A	A	32 kHz oscillator pin
51	RST	B	Reset input pin
3 to 6	P27 to P24	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	PPG3 to PPG0		PPG timer output pin
14	P30	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	AIN0		8/16-bit up/down timer counter input pin (ch.0)
13	P31	$\underset{(\mathrm{EMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	BIN0		8/16-bit up/down timer counter input pin (ch.0)
12	P32	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	ZIN0		8/16-bit up/down timer counter input pin (ch.0)
11	P33	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	AIN1		8/16-bit up/down timer counter input pin (ch.1)
10	P34	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	BIN1		8/16-bit up/down timer counter input pin (ch.1)
9	P35	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	ZIN1		8/16-bit up/down timer counter input pin (ch.1)
7, 8	P37, P36	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	PWC1, PWC0		PWC input pin
19	P40	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{G}}$	General purpose I/O port
	SIN2		Simple serial I/O 2-input pin
18	P41	$\stackrel{\mathrm{F}}{(\mathrm{CMOS})}$	General purpose I/O port
	SOT2		Simple serial I/O 2-output pin
15	P42	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port
	SCK2		Simple serial I/O 2-clock I/O pin
60 to 63	P63 to P60	$\stackrel{\mathrm{H}}{(\mathrm{CMOS})}$	General purpose I/O port
	AN3 to AN0		Analog input pin
56 to 59	P67 to P64	$\stackrel{\text { F }}{(\mathrm{CMOS})}$	General purpose I/O port
	AN7 to AN4		Analog input pin
26	P70	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port
	SIN0		UART data input pin
25	P71	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O port
	SOT0		UART data output pin

(Continued)

MB90980 Series

Pin No.	Pin name	I/O Circuit type*	Function
24	P72	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{G}}$	General purpose I/O port
	SCK0		UART clock I/O pin
23	P73	$\stackrel{\mathrm{G}}{(\mathrm{CMOS} / \mathrm{H})}$	General purpose I/O port
	TIN0		16-bit reload timer event input pin
22	P74	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O port
	TOT0		16-bit reload timer output pin
21	P76	$\begin{gathered} 1 \\ (\mathrm{NMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port
	SCL		This pin functions as the $\mathrm{I}^{2} \mathrm{C}$ interface clock I/O pin. Set port output to $\mathrm{Hi}-\mathrm{Z}$ during the $\mathrm{I}^{2} \mathrm{C}$ interface operation.
20	P77	$\begin{gathered} \text { I } \\ (\mathrm{NMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port
	SDA		This pin functions as the $I^{2} \mathrm{C}$ interface data I / O pin. Set port output to $\mathrm{Hi}-\mathrm{Z}$ during the $\mathrm{I}^{2} \mathrm{C}$ interface operation.
52 to 55	P83 to P80	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	IRQ3 to IRQ0		External interrupt input pin
39 to 42	P87 to P84	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	IRQ7 to IRQ4		External interrupt input pin
38	P90	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	SIN1		Simple serial I/O1-data input pin
37	P91	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose I/O port
	SOT1		Simple serial I/O-1 data output pin
36	P92	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	SCK1		Simple serial I/O-1 data I/O pin
35	P93	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	FRCK		When using free-run timer, this pin functions as the external clock input pin.
	ADTG		When using A/D converter, this pin fuctions as the external trigger input pin.
34	P96	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose I/O port
	IN0		Input capture ch. 0 trigger input pin
31	P97	$\underset{(C M O S / H)}{E}$	General purpose I/O port
	IN1		Input capture ch. 1 trigger input pin
27 to 30	PA3 to PA0	$\begin{gathered} \text { D } \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O port
	OUT3 to OUT0		Output compare event output pin
1	AV ${ }_{\text {cc }}$	-	A/D converter power supply pin
2	AVRH	-	A/D converter external reference power supply pin
64	AVss	-	A/D converter power supply pin
43 to 45	MD0 to MD2	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	Operating mode selection input pins
32	Vcc3	-	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ power supply pins (Vcc3)

(Continued)

MB90980 Series

(Continued)

Pin No.	Pin name	I/O Circuit type*	Function
16	Vcc5	-	$3 \mathrm{~V} / 5 \mathrm{~V}$ power supply pin. 5 V power supply pin when P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76 and P77 are used as 5 V I/F pins. Usually, use $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{c}}$ 5 as a 3 V power supply (when the 3 V power supply is used alone).
$\begin{gathered} 17,33, \\ 48 \end{gathered}$	Vss	-	Power supply input pins (GND)

[^0]
MB90980 Series

I/O CIRCUIT TYPES

Type	Circuit	Remarks
${ }_{\text {A }}$		- Oscillator feedback resistance X1, X0 : approx. $1 \mathrm{M} \Omega$ X1A, XOA : approx. $10 \mathrm{M} \Omega$ - With standby control
B		Hysteresis input with pull-up resistance
C		- With input pull-up resistance control - CMOS level input/output
D		CMOS level input/output
E		- Hysteresis input - CMOS level output

(Continued)

MB90980 Series

(Continued)

Type	Circuit	Remarks
F		- CMOS level input/output - With open drain control
G		- CMOS level output - Hysteresis input - With open drain control
H		- CMOS level input/output - Analog input
1		- Hysteresis input - N-ch open drain output
J	Flash memory model	- CMOS level input - With high voltage control for flash testing
	Mask ROM model \square \qquad - \qquad Hysteresis input	Hysteresis input

MB90980 Series

■ CAUTION OF USING DEVICES

1. Maximum rated voltages (preventing latchup)

In CMOS IC devices, a condition known as latchup may occur if voltages higher than Vcc or lower than Vss are applied to input or output pins other than medium-or high-voltage pins, or if the voltage applied between Vcc and Vss exceeds the rated voltage level.
When latchup occurs, the power supply current increases rapidly causing the possibility of thermal damage to circuit elements. Therefore it is necessary to ensure that maximum ratings are not exceeded in circuit operation. Similarly, when turning the analog power supply on or off, it is necessary to ensure that the analog power supply voltages (AV cc and AVRH) and analog input voltages do not exceed the digital power supply (V cc) .

2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latchup, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least $2 \mathrm{k} \Omega$. Any unused input/ output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins.

3. Notes on Using External Clock

Even when using an external clock signal, an oscilltion stabilization delay is applied after a power-on reset or when recovering from sub-clock or stop mode. When using an external clock, 25 MHz should be the upper frequency limit.
The following figure shows a sample use of external clock signals.

4. Treatment of Power Supply Pins ($\mathrm{Vcc} / \mathrm{Vss}_{\text {s }}$)

When multiple Vcc pins or Vss pins are present, device design considerations for prevention of latch-up and unwanted electromagnetic interference, abnormal storobe signal operation due to ground level rise, and conformity with total output current ratings require that all power supply pins must be externally connected to power supply or ground.
Consideration should be given to connecting power supply sources to the V_{cc} pin or V_{ss} pin of this device with as low impedane as possible. It is also recommended that a bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ be placed between the V_{cc} and V_{ss} lines as close to this device as possible.

5. Crystal Oscillator Circuits

Noise around the high-speed oscillation pins (X0 and X 1) and low-speed oscillation pins (X0A and X1A) may cause this device to operate abnormally. Design the printed circuit board so that the crystal oscillator (or ceramic oscillator) and bypass capacitor to the ground are located as close to the high-speed oscillation pins and lowspeed oscillation pins as possible. Also, design the printed circuit board to prevent the wiring from crossing another writing.
It is highly recommended to provide a printed circuit board artwork surrounding the high-speed oscillation pins and low-speed oscillation pins with a ground area for stabilizing the operation.

MB90980 Series

6. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

7. Proper power-on/off sequence

The A/D converter power ($\mathrm{AV} \mathrm{cc}, \mathrm{AVRH}$) and analog input (ANO to AN 7) must be turned on after the digital power supply (V_{cc}) is turned on. The A / D converter power ($\mathrm{AVcc}, \mathrm{AVRH}$) and analog input (ANO to $\mathrm{AN7}$) must be shut off before the digital power supply $(\mathrm{V} c \mathrm{c})$ is shut off. Care should be taken that AVRH does not exceed AVcc . Even when pins used as analog input pins are doubled as input ports, be sure that the input voltage does not exceed AV cc.

8. Treatment of power supply pins on models with A / D converters

Even when the A / D converters are not in use, be sure to make the necessary connections $A V c c=A V R H=V c c$, and AV ss $=\mathrm{V}_{\mathrm{ss}}$.

9. Precautions when turning the power supply on

In order to prevent abnormal operation in the chip's internal step-down circuits, a voltage rise time during poweron of $50 \mu \mathrm{~s}(0.2 \mathrm{~V}$ to 2.7 V) or greater should be assured.

10. Supply Voltage Stabilization

Even within the operating range of V_{cc} supply voltage, rapid voltage fluctuations may cause abnormal operation. As a standard for power supply voltage stability, it is recommended that the peak-to-peak $V_{c c}$ ripple voltage at commercial supply frequency ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) be 10% or less of Vcc , and that the transient voltage fluctuation be no more than $0.1 \mathrm{~V} / \mathrm{ms}$ or less when the power supply is turned on or off.
11. Notes on Using Power Supply

Only the MB90980 series usually uses a 3 V power supply. By setting $\mathrm{V}_{c c} 3=3 \mathrm{~V}$ power supply and $\mathrm{V}_{c c} 5=5 \mathrm{~V}$ power supply, P24 to P27, P30 to P37, P40 to P42 and P70 to P74, P76, P77 can be intefaced as 5 V power supplies separately from the main 3 V power supply. Note that the analog power supplies (such as AVcc and AV ss) for the A / D converter can be used only as 3 V power supplies.

12. Treatment of NC pins

NC (internally connected) pins should always be left open.

13. Writing to Flash memory

For serial writing to Flash memory, always ensure that the operating voltage Vcc is between 3.13 V and 3.6 V . For normal writing to Flash memory, always ensure that the operating voltage V cc is between 3.0 V and 3.6 V .

MB90980 Series

BLOCK DIAGRAM

P40 to P42 ($\times 3$) : with an open drain setting register
${ }^{12} \mathrm{C}$ pin P77 and P76 are N-ch open drain pin (without P-ch) .

Note : In the above diagram, I/O ports share internal function blocks and pins. However, when a set of pins is used with an internal module, it cannot also be used as an I/O port.

MB90980 Series

MEMORY MAP

Model	Address \#1	Address \#2	Address \#3
MB90F983	FC0000~**	004000н or 008000н, selected by the MS bit in the ROMM register	003100H
MB90982	FD0000 ${ }^{* 2}$		002900 H

*1 : No memory cells from FC0000н to FC7FFFн and FE0000н to FE7FFFн.
*2 : No memory cells from FE0000н to FEFFFFн. The upper part of the 00 bank is set up to mirror the image of FF bank ROM, to enable efficient use of small model C compilers. Because the lower 16-bit address of the FF bank and the lower 16-bit address of the 00 bank is the same, enabling reference to tables in ROM without the "far" pointer declaration.
For example, in accessing address 00 COOO H it is actually the contents of ROM at FFCOOO H that are accessed. If the MS bit in the ROMM register is set to " 0 ", the ROM area in the FF bank will exceed 48 Kbytes and it is not possible to reflect the entire area in the image in the 00 bank. Therefore the image from FF4000h to FFFFFFF is reflected in the 00 bank and the area from FF0000н to FF3FFFH can be seen in the FF bank only.

MB90980 Series

F²MC-16LX CPU PROGRAMMING MODEL

-Dedicated registers

f.com	AH	AL	Accumulator
		USP	User stack pointer
		SSP	System stack pointer
		PS	Processor status
		PC	Program counter
		DPR	Direct page register
		РCB	Program counter bank register
		DTB	Data bank register
		USB	User stack bank register
		SSB	System stack bank register
		ADB	Additional data bank register

-General purpose registers

-Processor status

MB90980 Series

I/O MAP

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
$\begin{aligned} & \hline \text { 000000н } \\ & \text { 0000001н } \end{aligned}$	Reserved area				
000002н	PDR2	Port 2 data register	R/W	Port 2	ХХХХХХХХХв
000003H	PDR3	Port 3 data register	R/W	Port 3	ХХХХХХХХХв
000004н	PDR4	Port 4 data register	R/W	Port 4	ХХХХХХХХв
000005	Reserved area				
000006 ${ }^{\text {H }}$	PDR6	Port 6 data register	R/W	Port 6	ХХХХХХХХХв
000007 ${ }^{\text {H }}$	PDR7	Port 7 data register	R/W	Port 7	11XXXXXX
000008н	PDR8	Port 8 data register	R/W	Port 8	ХХХХХХХХХв
000009н	PDR9	Port 9 data register	R/W	Port 9	XXXXXXXX
00000Ан	PDRA	Port A data register	R/W	Port A	----XXXX
00000Вн	UDER	Up/down timer input enable register	R/W	Up/down timer input control	XX 000000 в
00000C ${ }_{\text {н }}$	ENIR	Interrupt/DTP enable register	R/W		00000000 в
00000D ${ }_{\text {н }}$	EIRR	Interrupt/DTP source register	R/W	DTP/external	XXXXXXXХв
00000Ен		Request level setting register	R/W	interrupts	00000000 в
00000FH		Request level setting register	R/W		00000000 в
000010н, 000011н	Reserved area				
000012H	DDR2	Port 2 direction register	R/W	Port 2	$0000 \times \mathrm{XXX}$ в
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000 в
000014H	DDR4	Port 4 direction register	R/W	Port 4	00000000 в
000015н	Reserved area				
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000 в
000017 ${ }^{\text {H }}$	DDR7	Port 7 direction register	R/W	Port 7	XX000000в
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000000 в
000019н	DDR9	Port 9 direction register	R/W	Port 9	00 XX 0000 в
00001Ан	DDRA	Port A direction register	R/W	Port A	---0000 в
00001Вн	ODR4	Port 4 output pin register	R/W	Port 4 (Open-drain control)	ХХХХХ 000 ов
$\begin{array}{\|c\|} \hline 00001 \mathrm{CH}, \\ 00001 \mathrm{D} \end{array}$	Reserved area				
00001Ен	ODR7	Port 7 output pin register	R/W	Port 7 (Open-drain control)	XXX 00000 в
00001FH	ADER	Analog input enable register	R/W	Port 6, A/D	11111111 B
000020н	SMR	Serial mode register	R/W	UART	00000×00 в
000021н	SCR	Serial control register	$\begin{gathered} \text { W, } \\ \text { R/W } \end{gathered}$		00000100 в
000022н	SIDR/SODR	Serial input/output register	R/W		ХХХХХХХХв
000023н	SSR	Serial status register	$\begin{gathered} \mathrm{R}, \\ \mathrm{R} / \mathrm{W} \end{gathered}$		00001000 в
000024H	Reserved area				
000025	CDCR	Communication prescaler control register	R/W	Communication prescaler (UART)	00-0000в

(Continued)

MB90980 Series

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
000026н	SMCS0	Serial mode control status register 0	R, R/W		0000 в
000027н	SMCS0	Serial mode control status register 0	R, R/W	SIO1 (ch.0)	$00000010{ }^{\text {B }}$
000028H	SDR0	Serial data register 0	R/W		XXXXXXXX ${ }_{\text {B }}$
000029н	SDCR0	Communication prescaler control register 0	R/W	Communication prescaler SIO1 (ch.0)	0-- 0000 ов
00002Ан	SMCS1	Serial mode control status register 1	R, R/W		---0000в
00002Вн	SMCS1	Serial mode control status register 1	R, R/W	SIO2 (ch.1)	$00000010{ }^{\text {¢ }}$
00002Cн	SDR1	Serial data register 1	R/W		ХХХХХХХХв
00002D	SDCR1	Communication prescaler control register 1	R/W	Communication prescaler SIO2 (ch.1)	0-- 0000 Ов
00002Ен	PRLLO	Reload register L (ch.0)	R/W		XXXXXXXX ${ }_{\text {в }}$
00002F ${ }^{\text {H }}$	PRLH0	Reload register H (ch.0)	R/W		XXXXXXXXв
000030н	PRLL1	Reload register L (ch.1)	R/W		XXXXXXXXв
000031н	PRLH1	Reload register H (ch.1)	R/W	8/16-bit PPG	XXXXXXXXв
000032н	PRLL2	Reload register L (ch.2)	R/W	(ch. 0 to ch.3)	XXXXXXXXв
000033н	PRLH2	Reload register H (ch.2)	R/W		XXXXXXXX
000034н	PRLL3	Reload register L (ch.3)	R/W		XXXXXXXX
000035н	PRLH3	Reload register H (ch.3)	R/W		XXXXXXXX
$\begin{gathered} \text { 000036н } \\ \text { to } \\ 000039 \text { н } \end{gathered}$	Reserved area				
00003Ан	PPGC0	PPG0 operating mode control register	R/W	8/16-bit PPG (ch. 0 to ch.3)	$0 \times 000 \times \mathrm{X} 1 \mathrm{~B}$
00003Вн	PPGC1	PPG1 operating mode control register	R/W		0X0000018
00003Сн	PPGC2	PPG2 operating mode control register	R/W		$0 \times 000 \times \mathrm{X} 1 \mathrm{~b}$
00003D	PPGC3	PPG3 operating mode control register	R/W		OX0000018
$\begin{aligned} & 00003 \mathrm{EH}^{2} \\ & 00003 \mathrm{FH} \end{aligned}$	Reserved area				
000040н	PPG01	PPG0, PPG1 output control register	R/W	8/16-bit PPG	00000000 в
000041н	Reserved area				
000042н	PPG23	PPG2, PPG3 output control register	R/W	8/16-bit PPG	00000000 в
$\begin{aligned} & \hline 000043 \mathrm{H} \\ & \text { to } \\ & 000045 \mathrm{H} \end{aligned}$	Reserved area				
000046н	ADCS1	Control status register	R/W	8/10-bit A/D converter	00000000 в
000047н	ADCS2		W, R/W		$00000000{ }^{\text {b }}$
000048н	ADCR1	Data register	R		XXXXXXXX
000049н	ADCR2		W, R		00000 XXX

(Continued)

MB90980 Series

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
00004Ан	OCCPO	Output compare register (ch.0) lower digits	R/W	16-bit I/O timer output compare (ch. 0 to ch.3)	00000000 в
00004Вн		Output compare register (ch.0) upper digits			00000000 в
00004Сн	OCCP1	Output compare register (ch.1) lower digits	R/W		00000000 в
00004Dн		Output compare register (ch.1) upper digits			00000000 в
00004Ен	OCCP2	Output compare register (ch.2) lower digits	R/W		00000000 в
00004Fн		Output compare register (ch.2) upper digits			00000000 в
000050н	OCCP3	Output compare register (ch.3) lower digits	R/W		00000000 в
000051н		Output compare register (ch.3) upper digits			00000000 в
$\begin{aligned} & 000052 \mathrm{H} \\ & \text { to } \\ & 000055 \mathrm{H} \end{aligned}$		Reserved area			
000056н	OCS01	Output compare control register (ch.0, ch.1) lower digits	R/W	16-bit I/O timer output compare (ch. 0 to ch.3)	0000--00в
000057 ${ }^{\text {H }}$		Output compare control register (ch.0, ch.1) upper digits	R/W		-- 00000 в
000058н	OCS23	Output compare control register (ch.2, ch.3) lower digits	R/W		0000--008
000059н		Output compare control register (ch.2, ch.3) upper digits	R/W		-- 00000 В
$\begin{aligned} & 00005 \text { Ан, }^{2} \\ & 0005 \mathrm{~B}_{\mathrm{H}} \end{aligned}$		Reserved area			
00005Сн		Input capture data register (ch.0) lower digits	R	16-bit I/O timer input capture (ch.0, ch.1)	XXXXXXXX ${ }_{\text {в }}$
00005Dн		Input capture data register (ch.0) upper digits	R		XXXXXXXX
00005Ен	IPCP1	Input capture data register (ch.1) lower digits	R		
00005Fн		Input capture data register (ch.1) upper digits	R		XXXXXXXXв
000060н	ICS01	Input capture control status register	R/W		00000000 в
000061н		Reserved area			
000062н	TCDT	Timer counter data register lower digits	R/W	16-bit I/O timer free-run timer	00000000 в
000063н	TCDT	Timer counter data register upper digits	R/W		00000000 в
000064н	TCCS	Timer counter control status register	R/W		00000000 в
000065н	TCCS	Timer counter control status register	R/W		0--00000в
000066н	CPCLR	Compare clear register lower digits	R/W		XXXXXXXX ${ }_{\text {в }}$
000067н		Compare clear register upper digits			
000068н	UDCR0	Up/down count register (ch.0)	R	8/16-bit up/ down counter/ timer	00000000 в
000069н	UDCR1	Up/down count register (ch.1)	R		00000000 в
00006Ан	RCR0	Reload/compare register (ch.0)	W		00000000 в
00006Вн	RCR1	Reload/compare register (ch.1)	W		00000000 в
00006Cн	CCRLO	Counter control register (ch.0) lower digits	$\begin{gathered} \mathrm{W}, \\ \mathrm{R} / \mathrm{W} \end{gathered}$		$0 \times 00 \times 000$ в
00006Dн	CCRH0	Counter control register (ch.0) upper digits	R/W		00000000 в

(Continued)

MB90980 Series

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
00006Ен	Reserved area				
00006Fн	ROMM	ROM mirror function select register	R/W	ROM mirroring function	-----01в
000070н	CCRL1	Counter control register (ch.1) lower digits	R/W	8/16-bit up/down counter/timer	OX00×0008
000071н	CCRH1	Counter control register (ch.1) upper digits	R/W		- 0000000 в
000072н	CSR0	Counter status register (ch.0)	R/W		00000000 в
000073H	Reserved area				
000074	CSR1	Counter status register (ch.1)	R, R/W	8/16-bit UDC	00000000 B
000075	Reserved area				
000076н	PWCSR0	PWC control/status register	R, R/W	PWC timer (ch.0)	00000000 B
000077					0000000 Хв
000078н	PWCR0	PWC data buffer register	R/W		00000000 B
000079н					00000000 B
00007Ан	PWCSR1	PWC control/status register	R, R/W	PWC timer (ch. 1)	00000000 B
00007Вн					0000000 Хв
00007Сн	PWCR1	PWC data buffer register	R/W		00000000 B
00007Dн					00000000 B
$\begin{gathered} \text { 00007Ен } \\ \text { to } \\ 000081 \text { н } \end{gathered}$	Reserved area				
000082н	DIVR0	Dividing ratio control register	R/W	PWC (ch.0)	-----00в
000083н	Reserved area				
000084н	DIVR1	Dividing ratio control register	R/W	PWC (ch.1)	-- 0 0в
$\begin{gathered} 000085 \mathrm{H} \\ \text { to } \\ 00008 \mathbf{n}_{\mathrm{H}} \end{gathered}$	Reserved area				
000088н	IBSR	Bus status register	R	$1^{2} \mathrm{C}$	00000000 B
000089н	IBCR	Bus control register	R/W		00000000 B
00008Ан	ICCR	Clock control register	R/W		--0 ${ }^{-1 \times X X X X}$
00008Вн	IADR	Address register	R/W		
00008Cн	IDAR	Data register	R/W		XXXXXXXX
$\begin{aligned} & 00008 \mathrm{DH}, \\ & 00008 \mathrm{E} \end{aligned}$	Reserved area				
$\begin{gathered} 00008 \mathrm{FH}_{\mathrm{H}} \\ \text { to } \\ 00009 \mathrm{BH} \end{gathered}$	Disabled				
00009Сн	DSRL	$\mu \mathrm{DMAC}$ status register	R/W	μ DMAC	00000000 B
00009Dн	DSRH	μ DMAC status register	R/W	μ DMAC	00000000 B
00009Ен	PACSR	Program address detection control status resister	R/W	Address match detection function	00000000 в
00009Fн	DIRR	Dilayed interrupt source generator/ cancel register	R/W	Delayed interruput generator module	------ Ов

MB90980 Series

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
0000AOH	LPMCR	Low-power consumption mode control register	W, R/W	Low-power operation	00011000 в
0000A1н	CKSCR	Clock select register	R, R/W	Low-power operation	11111100 в
$\begin{aligned} & \text { 0000А2н } \\ & \text { to } \\ & 0000 \mathrm{~A} 7 \mathrm{H} \end{aligned}$	Reserved area				
0000A8н	WDTC	Watchdog timer control register	R, W	Watchdog timer	XXXXX 1118
0000А9н	TBTC	Timebase timer control register	W, R/W	Timebase timer	$1 \times \times 001008$
0000ААн	WTC	Watch timer control register	R, R/W	Watch timer	10001000 в
0000АВн	Reserved area				
0000ACH	DERL	$\mu \mathrm{DMAC}$ enable register	R/W	$\mu \mathrm{DMAC}$	00000000 в
0000AD ${ }_{\text {н }}$	DERH	μ DMAC enable register	R/W	μ DMAC	00000000 B
0000АЕн	FMCS	Flash memory control status register	W, R/W	Flash memory I/F	000×00008
0000AFн	Disabled				
0000B0н	ICR00	Interrupt control register 00	W, R/W	Interrupt controller	00000111^{1}
0000B1н	ICR01	Interrupt control register 01	W, R/W		$00000111^{\text {B }}$
0000B2н	ICR02	Interrupt control register 02	W, R/W		00000111^{8}
0000В3н	ICR03	Interrupt control register 03	W, R/W		00000111^{8}
0000B4H	ICR04	Interrupt control register 04	W, R/W		00000111^{8}
0000B5	ICR05	Interrupt control register 05	W, R/W		00000111^{8}
0000В6н	ICR06	Interrupt control register 06	W, R/W		$00000111^{\text {b }}$
0000B7н	ICR07	interrupt control register 07	W, R/W		$00000111^{\text {b }}$
0000В84	ICR08	Interrupt control register 08	W, R/W		00000111 B
	ICR09	Interrupt control register 09	W, R/W		00000111^{1}
0000ВАн	ICR10	Interrupt control register 10	W, R/W		$00000111^{\text {B }}$
0000ВВн	ICR11	Interrupt control register 11	W, R/W		$00000111^{\text {B }}$
0000 BCH	ICR12	Interrupt control register 12	W, R/W		$00000111^{\text {B }}$
0000 BD н	ICR13	Interrupt control register 13	W, R/W		$00000111^{\text {B }}$
0000ВЕн	ICR14	Interrupt control register 14	W, R/W		$00000111^{\text {B }}$
0000BFн	ICR15	Interrupt control register 15	W, R/W		$00000111^{\text {B }}$
$\begin{array}{\|c\|} \hline 0000 \mathrm{COH} \\ \text { to } \\ 0000 \mathrm{C} 9_{\mathrm{H}} \end{array}$	Reserved area				
0000 CAH	TMCSR	Timer control status register	R/W	16-bit reload timer	00000000 B
0000 CB н					---0000в
0000СС ${ }^{\text {¢ }}$	TMR/TMRLR	16-bit timer register/ 16-bit reload register	R/W		XXXXXXXXв
0000СС ${ }^{\text {¢ }}$					
0000СЕн	Reserved area				

(Continued)

MB90980 Series

(Continued)

Address	Abbreviated register name	Register name	R/W	Resource name	Initial value
0000CFH	PLLOS	PLL output select register	W	Low-power operation	-----0 Ов
$\begin{aligned} & \text { 0000DOH } \\ & \text { to } \\ & 0000 \mathrm{FF}_{\mathrm{H}} \end{aligned}$	External area				
$\begin{gathered} 000100 \mathrm{H} \\ \text { to } \\ 00000 \# \mathrm{H} \end{gathered}$	RAM area				
001FFOH	PADR0	Program address detection resister 0 (Low order address)	R/W	Address match detection function	XXXXXXXX
001FF1н		Program address detection resister 0 (Middle order address)			
001FF2н		Program address detection resister 0 (High order address)			
001FF3н	PADR1	Program address detection resister 1 (Low order address)	R/W	Address match detection function	XXXXXXXX
001FF4н		Program address detection resister 1 (Middle order address)			
001FF5 ${ }_{\text {H }}$		$\begin{array}{l}\text { Program address detection resister } 1 \\ \text { (High order address) }\end{array}$			

Notes : • Descriptions for R/W
R/W : Enabled to read and write
R : Read only
W : Write only

- Descriptions for initial value

0 : The initila value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.

- : This bit is not used.

MB90980 Series

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	Clear of El2OS	μ DMAC cnannel number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
Reset	\times	-	\#08	FFFFDC ${ }_{\text {H }}$	-	-
INT9 instruction	\times	-	\#09	FFFFD8н	-	-
Exception	\times	-	\#10	FFFFD4н	-	-
INT0 (IRQ0)	\bigcirc	0	\#11	FFFFD0н	ICR00	0000B0н
INT1 (IRQ1)	\bigcirc	\times	\#12	FFFFCCH		
INT2 (IRQ2)	\bigcirc	\times	\#13	FFFFC8H	ICR01	0000B1н
INT3 (IRQ3)	\bigcirc	\times	\#14	FFFFC4н		
INT4 (IRQ4)	\bigcirc	\times	\#15	FFFFC0н	ICR02	0000ВВн
INT5 (IRQ5)	\bigcirc	\times	\#16	FFFFBC ${ }_{\text {н }}$		
INT6 (IRQ6)	\bigcirc	\times	\#17	FFFFB8	ICR03	0000B3н
INT7 (IRQ7)	\bigcirc	\times	\#18	FFFFB4		
PWC1	\bigcirc	\times	\#19	FFFFB0н	ICR04	0000B4н
-	-	-	\#20	FFFFACH		
PWC0	\bigcirc	1	\#21	FFFFA8H	ICR05	0000B5
PPG0/PPG1 counter borrow	\times	2	\#22	FFFFA4		
PPG2/PPG3 counter borrow	\times	3	\#23	FFFFA0н	ICR06	0000B6н
-	-	-	\#24	FFFF9C ${ }_{\text {н }}$		
8/16-bit up/down counter/ timer (ch.0, ch.1) compare/ underflow/overflow/inversion	\bigcirc	\times	\#25	FFFF98 ${ }_{\text {н }}$	ICR07	0000B7 ${ }^{\text {H }}$
Input capture (ch.0) load	\bigcirc	5	\#26	FFFF94		
Input capture (ch.1) load	\bigcirc	6	\#27	FFFF90н	ICR08	0000B8н
Output compare (ch.0) match	\bigcirc	8	\#28	FFFF8C ${ }_{\text {н }}$		
Output compare (ch.1) match	\bigcirc	9	\#29	FFFF88н	ICR09	0000B9н
Output compare (ch.2) match	\bigcirc	10	\#30	FFFF84н		
Output compare (ch.3) match	\bigcirc	\times	\#31	FFFF80н	ICR10	0000ВАн
-	-	-	\#32	FFFF7C		
-	-	-	\#33	FFFF78н	ICR11	0000ВВ ${ }_{\text {н }}$
UART sending completed	\bigcirc	11	\#34	FFFF74		
16-bit free run timer overflow, 16-bit reload timer underflow*2	\bigcirc	12	\#35	FFFF70н	ICR12	0000BCH
UART receiving compleated	(0)	7	\#36	FFFF6C ${ }_{\text {н }}$		
SIO1 (ch.0)	\bigcirc	13	\#37	FFFF68н	ICR13	0000BD ${ }_{\text {н }}$
SIO2 (ch.1)	\bigcirc	14	\#38	FFFF64 ${ }_{\text {н }}$		

(Continued)

MB90980 Series

(Continued)

Interrupt source	Clear of El2OS	μ DMAC channel number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
${ }^{12} \mathrm{C}$ interface	\times	\times	\#39	FFFF60н	ICR14	0000BEн
8/10-bit A/D converter	\bigcirc	15	\#40	FFFF5CH		
Flash write/erase, timebase timer, watch timer *1	\times	\times	\#41	FFFF58	ICR15	0000BFн
Delay interrupt generator module	\times	\times	\#42	FFFF54		

\times : Interrupt request flag is not cleared by the interrupt clear signal.
O : Interrupt request flag is cleared by the interrupt clear signal.
© : Interrupt request flag is cleared by the interrupt clear signal (stop request present).
*1: Caution : The Flash write/erase, timebase timer, and watch timer cannot be used at the same time.
*2: When the 16-bit reload timer underflow interrupt is changed from enable (TMCSR : INTE = 1) to disable (TMCSR : INTE = 0), disable the interrupt in the interrupt control register (ICR12 : IL2 to IL0 : 1118) , then set the INTE bit to 0 .

Note: If there are two interrupt sources for the same interrupt number, the interrupt request flags of both resources are cleared by the $\mathrm{EI}^{2} \mathrm{OS} / \mu \mathrm{DMAC}$. Therefore if either of the two sources uses the $\mathrm{El}^{2} \mathrm{OS} / \mu \mathrm{DMAC}$ function, the other interrupt function cannot be used. The interrupt request enable bit for the resource that does not use the $\mathrm{El}^{2} \mathrm{OS} / \mu \mathrm{DMAC}$ function should be set to " 0 " and the interrupt function should be handled by software polling.

MB90980 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc3	Vss - 0.3	Vss +4.0	V	
	Vcc5	Vss - 0.3	Vss +7.0	V	
	AVcc	Vss - 0.3	Vss +4.0	V	*2
	AVRH	Vss - 0.3	$\mathrm{Vss}+4.0$	V	
Input voltage*1	V	Vss - 0.3	$\mathrm{Vss}+4.0$	V	*3
		Vss - 0.3	Vss +7.0	V	*3, *8, *9
Output volatage*1	Vo	Vss - 0.3	$\mathrm{Vss}+4.0$	V	*3
		Vss-0.3	Vss + 7.0	V	*3, *8, *9
Maximum clamp current	Iclamp	-2.0	+2.0	mA	*7
Total maximum clamp current	$\Sigma \mid$ Iclamp \mid	-	20	mA	*7
"L" level maximum output current	lol	-	10	mA	*4
"L" level average output current	lolav	-	3	mA	*5
"L" level maximum total output current	Elob	-	60	mA	
"L" level total average output current	Σ lolav	-	30	mA	*6
"H" level maximum output current	Іон	-	-10	mA	* 4
"H" level average output current	lohav	-	-3	mA	*5
"H" level maximum total output current	Σ loh	-	-60	mA	
"H" level total average output current	Σ lohav	-	-30	mA	*6
Power consumption	PD	-	320	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

${ }^{* 1}$: This parameter is based on $\mathrm{V} s \mathrm{ss}=\mathrm{AV} s \mathrm{~s}=0.0 \mathrm{~V}$.
*2 : AVcc and AVRH must not exceed Vcc. Also, AVRH must not exceed AVcc.
${ }^{*} 3$: V_{1} and V_{0} must not exceed $\mathrm{V}_{\mathrm{c}}+0.3 \mathrm{~V}$. However, if the maximum current to/from input is limited by some means with external components, the Iclamp rating supersedes the V_{1} rating.
*4 : Maximum output current is defined as the peak value for one of the corresponding pins.
*5 : Average output current is defined as the average current flow in a 100 ms interval at one of the corresponding pins.
*6 : Average total output current is defined as the average current flow in a 100 ms interval at all corresponding pins.
*7 : • Applicable to pins : P24 to P27, P30 to P37, P40 to P42, P60 to P67, P70 to P74, P76, P77, P80 to P87, P90 to P93, P96, P97, PA0 to PA3

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

MB90980 Series

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a $+B$ signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:
- Input/Output Equivalent circuits

*8 : P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76, P77 pins can be used as 5 V I/F pin on applied 5 V to $\mathrm{Vcc}^{\mathrm{p}} \mathrm{pin}$.
P 76 and P 77 is N -ch open drain pin.
*9: As for P 76 and P 77 (N -ch open drain pin), even if using at 3 V simplicity $(\mathrm{V} c \mathrm{c} 3=\mathrm{V} c \mathrm{c} 5$), the ratings are applied.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90980 Series

2. Recommended Operating Conditions

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Supply voltage	Vcc3	2.7	3.6	V	During normal operation
		1.8	3.6	V	To maintain RAM state in stop mode
	Vcc5	2.7	5.5	V	During normal operation*
		1.8	5.5	V	To maintain RAM state in stop mode*
"H" level input voltage	V ${ }_{\text {H }}$	0.7 Vcc	$\mathrm{V} \mathrm{cc}+0.3$	V	All pins other than $\mathrm{V}_{\text {Іна }}$, $\mathrm{V}_{\text {ннs }}$, $\mathrm{V}_{\text {ннм }}$ and VIHX
	V_{1+2}	0.7 Vcc	Vss +5.8	V	P76, P77 pins (N-ch open drain pins)
	VIHs	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	Hysteresis input pins
	Vıн	V cc -0.3	V cc +0.3	V	MD pin input
	Vihx	0.8 Vcc	V cc +0.3	V	X0A pin, X1A pin
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	All pins other than Vııs, Vıı and $\mathrm{V}_{\text {IHX }}$
	VILs	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
	VILM	Vss - 0.3	Vss +0.3	V	MD pin input
	VILx	Vss -0.3	0.1	V	X0A pin, X1A pin
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: P24 to P27, P30 to P37, P40 to P42, P70 to P74, P76, P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90980 Series

3. DC Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}, \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$	Vcc3-0.3	-	-	V	
			$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc5-0.5	-	-	V	At using 5 V power supply
"L" level output voltage	Vol	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}, \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	At using 5 V power supply
Input leakage current	IIL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	+10	$\mu \mathrm{A}$	
Pull-up resistance	Rpulı	-	$\begin{aligned} & V_{C C}=3.0 \mathrm{~V}, \\ & \text { at } T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	20	53	200	k Ω	
Open drain output current	lieak	P40 to P42, P70 to P74, P76, P77	-	-	0.1	10	$\mu \mathrm{A}$	
Power supply current	Icc	-	At $\mathrm{Vcc}=3.3 \mathrm{~V}$, internal 25 MHz operation, normal operation	-	45	60	mA	
			At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$, internal 25 MHz operation, Flash programming	-	55	70	mA	
	Iccs	-	At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$, internal 25 MHz operation, sleep mode	-	17	35	mA	
	Iccl	-	At $\mathrm{Vcc}=3.3 \mathrm{~V}$, external 32 kHz , internal 8 kHz operation, sub clock operation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	-	15	140	$\mu \mathrm{A}$	
	Ісст	-	At $\mathrm{Vcc}=3.3 \mathrm{~V}$, external 32 kHz , internal 8 kHz operation, watch mode ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	-	1.8	40	$\mu \mathrm{A}$	
	Ісch	-	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \text { stop mode, } \\ & \text { at } \mathrm{V} \mathrm{cc}=3.3^{\mathrm{V}} \end{aligned}$	-	0.8	40	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{A} \mathrm{V}_{\mathrm{cc}}, \mathrm{A} \mathrm{V}_{\mathrm{ss}}$, Vcc, Vss	-	-	5	15	pF	

Notes: - Pins P40 to P42, P70 to P74, P76, and P77 are N-ch open drain pins with control, which are usually used as CMOS.

- P76 and P77 are open drain pins without P-ch.
- For use as a single 3 V power supply products, set $\mathrm{V}_{c \mathrm{c}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$.
- When the device is used with dual power supplies, P24 to P27, P30 to P37, P40 to P42, P70 to P74, P 76 and P 77 serve as 5 V pins while the other pins serve as $3 \mathrm{VI} / \mathrm{O}$ pins.

MB90980 Series

4. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{V} \text { ss }=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	$\mathrm{Fch}_{\text {ch }}$	X0, X1	-	3	-	25	MHz	External crystal oscillator
			-	3	-	50		External clock input
			-	4	-	25		1 multiplied PLL
			-	3	-	12.5		2 multiplied PLL
			-	3	-	6.66		3 multiplied PLL
			-	3	-	6.25		4 multiplied PLL
			-	3	-	4.16		6 multiplied PLL
			-	3	-	3.12		8 multiplied PLL
	FcL	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	tc	$\mathrm{X0} 0 \mathrm{X1}$	-	20	-	333	ns	*1
	tcı	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \text { Pww } \\ & \text { P } \end{aligned}$	X0	-	5	-	-	ns	
	Pwlh Pwlı	X0A	-	-	15.2	-	$\mu \mathrm{s}$	*2
Input clock rise, fall time	$\begin{aligned} & \hline \text { tor } \\ & \text { tof } \end{aligned}$	X0	-	-	-	5	ns	With external clock
Internal operating clock frequency	fcp	-	-	1.5	-	25	MHz	*1
	fcpL	-	-	-	8.192	-	kHz	
Internal operating clock cycle time	tcp	-	-	40.0	-	666	ns	*1
	tcpL	-	-	-	122.1	-	$\mu \mathrm{s}$	

*1: Be careful of the operating voltage.
*2 : Duty raito should be $50 \% \pm 3 \%$.

MB90980 Series

- X0, X1 clock timing

- X0A, X1A clock timing

MB90980 Series

- Range of warranted PLL operation

Notes: - Only at 1 multiplied PLL, use with more than $\mathrm{fcP}=4 \mathrm{MHz}$.

- For A/D operating frequency, refer to " 5 . A/D Converter Electrical Characteristics".

*1: In setting as 1, 2, 3 and 4 multiplied PLL, when the internal clock is used at $20 \mathrm{MHz}<\mathrm{fcp} \leq 25 \mathrm{MHz}$, set the PLLOS register to "DIV2 bit $=1$ " and "PLL2 bit $=1$ ".
[Example] When using the base oscillator frequency of 24 MHz at 1 multiplied PLL:
CKSCR register : CS1 bit = " 0 ", CS0 bit = " 0 " PLLOS register : DIV2 bit = " 1 ", PLL2 bit = " 1 "
[Example] When using the base oscillator frequency of 6 MHz at 3 multiplied PLL:
CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register : DIV2 bit = "1", PLL2 bit = "1"
*2 : In setting as 2 and 4 multiplied PLL, when the internal clock is used at $20 \mathrm{MHz}<\mathrm{fcp} \leq 25 \mathrm{MHz}$, the following setting is also enabled.
2 multiplied PLL: CKSCR register: CS1 bit = " 0 ", CS0 bit = " 0 "
PLLOS register : DIV2 bit = " 0 ", PLL2 bit = " 1 "
4 multiplied PLL: CKSCR register: CS1 bit = " 0 ", CS0 bit = " 1 "
PLLOS register : DIV2 bit = " 0 ", PLL2 bit $=$ " $1 "$
*3: When using in setting as 6 and 8 multiplied PLL, set the PLLOS register to "DIV2 bit = 0 " and "PLL2 bit = 1 ".
[Example] When using the base oscillator frequency of 4 MHz at 6 multiplied PLL:
CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register : DIV2 bit = "0", PLL2 bit = "1"
[Example] When using the base oscillator frequency of 3 MHz at 8 multiplied PLL:
CKSCR register : CS1 bit = "1", CS0 bit ="1" PLLOS register : DIV2 bit = "0", PLL2 bit = " 1 "

MB90980 Series

AC standards are set at the following measurement voltage values.

- Input signal waveform

Hysteresis input pins

- Output signal waveform

Output pins

- Pins other than hysteresis input/MD input
0.7 Vcc
0.3 Vcc

MB90980 Series

(2) Reset Input Standards

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Conditions	Value		Unit	Remarks
				Min	Max		
				16 tcp*1	-	ns	Normal operation
Reset input time	trsti	$\overline{\mathrm{RST}}$	-	$\begin{gathered} \text { Oscillator oscillation time*2 } \\ +4 \text { tcp }^{* 1} \end{gathered}$	-	ms	Stop mode

*1: tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".
*2 : Oscillator oscillation time is the time to 90% of amplitude. For a crystal oscillator this is on the order of several milliseconds to tens of milliseconds. For a FAR/ceramic oscillator, this is several hundred microseconds to several milliseconds. For an external clock signal the value is 0 ms .

- In stop mode

MB90980 Series

(3) Power-on Reset Standards

Parameter					3.6 V,	0.0	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Power rise time	tR	Vcc	-	-	30	ms	*
Power down time	toff	Vcc		1	-	ms	In repeated operation

*: Power rise time requires $\mathrm{V} c \mathrm{c}<0.2 \mathrm{~V}$.
Notes: - The above standards are for the application of a power-on reset.

- Within the device, the power-on reset should be applied by switching the power supply off and on again.

MB90980 Series

(4) UART Timing
($\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	-	Internal shift clock mode output pins : $\mathrm{CL}^{\star 1}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*2 *	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-80	+80	ns	
				-120	+120	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		100	-	ns	
				200	-	ns	$\mathrm{fcP}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		tcp*2	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pins : $\mathrm{CL}^{\star{ }^{\star 1}}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp*2	-	ns	
Serial clock "L" pulse width	tsısH	-		4 tcp $^{* 2}$	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-	150	ns	
				-	200	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
				120	-	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	
				120	-	ns	$\mathrm{fcP}=8 \mathrm{MHz}$

*1 : CL is the load capacitance applied to pins for testing.
*2 : top is internal operating clock cycle time. Refer to " (1) Clock Timing".
Note : AC ratings are for CLK synchronized mode.

MB90980 Series

- Internal shift clock mode

- External shift clock mode

SCK

MB90980 Series

(5) Extended I/O Serial Interface Timing
$\left(\mathrm{V} \mathrm{Vc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	-	Internal shift clock mode output pins : $\mathrm{CL}^{\star 1}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*2	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-80	+ 80	ns	
				-120	+ 120	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivs	-		100	-	ns	
				200	-	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tsmix	-		tcp*2	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pins : $\mathrm{C}^{\star 1}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp $^{* 2}$	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcp $^{* 2}$	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-	150	ns	
				-	200	ns	$\mathrm{fcp}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
				120	-	ns	$\mathrm{fCP}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	
				120	-	ns	$\mathrm{fCP}=8 \mathrm{MHz}$

*1: C_{L} is the load capacitance applied to pins for testing.
*2 : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".
Notes : • AC ratings are for CLK synchronized mode.

- Values on this table are target values.

MB90980 Series

- Internal shift clock mode

- External shift clock mode

MB90980 Series

(6) Timer Input Timing

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	tтiwn ttww	$\begin{gathered} \hline \text { TIN0, } \\ \text { INO, IN1, } \\ \text { PWCO, PWC1 } \end{gathered}$	-	4 tcp*	-	ns	

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

TINO
IN0, IN1
PWC0, PWC1

(7) Timer Output Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V, V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	$\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
CLK $\uparrow \rightarrow$ Tout change time PPG0 to PPG3 change time OUT0 to OUT3 change time	too	TOTO, PPG0 to PPG3, OUT0 to OUT3	Load conditions 80 pF	30	-	ns	

MB90980 Series

(8) $I^{2} C$ Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Standard-mode		Unit
			Min	Max	
SCL clock frequency	fscl	When power supply voltage of external pull-up resistance is 5.5 V $R=1.3 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{\star 2}$ When power supply voltage of external pull-up resistance is 3.6 V $R=1.6 \mathrm{k} \Omega, C=50 \mathrm{pF}^{\star 2}$	0	100	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	$\mu \mathrm{s}$
"L" width of the SCL clock	tow		4.7	-	$\mu \mathrm{s}$
"H" width of the SCL clock	thigh		4.0	-	$\mu \mathrm{s}$
Set-up time (repeated) START condition SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdoat		0	$3.45{ }^{* 3}$	$\mu \mathrm{s}$
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat	When power supply voltage of external pull-up resistance is 5.5 V $\mathrm{fcp}^{* 1} \leq 20 \mathrm{MHz}, \mathrm{R}=1.3 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{* 2}$ When power supply voltage of external pull-up resistance is 3.6 V $\mathrm{fcp}^{* 1} \leq 20 \mathrm{MHz}, \mathrm{R}=1.6 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{\star 2}$	250	-	ns
		When power supply voltage of external pull-up resistance is 5.5 V $\mathrm{fcp}^{* 1}>20 \mathrm{MHz}, \mathrm{R}=1.3 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{* 2}$ When power supply voltage of external pull-up resistance is 3.6 V $\mathrm{fcp}^{* 1}>20 \mathrm{MHz}, \mathrm{R}=1.6 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{* 2}$	200	-	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto	When power supply voltage of external pull-up resistance is 5.5 V $\mathrm{R}=1.3 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{\star 2}$ When power supply voltage of external pull-up resistance is 3.6 V $R=1.6 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{pF}^{* 2}$	4.0	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	tbus		4.7	-	$\mu \mathrm{s}$

*1: fcp is internal operation clock frequency. Refer to " (1) Clock Timing".
*2 : R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*3: The maximum thddat only has to be met if the device does not stretch the "L" width (tlow) of the SCL signal.
Note : Vcc $=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90980 Series

(9) Trigger Input Timing
($\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	tтвgн, ttral	ADTG IRQ0 to IRQ7	-	5 tcp*	-	ns	Normal operation
				1	-	$\mu \mathrm{S}$	Stop mode

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

(10) Up-down Counter Timing
$\left(\mathrm{V} c \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
AIN input "H" pulse width	tahl	AINO, AIN1, BINO, BIN1	Load conditions 80 pF	8 tcp*	-	ns	
AIN input "L" pulse width	tall			8 tcp*	-	ns	
BIN input "H" pulse width	tвнL			8 tcp*	-	ns	
BIN input "L" pulse width	tвLL			8 tcp*	-	ns	
$\mathrm{AIN} \uparrow \rightarrow \mathrm{BIN} \uparrow$ rise time	taubu			4 tcp*	-	ns	
BIN $\uparrow \rightarrow$ AIN \downarrow fall time	tsuad			4 tcp*	-	ns	
AIN $\downarrow \rightarrow$ BIN \uparrow rise time	tadbd			4 tcp*	-	ns	
BIN $\downarrow \rightarrow$ AIN \uparrow rise time	tbdau			4 tcp*	-	ns	
$\operatorname{BIN} \uparrow \rightarrow \mathrm{AIN} \uparrow$ rise time	teuau			4 tcp*	-	ns	
AIN $\uparrow \rightarrow \mathrm{BIN} \downarrow$ fall time	taubd			4 tcp*	-	ns	
BIN $\downarrow \rightarrow$ AIN \uparrow rise time	tbdad			4 tcp*	-	ns	
AIN $\downarrow \rightarrow$ BIN \uparrow rise time	tadbu			4 tcp*	-	ns	
ZIN input "H" pulse width	tzhL	ZIN0, ZIN1		4 tcp*	-	ns	
ZIN input "L" pulse width	tzul			4 tcp*	-	ns	

*: top is internal operating clock cycle time. Refer to " (1) Clock Timing".

MB90980 Series

MB90980 Series

5. A/D Converter Electrical Characteristics

$$
\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vss}=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVRH}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Non-linear error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	$\begin{aligned} & \hline \mathrm{AV}_{\mathrm{ss}}- \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{gathered} \hline \mathrm{AV}_{\mathrm{ss}}+ \\ 0.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \hline \mathrm{AV} \text { ss }+ \\ 2.5 \mathrm{LSB} \end{gathered}$	mV	
Full scale transition voltage	Vfst	$\begin{aligned} & \text { AN0 to } \\ & \text { AN7 } \end{aligned}$	$\begin{aligned} & \hline \text { AVRH - } \\ & \text { 3.5 LSB } \end{aligned}$	$\begin{aligned} & \hline \text { AVRH - } \\ & \text { 1.5 LSB } \end{aligned}$	$\begin{aligned} & \hline \text { AVRH + } \\ & 0.5 \text { LSB } \end{aligned}$	mV	
Conversion time	-	-	3.68 *1	-	-	$\mu \mathrm{s}$	
Analog port input current	Iain	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$	
Analog input voltage	$V_{\text {AIN }}$	$\begin{aligned} & \text { ANO to } \\ & \text { AN7 } \end{aligned}$	AVss	-	AVRH	V	
Reference voltage	-	AVRH	AVss +2.2	-	AVcc	V	
Power supply current	I_{A}	AV ${ }_{\text {cc }}$	-	1.4	3.5	mA	
	IAH	AV ${ }_{\text {cc }}$	-	-	5 *2	$\mu \mathrm{A}$	
Reference voltage supply current	IR	AVRH	-	94	150	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	5 *2	$\mu \mathrm{A}$	
Offset between channels	-	$\begin{aligned} & \text { ANO to } \\ & \text { AN7 } \end{aligned}$	-	-	4	LSB	

*1 : At machine clock frequency of 25 MHz .
*2 : CPU stop mode current when A / D converter is not operating (at $\mathrm{V} c \mathrm{c}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.0 \mathrm{~V}$).

MB90980 Series

- About the external impedance of the analog input and its sampling time

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

Analog input

MB90982
MB90F983
$2.5 \mathrm{k} \Omega$ (Max) 31.0 pF (Max)
$1.9 \mathrm{k} \Omega$ (Max) $\quad 25.0 \mathrm{pF}$ (Max)

Note: The values are reference values.

- To satisfy the A / D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between external impedance and minimum sampling time

$$
\text { (External impedance }=0 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega) \quad \text { (External impedance }=0 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega)
$$

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- About errors

As |AVRH - AVss| becomes smaller, values of relative errors grow larger.

Note : Concerning sampling time, and compare time

When $3.6 \mathrm{~V} \geq \mathrm{AVcc} \geq 2.7 \mathrm{~V}$, then
Sampling time : $1.92 \mu \mathrm{~s}$, compare time : $1.1 \mu \mathrm{~s}$
Settings should ensure that actual values do not go below these values due to operating frequency changes.

MB90980 Series

- Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes 00 н programming prior erasure
Chip erase time		-	7	-	s	Excludes 00 н programming prior erasure
Word (16-bit) programming time		-	16	3600	$\mu \mathrm{S}$	Excludes system-level overhead
Program/Erase cycle	-	10000	-	-	cycle	
Flash Memory Data hold time	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	10	-	-	year	*

* : The value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).
- Use of the $\mathrm{X} 0 / \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins

When used with a crystal oscillator

n normal use :
Internal damping resistance 1 : Typ $600 \mathrm{k} \Omega$ Consult with the oscillator manufacturer.
Pull-up resistance 1,
Damping resistance 1, 2, C1 to C4

- Sample use with external clock input

MB90980 Series

■ ORDERING INFORMATION

Model	Package	Remarks
MB90F983 MB90982	64-pin plastic LQFP	

MB90980 Series

PACKAGE DIMENSIONS

64-pin plastic LQFP	Lead pitch	0.50 mm
	Package width \times package length	$10.0 \times 10.0 \mathrm{~mm}$
	Lead shape	Sullwing
Sealing method	Plastic mold	

MB90980 Series

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: Refer to "■ I/O CIRCUIT TYPES" for I/O circuit types.

