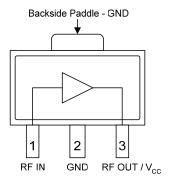


Applications

- · Wireless Infrastructure
- CATV / SATV / MoCA
- Point to Point
- Defense & Aerospace
- Test & Measurement Equipment
- · General Purpose Wireless


Product Features

- DC 6 GHz
- +18 dBm P1dB at 1 GHz
- +34 dBm OIP3 at 1 GHz
- 20.5 dB Gain at 1 GHz
- 3.4 dB Noise Figure
- Available in Lead-free / SOT-89 Package Style
- Internally matched to 50 Ω

SOT-89 Package Style

Functional Block Diagram

General Description

The ECG055B-G is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz, the ECG055B-G typically provides 20.5 dB of gain, +34 dBm Output IP3, and +18 dBm P1dB.

The ECG055B-G consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in low-cost, surface-mountable plastic lead-free/RoHS-compliant SOT-89 packages. A SOT-86 version is also available as the ECG055C. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG055B-G will work for other various applications within the DC to 6 GHz frequency range such as CATV and mobile wireless.

Pin Configuration

Pin No.	Label
1	RF IN
2	GND
3	RF OUT/Vcc
Backside Paddle	GND

Ordering Information

Part No.	Description
ECG055B-G	InGaP HBT Gain Block

Standard T/R size = 1000 pieces on a 7" reel

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−65 to 150 °C
RF Input Power (Continuous)	+12 dBm
Device Current	150 mA

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
TCASE	-40		+85	°C
Junction Temperature			+160	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

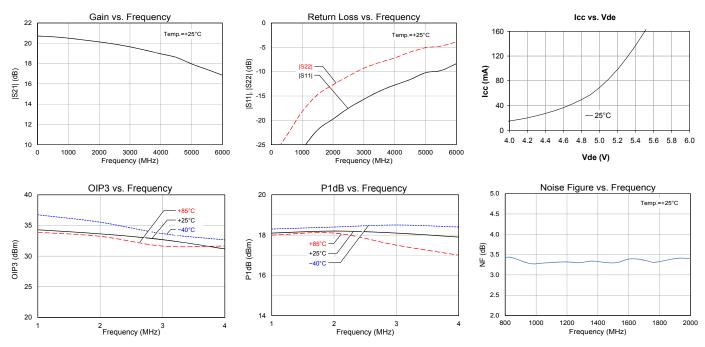
Test conditions unless otherwise noted: $V_{SUPPLY} = +6 \text{ V}$, $R_{BIAS} = 18 \Omega$, $T_{SUPPLY} = +25 ^{\circ} C$, 50 Ω System

Parameter	Conditions	Min	Тур	Max	Units
Operational Bandwidth		DC		6000	MHz
Gain	5 4000 MU		20.5		dB
Output P1dB	Freq.=1000 MHz Pout=+4 dBm / Tone, Δf = 1 MHz		+18		dBm
Output IP3	Tout-14 dBill/ Tolle, Al = TWI12		+34		dBm
Gain		19.3	20.1	21	dB
Input Return Loss			20		dB
Output Return Loss	Freq.=2000 MHz		12.5		dB
Output P1dB	Pout=+4 dBm / Tone, Δf = 1 MHz		+18		dBm
Output IP3		+30	+32		dBm
Noise Figure			3.4	4	dB
Device Voltage		+4.2	+4.8	+5.3	V
Device Current			65		mA
Thermal Resistance			128		°C/W

Typical Device RF Performance (1)

Test conditions unless otherwise noted: V_{SUPPLY} = +6 V, I_{CC} = 65 mA (typ.), R_{BIAS} = 18 Ω , Temp.=+25 °C, 50 Ω System

Parameter		Typical					Units		
Frequency	100	500	900	1900	2140	2400	3500	5800	MHz
Gain	20.7	20.6	20.5	20.1	20.1	19.9	19.3	17.2	dB
Input Return Loss	36	31	26.3	19.7	18.5	17.5	14	8.9	dB
Output Return Loss	27	23	19.1	12.9	12.2	11	8.1	4.1	dB
Output P1dB	+18.2	+18	+18.1	+18.2	+17.8	+17.8	+17.2		dBm
Output IP3 (2)	+33	+33.5	+34.5	+33.5	+32.9	+32			dBm
Noise Figure	3.4	3.6	3.4	3.4	3.4	3.8			dB


Notes:

- 1. Gain and return loss values presented above, and in the plots of the following section, are measured at the device level. Application specific performance values will differ in accordance with external components selected for the desired frequency band of operation. P1dB, OIP3 and NF data is measured using the application circuit shown on page 4.
- 2. Pout= +4 dBm / tone, 1 MHz tone spacing.

Typical Device RF Performance (1)

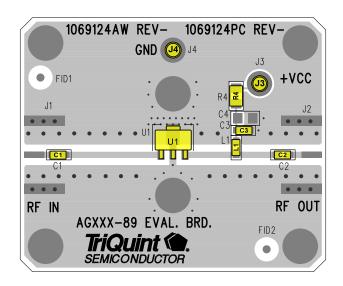
Test conditions unless otherwise noted: $V_{SUPPLY} = +6 \text{ V}$, $I_{CC} = 65 \text{ mA}$ (typ.), $R_{BIAS} = 18 \Omega$, $T_{CC} = +25 \degree C$, $T_{CC} = +2$

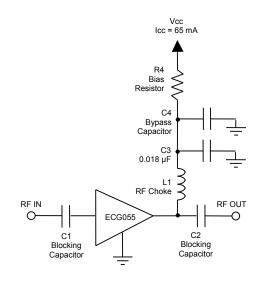
Notes

1. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.

Typical Device S-Parameters

Test Conditions: V_{DEVICE} = +4.8 V, I_{CC} = 65 mA, Temp. = 25 °C, Calibrated to device leads


Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-35.44	-155.39	20.70	178.22	-22.72	0.33	-27.17	-13.13
500	-31.06	-130.40	20.64	160.99	-22.79	-4.72	-23.11	-72.28
1000	-25.99	-134.19	20.51	142.21	-22.57	-10.86	-18.21	-103.46
1500	-21.96	-143.12	20.33	123.40	-22.41	-17.52	-14.71	-126.14
2000	-19.74	-147.93	20.14	104.91	-22.25	-24.67	-12.69	-147.96
2500	-17.50	-165.99	19.92	86.66	-21.53	-31.23	-10.92	-167.56
3000	-15.68	177.82	19.65	68.34	-21.19	-38.23	-9.29	174.99
3500	-14.02	162.84	19.32	49.37	-20.96	-46.84	-8.13	153.30
4000	-12.75	145.85	18.96	30.89	-20.43	-55.87	− 7.17	137.75
4500	-11.62	126.85	18.62	11.81	-20.02	-64.61	-5.98	117.77
5000	-10.22	104.39	17.97	-7.65	-19.54	-74.66	-5.08	96.84
5500	-9.77	89.88	17.42	-25.15	-19.65	-86.77	-4.74	83.19
6000	-8.35	70.44	16.85	-45.49	-19.44	-101.04	-3.88	62.30


Notes:

1. Device S-parameters are available for download off of the website at: www.TriQuint.com

Recommended Application Circuit

Notes:

1. See Evaluation Board PCB Information section for material and stack-up.

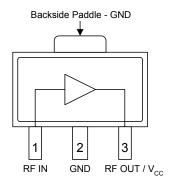
Bill of Material

Reference Des.	Value	Description
L1	39 nH	Wirewound Inductor, 0603
C1, C2	56 pF	Chip Capacitor, 0603
C3	0.018 μF	Chip Capacitor, 0603
C4	Do Not Place	
R4	18 Ω	1% tolerance, 0805

	Recommended	Component	Values
--	-------------	-----------	--------

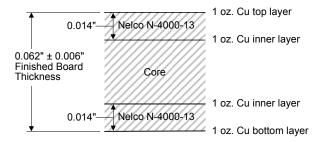
Frequency (MHz)	50	500	900	1900	2200	2500	3500
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH
C1, C2, C3	.018 µF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF

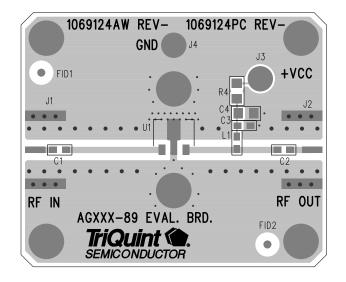
Recommended Bias Resistor Values


V _{SUPPLY} (V)	6	7	8	9	10	12
R4 (Ω)	18.5	33.8	49	65	80	111
Component Size	0805	1210	1210	2010	2010	2512

Notes:

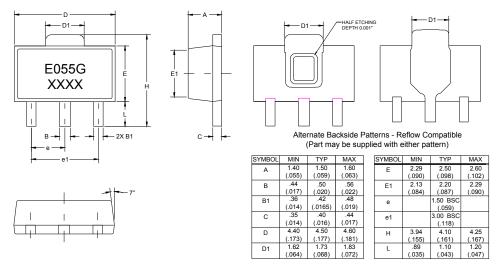
1. The proper value for R4 is dependent upon the supply voltage and allows for bias stability over temperature. TriQuint recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.


Pin Configuration and Description

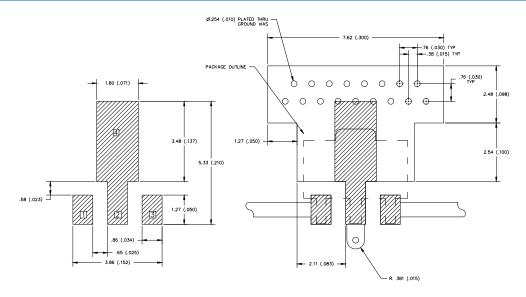

Pin No.	Label	Description
1	RF IN	RF input, matched to 50 ohms. External DC Block is required.
3	RF OUT / Vcc	RF output / DC supply, matched to 50 ohms. External DC Block, bias choke, and dropping resistor is required.
2, Backside Paddle	GND Paddle	RF/DC ground. Use recommended via pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint.

Evaluation Board PCB Information

TriQuint PCB 1069124 Material and Stack-up


50 Ohm Line Dimensions: Width=0.028" Spacing=0.036"

Package Marking and Dimensions


Marking: Part number –E055G Lot code – XXXX

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 4. Contact plating: NiPdAu

PCB Mounting Pattern

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation.
- 4. Do not remove or minimize via hole structure in the PCB. Thermal and RF grounding is critical.
- 5. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 6. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: Class 1A

Value: ≥ 250 V to < 500 V

Test: Human Body Model (HBM)

Standard: ESDA/JEDEC Standard JS-001-2012

MSL Rating

MSL Rating: Level 3

Test: 260 °C convection reflow

Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C maximum reflow temperature) and tin/lead (245 °C maximum reflow temperature) soldering processes.

Contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS FreeSVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

 Web:
 www.triquint.com
 Tel:
 +1.503.615.9000

 Email:
 info-sales@triquint.com
 Fax:
 +1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.