April 30, 2008 Ver 0.0

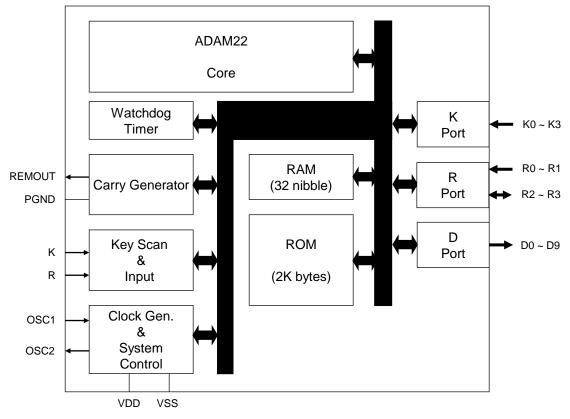
4-BIT SINGLE CHIP MICROCOMPUTERS

ADAM22XXX USER`S MANUAL

- ADAM22C16
- ADAM22P16
- ADAM22C20
- ADAM22P20
- ADAM22C20S
- ADAM22P20S
- ADAM22C23
- ADAM22P23
- ADAM22C24
- ADAM22P24

1. OVERVIEW

The ADAM22XXX is remote control transmitter which uses CMOS technology. The ADAM22XXX is suitable for remote control of TV, VCR, FANS, Air-conditioners, Audio Equipments, Toys, Games etc. The ADAM22CXX is MASK version and the ADAM22PXX is OTP version.


1.1. Features

- Program memory • 2,048 bytes (2,048 x 8bit) Data memory (RAM) • 32 nibble (32 x 4bit) ■ 3 levels of subroutine nesting Operating frequency • 2.4MHz ~ 4MHz Instruction cycle fosc/48 Stop mode Released stop mode by key input Built in Power-on Reset circuit Built in Transistor for I.R LED Drive ● IoL=250mA at VDD=3V and Vo=0.3V Built in Low Voltage reset circuit Built in a watch dog timer (WDT) Low operating voltage
 - 1.2 ~ 3.6V @ ADAM22CXX
 - 1.3 ~ 3.6V @ ADAM22PXX
- 16/20/24 SOP Package.

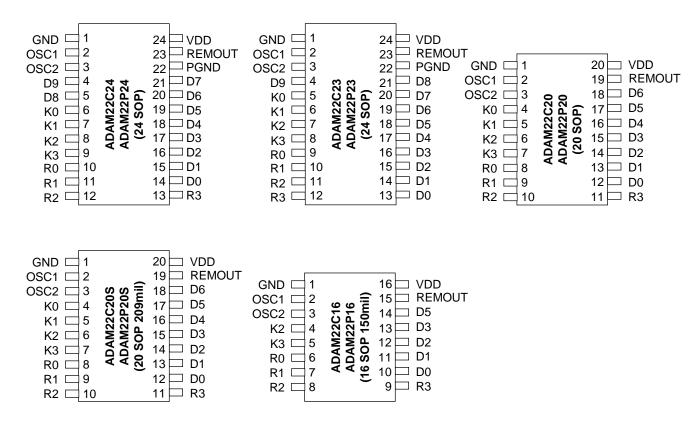
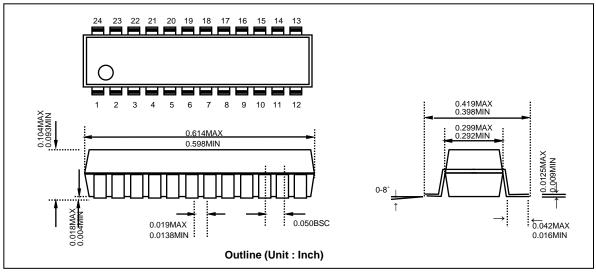
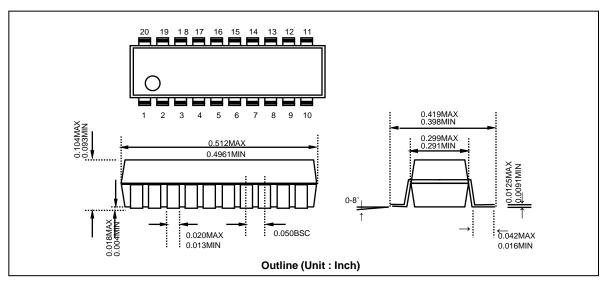
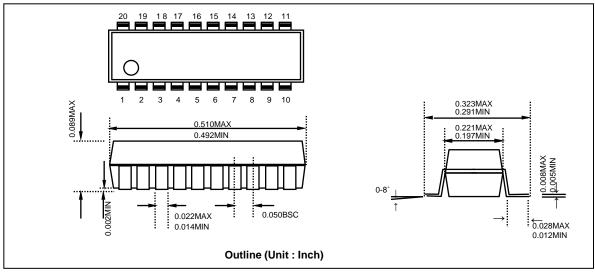
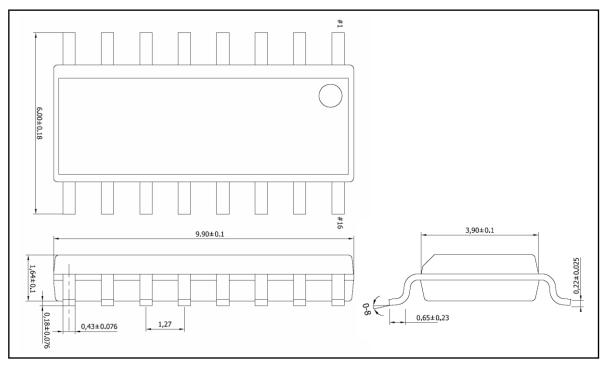

Series	ADAM22C24 ADAM22P24	ADAM22C23 ADAM22P23	ADAM22C20 ADAM22P20	ADAM22C20S ADAM22P20S	ADAM22C16 ADAM22P16
Program memory	2,048 x 8	2,048 x 8	2,048 x 8	2,048 x 8	2,048 x 8
Data memory	32 x 4	32 x 4	32 x 4	32 x 4	32 x 4
Input ports	9	9	9	9	7
Output ports	12	12	9	9	7
Package	24SOP(300mil)	24SOP(300mil)	20SOP(300mil)	20SOP(209mil)	16SOP(150mil)

Table 1.1 ADAM22XXX series members


1.2. Block Diagram


1.3. Pin Assignments (top view)

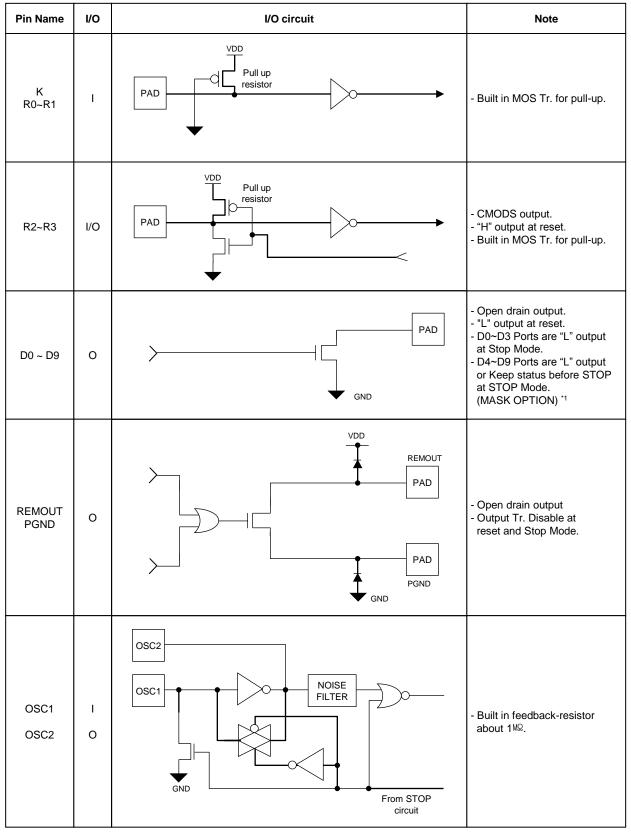

1.4. Package Dimension


24 SOP(300MIL) Pin Dimension (dimensions in inch)

20 SOP(300MIL) Pin Dimension (dimensions in inch)

20 SOP(209MIL) Pin Dimension (dimensions in inch)

16 SOP (150MIL) Pin Dimension (dimensions in millimeters)


1.5. Pin Function

PIN NAME	INPUT OUTPUT	FUNCTION	@RESET	@STOP
K R0~R1	Input	 4-bit input Only Port. CMOS input with pull-up resistor. Each pin has STOP mode release function. (It is released by "L" input at STOP mode.) 	Input (with Pull-up)	Input (with Pull-up)
R2~R3	I/O	 -2-bit I/O Port. (Input mode is set only when each of them output "H") Each pin has STOP mode release function. Output mode is set when each of them Output is "L" When used as "output", each pin can be set and reset independently 	Input	-
D0 ~ D3	Output	- N-ch open drain output.	Low	Low
D4 ~ D9	Output	- Each pin can be set and reset independently.	LOW	Low or keep status before STOP ^{*1}
OSC1	Input	- Oscillator Input.	Oscillation	Low
OSC2	Output	- Oscillator Output.	Oscillation	High
REMOUT	Output	- High Current Pulse Output.	'Hi-Z' output	'Hi-Z' output
PGND	Power	-Ground pin for internal high current N-channel transistor. (connected to GND)	-	-
VDD	Power	- Positive power supply.	-	-
VSS	Power	- Ground	-	-

Note:

*1. This Mask Option is not available in OTP version. In ADAM22PXX, D4~D9 output conditions at STOP Mode is fixed to "Keep status before STOP".

1.6. Pin Circuit

Note:

*1. This Mask Option is not available in OTP version. In ADAM22PXX, D4~D9 output conditions at STOP Mode is fixed to "Keep status before STOP".

1.7. Electrical Characteristics

1.7.1. Absolute Maximum Ratings (Ta = 25° C)

Parameter	Symbol	Max. rating	Unit
Supply Voltage	Vdd	-0.3 ~ 5.0	V
Power dissipation	PD	700 *	mW
Input voltage	Vin	-0.3 ~ Vdd+0.3	V
Output voltage	νουτ	-0.3 ~ Vdd+0.3	V
Storage Temperature	Тѕтс	-65 ~ 150	Ĵ

* Thermal derating above 25 $^\circ\!\!{\rm C}$: 6mW per degree $^\circ\!\!{\rm C}$ rise in temperature.

1.7.2. Recommended operating condition

Parameter		Symbol	Condition	Rating	Unit
Supply	ADAM22CXX	VDD	fosc = 2.4~ 4MHz	1.2 ~ 3.6	V
Voltage	ADAM22PXX	VDD		1.3 ~ 3.6	V
Operating temperature		Topr	-	-20 ~ +70	Ĉ

Baram	otor	Symbol		Limits		Unit	Condition	
Parameter		Symbol	Min.	Тур.	Max.		Condition	
Input H current		Ін	-	-	1	μA	VI=VDD	
Input Pull-up Res	istance	Rpu	70	120	300	kΩ	VI=GND	
OSC Feedback R	esistance	Rfd	0.3	1.0	3.0	MΩ	Vosc1=GND, Vosc2=VDD	
Input H voltage		VIH1	2.1	-	-	V	-	
Input L voltage		VIL1	-	-	0.9	V	-	
D output L voltage	e	Vol1	-	0.15	0.4	V	IOL=3 ^{mA}	
OSC2 output L vo	OSC2 output L voltage		-	0.4	0.9	V	IoL=150#A	
OSC2 output H v	oltage	Vон	2.1	2.5	-	V	Юн=-150⊭А	
REMOUT output	L current	lol	-	250	-	mA	Vol=0.3V	
REMOUT leakage	e current	IOLK1	-	-	1	μA	Vout=Vdd, Output off	
D output leakage	current	Iolk2	-	-	1	μA	Vout=Vdd, Output off	
			-	-	1	μA	At STOP mode, VDD=3.0V	
Current on STOP mode		ISTP	-	-	0.3	μA	At STOP mode, VDD=1.5V	
	ourroot	DD	-	0.7	1.5	mA	fosc = 4MHz, VDD=3.0V	
Operating supply	Operating supply current		-	0.12	0.3	mA	fosc = 4MHz, VDD=1.5V	
System clock frequency	fosc/48	fosc	2.4	-	4	MHz	-	

2. ARCHITECTURE

2.1. Program Memory

The ADAM22XXX can incorporate maximum 2,048 words (2 block \times 16 pages \times 64 words \times 8bits) for program memory. Program counter PC (A0~A5), page address register PA(A6~A9) and Block address register BA(A10) are used to address the whole area of program memory having an instruction (8bits) to be next executed.

The program memory consists of 64 words on each page, and thus each page can hold up to 64 steps of instructions.

The program memory is composed as shown below.

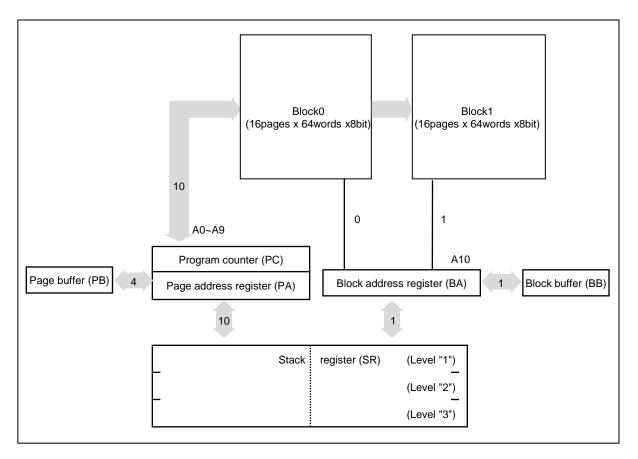


Fig 2-1 Configuration of Program Memory

2.2. Address Register

The following registers are used to address the ROM.

- Block address register (BA) : Holds ROM's Block number (0~1h) to be addressed.
- Block buffer register (BB) : Value of BB is loaded by an SEBB and REBB command when newly addressing a block. Then it is shifted into the BA when rightly executing a branch instruction (BR) and a subroutine call (CAL).
- Page address register (PA) : Holds ROM's page number (0~Fh) to be addressed.
- Page buffer register (PB) : Value of PB is loaded by an LPBI command when newly addressing a page. Then it is shifted into the PA when rightly executing a branch instruction (BR) and a subroutine call (CAL).
- Program counter (PC) : Available for addressing word on each page.
- Stack register (SR) : Stores returned-word address in the subroutine call mode.
- 2.2.1. Block address register and Block buffer register :

Address one of block #0 to #1 in the ROM by the 1-bit register.

Unlike the program counter, the block address register is not changed automatically. To change the block address, take two steps such as

(1) writing in the block buffer what block to jump (execution of SEBB or REBB) and(2) execution of BR or CAL, because instruction code is of eight bits so that block can not be specified at the same time.

In case a return instruction (RTN) is executed within the subroutine that has been called in the other page, the page address will be changed at the same time.

2.2.2. Page address register and page buffer register :

Address one of pages #0 to #15 in the ROM by the 4-bit binary counter. Unlike the program counter, the page address register is usually unchanged so that the program will repeat on the same page unless a page changing command is issued. To change the page address, take two steps such as (1) writing in the page buffer what page to jump (execution of LPBI) and (2) execution of BR or CAL, because instruction code is of eight bits so that page and word can not be specified at the same time.

In case a return instruction (RTN) is executed within the subroutine that has been called in the other page, the page address will be changed at the same time.

2.2.3. Program counter :

This 6-bit binary counter increments for each fetch to address a word in the currently addressed page having an instruction to be next executed. For easier programming, at turning on the power, the program counter is reset to the zero location. The PA is also set to "0". Then the program counter specifies the next address in random sequence. When BR, CAL or RTN instructions are decoded, the switches on each step are turned off net to undet the address.

are turned off not to update the address. Then, for BR or CAL, address data are taken in from the instruction operands (a_0 to a_5), or for RTN, and address is fetched from stack register No. 1.

2.2.4. Stack register :

This stack register provides three stages each for the program counter (6bits), the page address register (4bits) and block address (1bit) so that subroutine nesting can be made on two levels.

2.3. Data Memory (RAM)

Up to 32 nibbles (16 words \times 2pages \times 4bits) is incorporated for storing data. The whole data memory area is indirectly specified by a data pointer (X,Y). Page number is specified by zero bit of X register, and words in the page by 4 bits in Y-register. Data memory is composed in 16 nibbles/page. Figure 2-2 shows the configuration.

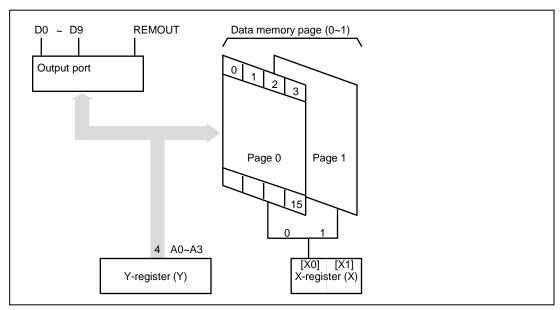


Fig 2-2 Composition of Data Memory

2.4. X-register (X)

X-register is consist of 2bit, X0 is a data pointer of page in the RAM, X1 is only used for selecting of D8 \sim D9 with value of Y-register

	X1 = 0	X1 = 1
Y = 0	D0	D8
Y = 1	D1	D9

Table2-1 Mapping table between X and Y register

2.5. Y-register (Y)

Y-register has 4 bits. It operates as a data pointer or a general-purpose register. Y-register specifies an address $(A_0 \sim A_3)$ in a page of data memory, as well as it is used to specify an output port. Further it is used to specify a mode of carrier signal outputted from the REMOUT port. It can also be treated as a generalpurpose register on a program.

2.6. Accumulator (A_{cc})

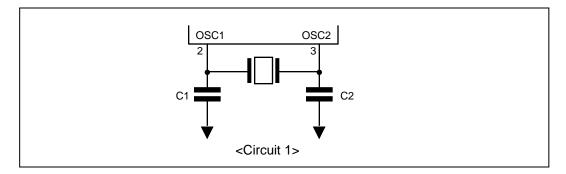
The 4-bit register for holding data and calculation results.

2.7. Arithmetic and Logic Unit (ALU)

In this unit, 4bits of adder/comparator are connected in parallel as it's main components and they are combined with status latch and status logic (flag.)

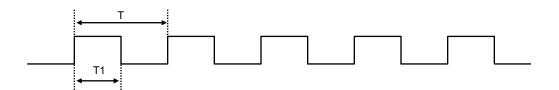
2.7.1. Operation circuit (ALU) :

The adder/comparator serves fundamentally for full addition and data comparison. It executes subtraction by making a complement by processing an inversed output of A_{CC} (A_{CC} +1)


2.7.2. Status logic :

This is to bring an ST, or flag to control the flow of a program. It occurs when a specified instruction is executed in three cases such as overflow or underflow in operation and two inputs unequal.

2.8. Clock Generator


The ADAM22XXX has an internal clock oscillator. The oscillator circuit is designed to operate with an external ceramic resonator. Oscillator circuit is able to organize by connecting ceramic resonator to outside.

* It is necessary to connect capacitor to outside in order to change ceramic resonator, you must refer to a manufacturer`s resonator matching guide.

2.9. Pulse Generator

The following frequency and duty ratio are selected for carrier signal outputted from the REMOUT port depending on a PMR (Pulse Mode Register) value set in a program.

PMR	REMOUT Signal				
0	T = 1/fpul = [96/fosc],	T1/T = 1/2			
1	T = 1/fpul = [96/fosc],	T1/T = 1/3			
2	T = 1/fpul = [64/fosc],	T1/T = 1/2			
3	T = 1/fpul = [64/fosc],	T1/T = 1/4			
4	T = 1/fpul = [88/fosc],	T1/T = 4/11			
5	No Pulse (same to D0~D9)				
6	T = 1/fpul = [96/fosc],	T1/T = 1/4			
7	Setting Prohibited				

* Default value is "0"

2.10. Reset Operation

ADAM22XXX has two reset sources. One is a built-in Low VDD Detection circuit, another is the overflow of Watch Dog Timer (WDT). All reset operations are internal in the ADAM22XXX.

2.11. Built-in Low VDD Reset Circuit

ADAM22XXX has a Low VDD detection circuit.

If VDD becomes Reset Voltage of Low VDD detection circuit in a active status, system reset occur and WDT is cleared.

When VDD is increased over Reset Voltage again, WDT is re-counted until WDT overflow, system reset is released.

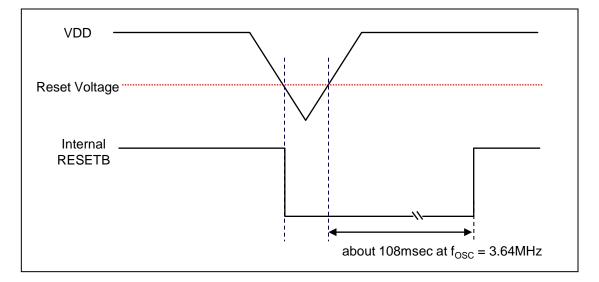


Fig 2-3 Low Voltage Detection Timing Chart.

2.12. Watch Dog Timer (WDT)

Watch dog timer is organized binary of 14 steps. The signal of $f_{OSC}/48$ cycle comes in the first step of WDT after WDT reset. If this counter was overflowed, reset signal automatically comes out so that internal circuit is initialized. The overflow time is $8 \times 6 \times 2^{13}/f_{OSC}$ (108.026ms at $f_{OSC} = 3.64$ MHz) Normally, the binary counter must be reset before the overflow by using reset instruction (WDTR), Power-on reset pulse or Low VDD detection pulse.

* It is constantly reset in STOP mode. When STOP is released, counting is restarted. (Refer to 2.14. STOP Operation)

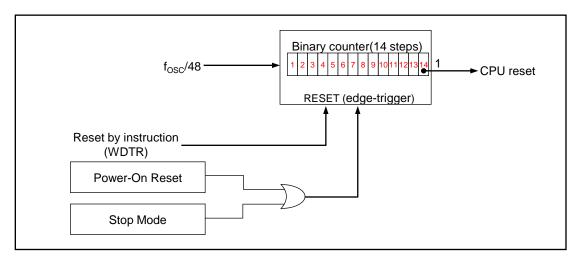


Fig 2-4 Block Diagram of Watch-dog Timer

2.13. STOP Operation

Stop mode can be achieved by STOP instructions. In stop mode :

- 1. Oscillator is stopped, the operating current is low.
- 2. Watch dog timer is reset and REMOUT output is "High-Z" .
- 3. Part other than WDT and REMOUT output have a value before come into stop mode.
- 4. D0~D3 output are "Low" at STOP Mode.
- 5. D4~D9 output conditions at STOP Mode can be selectable by Mask Option. ("Low" or Keep status before STOP)

Stop mode is released when one of K or R input is going to "L".

When stop mode released :

- 1. State of D4~D9 output and REMOUT output is return to state of before stop mode is achieved.
- 2. After $8 \times 6 \times 2^{10}$ /fosc time for stable oscillating, first instruction start to operate.
- 3. In return to normal operation, WDT is counted from zero.

When executing stop instruction, if any one of K,R input is "Low" state, stop instruction is same to NOP instruction.

Value of X - reg	Value of Y - reg	Operation
	0 ~ 7	SO : D(Y) \leftarrow 1 (High-Z) RO : D(Y) \leftarrow 0
	8	REMOUT port repeats "H" and "L" in pulse frequency. (When PMR=5, it is fixed at "H" or "L") SO : REMOUT(PMR) \leftarrow 0 RO : REMOUT(PMR) \leftarrow 1 (High-Z)
0 or 1	9 or F	SO : D0 ~ D9 ← 1 (High-Z) RO : D0 ~ D9 ← 0
	C~D	SO : R2(Y = C), R3(Y = D) ← 1 RO : R2(Y = C), R3(Y = D) ← 0
	E	SO : R2 ~ R3 ← 1 RO : R2 ~ R3 ← 0
	F	SO : D0 ~ D9 ← 1 (High-Z), R2~R3 ← 1 RO : D0 ~ D9 ← 0, R2~R3 ← 0
2 or 3	0	SO : D(8) ← 1 (High-Z) RO : D(8) ← 0
2010	1	SO : D(9) ← 1 (High-Z) RO : D(9) ← 0

2.14. Port Operation

3. INSTRUCTION

3.1. INSTRUCTION FORMAT

All of the 43 instruction in ADAM22XXX is format in two fields of OP code and operand which consist of eight bits. The following formats are available with different types of operands.

*Format |

All eight bits are for OP code without operand.

*Format II

Two bits are for operand and six bits for OP code. Two bits of operand are used for specifying bits of RAM and X-register (bit 1 and bit 7 are fixed at "0")

*FormatIII

Four bits are for operand and the others are OP code. Four bits of operand are used for specifying a constant loaded in RAM or Yregister, a comparison value of compare command, or page addressing in ROM.

*Format IV

Six bits are for operand and the others are OP code. Six bits of operand are used for word addressing in the ROM.

3.2. INSTRUCTION TABLE

The ADAM22XXX	provides the	following 43	basic instructions.
---------------	--------------	--------------	---------------------

	Category	Mnemonic	Function	ST ^{*1}
1		LAY	A ← Y	S
2	Register to Register	LYA	Y ← A	S
3	register	LAZ	A ← 0	S
4		LMA	$M(X,Y) \ \leftarrow \ A$	S
5		LMAIY	$M(X,Y) \ \leftarrow \ A, \ Y \ \leftarrow \ Y+1$	S
6	RAM to Register	LYM	$Y \leftarrow M(X,Y)$	S
7	register	LAM	$A \ \leftarrow \ M(X,Y)$	S
8		XMA	$A \; \leftrightarrow M(X,Y)$	S
9		LYLi	Y ← i	S
10	Immediate	LMIIY i	M(X,Y) ← i, Y ← Y+1	S
11		LXI n	X ← n	S
12		SEM n	M(n) ← 1	S
13	RAM Bit Manipulation	REM n	M(n) ← 0	S
14		TM n	TEST M(n) = 1	E
15		BR a	if ST = 1 then Branch	S
16		CAL a	if ST = 1 then Subroutine call	S
17	ROM	RTN	Return from Subroutine	S
18	Address	LPBI i	PB ←i	S
19		SEBB	BB ←1	S
20		REBB	BB ← 0	S
21		AM	$A \leftarrow M(X,Y) + A$	с
22		SM	$A \ \leftarrow \ M(X,Y) \ \textbf{-} \ A$	В
23		IM	$A \leftarrow M(X,Y) + 1$	С
24	Arithmetic	DM	$A \leftarrow M(X,Y) - 1$	В
25		IA	A ← A + 1	S
26		IY	Y ← Y + 1	С
27		DA	A ← A - 1	В

	Category	Mnemonic	Function	ST ^{∗1}
28		DY	Y ← Y - 1	В
29	Arithmetic	EORM	$A \leftarrow A \bigoplus M (X, Y)$	S
30		NEGA	$A \leftarrow \overline{A} + 1$	z
31		ALEM	TEST A ≤ M(X,Y)	E
32		ALEI i	TEST A ≤ i	E
33		MNEZ	TEST M(X,Y) ≠ 0	N
34	Comparison	YNEA	TEST Y ≠ A	N
35		YNEI i	TEST Y ≠ i	N
36		LAK	A ← K	S
37	Input / Output	LAR	A ← R	S
38	Output	SO	$Output(Y) \leftarrow 1^{*2}$	S
39		RO	$Output(Y) \leftarrow 0^{*2}$	S
40		WDTR	Watch Dog Timer Reset	S
41	Control	STOP	Stop operation	S
42	Control	LPY	PMR ← Y	S
43		NOP	No operation	S

Note) $i = 0 \sim f$, $n = 0 \sim 3$, a = 6bit PC Address

*1 Column ST indicates conditions for changing status. Symbols have the following meanings

- S : On executing an instruction, status is unconditionally set.
- C : Status is only set when carry or borrow has occurred in operation.
- B : Status is only set when borrow has not occurred in operation.
- E : Status is only set when equality is found in comparison.
- N : Status is only set when equality is not found in comparison.
- Z : Status is only set when the result is zero.

*2 Refer to 2.14. Port Operation.

3.3. DETAILS OF INSTRUCTION SYSTEM

All 43 basic instructions of the ADAM22XXX are one by one described in detail below.

Description Form

Each instruction is headlined with its mnemonic symbol according to the instructions table given earlier.

Then, for quick reference, it is described with basic items as shown below. After that, detailed comment follows.

• Items :

- Naming : Full spelling of mnemonic symbol - Status :
 - Check of status function
- Format :
- Categorized into | to |V Omitted for Format
- Operand : - Function

(1) LAY Naming : Load Accumulator from Y-Register Status : Set Format : L $A \leftarrow Y$ Function : <Comment> Data of four bits in the Y-register is unconditionally transferred to the accumulator. Data in the Y-register is left unchanged. (2) LYA Naming : Load Y-register from Accumulator Status : Set Format : Т Function : $Y \leftarrow A$ <Comment> Load Y-register from Accumulator (3) LAZ **Clear Accumulator** Naming : Set Status : Format : Т $A \leftarrow 0$ Function : <Comment> Data in the accumulator is unconditionally reset to zero. (4) LMA Load Memory from Accumulator Naming : Status : Set Format : L Function : $M(X,Y) \leftarrow A$ <Comment> Data of four bits from the accumulator is stored in the RAM location addressed by the X-register and Y-register. Such data is left unchanged. (5) LMAIY Naming : Load Memory from Accumulator and Increment Y-Register Status : Set Format : Т Function : $M(X,Y) \leftarrow A, Y \leftarrow Y+1$ Data of four bits from the accumulator is stored in the RAM <Comment> location addressed by the X-register and Y-register. Such data is left unchanged.

(6) LYM Naming : Status : Format : Function : <comment></comment>	Load Y-Register form Memory Set I Y \leftarrow M(X,Y) Data from the RAM location addressed by the X-register and Y-register is loaded into the Y-register. Data in the memory is left unchanged.
(7) LAM Naming : Status : Format : Function : <comment></comment>	Load Accumulator from Memory Set I $A \leftarrow M(X,Y)$ Data from the RAM location addressed by the X-register and Y-register is loaded into the Y-register. Data in the memory is left unchanged.
(8) XMA Naming : Status : Format : Function : <comment></comment>	Exchanged Memory and Accumulator Set I $M(X,Y) \leftrightarrow A$ Data from the memory addressed by X-register and Y-register is exchanged with data from the accumulator. For example, this instruction is useful to fetch a memory word into the accumulator for operation and store current data from the accumulator into the RAM. The accumulator can be restored by another XMA instruction.
(9) LYI i Naming : Status : Format : Operand : Function : <purpose> <comment></comment></purpose>	Load Y-Register from Immediate Set III Constant $0 \le i \le 15$ $Y \leftarrow i$ To load a constant in Y-register. It is typically used to specify Y-register in a particular RAM word address, to specify the address of a selected output line, to set Y-register for specifying a carrier signal outputted from OUT port, and to initialize Y-register for loop control. The accumulator can be restored by another XMA instruction. Data of four bits from operand of instruction is transferred to the Y-register.

(10) LMIIY i Naming : Status : Format : Operand : Function : <comment></comment>	Load Memory from Immediate and Increment Y-Register Set III Constant $0 \le i \le 15$ $M(X,Y) \leftarrow i, Y \leftarrow Y + 1$ Data of four bits from operand of instruction is stored into the RAM location addressed by the X-register and Y-register. Then data in the Y-register is incremented by one.
(11) LXI n Naming : Status : Format : Operand : Function : <comment></comment>	Load X-Register from Immediate Set II X file address $0 \le n \le 3$ X $\leftarrow n$ A constant is loaded in X-register. It is used to set X-register in an index of desired RAM page. Operand of 1 bit of command is loaded in X-register.
(12) SEM n Naming : Status : Format : Operand : Function : <comment></comment>	Set Memory Bit Set II Bit address $0 \le n \le 3$ $M(X,Y,n) \leftarrow 1$ Depending on the selection in operand of operand, one of four bits is set as logic 1 in the RAM memory addressed in accordance with the data of the X-register and Y-register.
(13) REM n Naming : Status : Format : Operand : Function : <comment></comment>	Reset Memory Bit Set Bit address $0 \le n \le 3$ $M(X,Y,n) \leftarrow 0$ Depending on the selection in operand of operand, one of four bits is set as logic 0 in the RAM memory addressed in accordance with the data of the X-register and Y-register.

(14) TM n	
Naming :	Test Memory Bit
Status :	Comparison results to status
Format :	
Operand :	Bit address 0 ≤ n ≤ 3
Function :	$M(X,Y,n) \leftarrow 1?$
	ST \leftarrow 1 when M(X,Y,n)=1, ST \leftarrow 0 when M(X,Y,n)=0
<purpose></purpose>	A test is made to find if the selected memory bit is logic. 1
	Status is set depending on the result.
(15) BR a	
Naming :	Branch on status 1
Status :	Conditional depending on the status
Format :	IV
Operand :	Branch address a (Addr)
Function :	When ST =1 , PA \leftarrow PB, PC \leftarrow a (Addr)
	When ST = 0, PC \leftarrow PC + 1, ST \leftarrow 1
	Note : PC indicates the next address in a fixed sequence that
	is actually pseudo-random count.
<purpose></purpose>	For some programs, normal sequential program execution
	can be change.
	A branch is conditionally implemented depending on the
	status of results obtained by executing the previous instruction.
<comment></comment>	Branch instruction is always conditional depending on the status.
	a. If the status is reset (logic 0), a branch instruction is not
	rightly executed but the next instruction of the sequence is executed.
	b. If the status is set (logic 1), a branch instruction is executed as
	follows.
	Branch is available in two types - short and long. The former
	is for addressing in the current page and the latter for
	addressing in the other page. Which type of branch to execute
	is decided according to the PB register. To execute a long
	branch, data of the PB register should in advance be modified
	to a desired page address through the LPBI instruction.

(16) CAL a Naming : Status : Format : Operand : Function :	Subroutine Call on status 1 Conditional depending on the status V Subroutine code address a (Addr) When ST =1, PC \leftarrow a (Addr) $SR1 \leftarrow$ PC + 1, $SR2 \leftarrow$ SR1 $SR3 \leftarrow$ SR2 When ST = 0 PC \leftarrow PC + 1 Note : PC actually has pseudo-random course	$PA \leftarrow PB$ $PSR1 \leftarrow PA$ $PSR2 \leftarrow PSR1$ $PSR3 \leftarrow PSR2$ $PB \leftarrow PS ST \leftarrow 1$ int against the next
<comment></comment>	 instruction. In a program, control is allowed to be transisubroutine. Since a call instruction preserved address, it is possible to call the subroutine locations in a program, and the subroutine accurately to the address that is preserved call return instruction (RTN). Such calling is always conditional dependine. a. If the status is reset, call is not executed b. If the status is set, call is rightly execut. The subroutine stack (SR) of three levels e manipulated on three levels. Besides, a low can be executed on any level. For a long call, an LPBI instruction should be the CAL. When LPBI is omitted (and when call (calling in the same page) is executed. 	es the return from different can return control by the use of the ag on the status. ed. ed. nables a subroutine to be ng call (to call another page)
(17) RTN		
Naming : Status : Format : Function :	Return from Subroutine Set \mid PC \leftarrow SR1 SR1 \leftarrow SR2 SR2 \leftarrow SR3 SR3 \leftarrow SR3	PA, PB ← PSR1 PSR1 ← PSR2 PSR2 ← PSR3 PSR3 ← PSR2 ST ← 1
<purpose> program. <comment></comment></purpose>	Control is returned from the called subroutin Control is returned to its home routine by tra PC the data of the return address that has b register (SR1). At the same time, data of the page stack re- transferred to the PA and PB.	ne to the calling ansferring to the been saved in the stack

(18) LPBI i

	Naming : Status :	Load Page Buffer Register from Immediate Set
	Format :	$\ $
	Operand : Function :	ROM page address $0 \le i \le 15$ PB $\leftarrow i$
	<purpose></purpose>	A new ROM page address is loaded into the page buffer
	<ruipose></ruipose>	register (PB).
	<comment></comment>	This loading is necessary for a long branch or call instruction. The PB register is loaded together with three bits from 4 bit operand.
(19) 9	SEBB	
(,	Naming :	Set Block Buffer Register
	Status :	Set
	Format :	T
	Function :	BB ← 1
	<purpose></purpose>	A new ROM page address is loaded into the block buffer
		register (BB).
		This loading is necessary for a long branch or call instruction.
	<comment></comment>	The BB register is set to 1
(20) F	REBB	
• •	Naming :	Reset Block Buffer Register
	Status :	Set
	Format :	1
	Function :	BB ← 0
	<purpose></purpose>	A new ROM page address is loaded into the block buffer register (BB).
		This loading is necessary for a long branch or call instruction.
	<comment></comment>	The BB register is set to 0
(21)	AM	
()	Naming :	Add Accumulator to Memory and Status 1 on Carry
	Status :	Carry to status
	Format :	
	Function :	$A \leftarrow M(X,Y) + A$ ST \leftarrow 1(when total>15), ST \leftarrow 0 (when total ≤15)
	<comment></comment>	Data in the memory location addressed by the X and Y-register is added to data of the accumulator. Results are stored in the accumulator. Carry data as results is transferred to status. When the total is more than 15, a carry is caused to put "1" in the status. Data in the memory is not changed.

(22) SM Naming : Status : Format :	Subtract Accumulator to Memory and Status 1 Not Borrow Carry to status	
Function :	$A \leftarrow M(X,Y) - A$	ST ← 1(when A ≤ M(X,Y)) ST ← 0(when A > M(X,Y))
<comment></comment>	Data of the accumulator is, through a 2's complement addition, subtracted from the memory word addressed by the Y-register. Results are stored in the accumulator. If data of the accumulator is less than or equal to the memory word, the status is set to indicate that a borrow is not caused. If more than the memory word, a borrow occurs to reset the status to "0".	
(23) IM		
Naming : Status : Format :	Increment Memory and Status 7 Carry to status	1 on Carry
Function :	$A \leftarrow M(X,Y) + 1$	$ST \leftarrow 1$ (when M(X,Y) ≥ 15) $ST \leftarrow 0$ (when M(X,Y) < 15)
<comment></comment>	Data of the memory addressed fetched. Adding 1 to this word, accumulator. Carry data as res When the total is more than 15, is left unchanged.	by the X and Y-register is results are stored in the ults is transferred to the status.
(24) DM		
Naming : Status : Format :	Decrement Memory and Status Carry to status	1 on Not Borrow
Function :	$A \leftarrow M(X,Y) - 1$	ST ← 1(when M(X,Y) ≥1) ST ← 0 (when M(X,Y) = 0)
<comment></comment>	Data of the memory addressed fetched, and one is subtracted f Results are stored in the accum transferred to the status. If the one, the status is set to indicate memory is left unchanged.	by the X and Y-register is rom this word (addition of Fh). nulator. Carry data as results is data is more than or equal to

Sta Fo Fu	aming : atus : rmat : nction : Comment>	Increment Accumulator Set A \leftarrow A+1 Data of the accumulator is increment returned to the accumulator. A carry is not allowed to have effective	
(26) IY			
Na Sta Fo Fu	aming : atus : rmat : nction : Comment>	Increment Y-Register and Status Carry to status \downarrow Y \leftarrow Y + 1 Data of the Y-register is increme returned to the Y-register.	ST ← 1 (when Y = 15) ST ← 0 (when Y < 15)
		Carry data as results is transferre total is more than 15, the status i	
(27) DA			
Sta	aming : atus : rmat :	Decrement Accumulator and Sta Carry to status	tus 1 on Borrow
Fu	nction :	A ← A - 1	ST ← 1(when A ≥1) ST ← 0 (when A = 0)
<c< td=""><td>comment></td><td>Data of the accumulator is decre (by addition of Fh), if a borrow is "0" by logic. If the data is more the and thus the atotus is act to "1"</td><td>caused, the status is reset to</td></c<>	comment>	Data of the accumulator is decre (by addition of Fh), if a borrow is "0" by logic. If the data is more the and thus the atotus is act to "1"	caused, the status is reset to

and thus the status is set to "1".

(28) DY Naming : Status : Format : Function : <purpose> <comment></comment></purpose>	Decrement Y-Register and State Carry to status Y \leftarrow Y -1 Data of the Y-register is decrement Data of the Y-register is decrement minus 1 (Fh). Carry data as results is transfer results is equal to 15, the status borrow has not occurred.	ST ← 1 (when Y ≥ 1) ST ← 0 (when Y = 0) nented by one. nented by one by addition of red to the status. When the
(29) EORM Naming : Status : Format : Function : <comment></comment>	Exclusive or Memory and Accur Set A \leftarrow M(X,Y) \bigoplus A Data of the accumulator is, throus subtracted from the memory wo register. Results are stored into	ugh a Exclusive OR, rd addressed by X and Y-
(30) NEGA Naming : Status : Format : Function : <purpose> <comment></comment></purpose>	Negate Accumulator and Status Carry to status \downarrow A \leftarrow A + 1 The 2's complement of a word in The 2's complement in the accur one to the 1's complement in the stored into the accumulator. Can status. When data of the accur caused to set the status to "1".	$ST \leftarrow 1$ (when A = 0) $ST \leftarrow 0$ (when A != 0) n the accumulator is obtained. umulator is calculated by adding e accumulator. Results are urry data is transferred to the

(31)	ALEM Naming : Status : Format :	Accumulator Less Equal Memory Carry to status	y
	Function :	$A \leq M(X,Y)$	$ST \leftarrow 1$ (when $A \le M(X,Y)$) $ST \leftarrow 0$ (when $A > M(X,Y)$)
	<comment></comment>	Data of the accumulator is, throu subtracted from data in the mem X and Y-register. Carry data obt status. When the status is "1", it the accumulator is less than or e memory word. Neither of those	igh a complement addition, ory location addressed by the ained is transferred to the indicates that the data of equal to the data of the
(32)	ALEI		
	Naming : Status :	Accumulator Less Equal Immedi Carry to status	ate
	Format :		
	Function :	A ≤i	$ST \leftarrow 1$ (when $A \le i$) $ST \leftarrow 0$ (when $A > i$)
	<purpose></purpose>	Data of the accumulator and the compared.	constant are arithmetically
	<comment></comment>	Data of the accumulator is, throu subtracted from the constant tha Carry data obtained is transferre The status is set when the accur equal to the constant. Data of th unchanged.	t exists in 4bit operand. d to the status. nulator value is less than or
(33)	MNEZ		
	Naming : Status : Format :	Memory Not Equal Zero Comparison results to status	
	Function :	M(X,Y) ≠ 0	$ST \leftarrow 1$ (when M(X,Y) $\neq 0$) $ST \leftarrow 0$ (when M(X,Y) = 0)
	<purpose> <comment></comment></purpose>	A memory word is compared wit Data in the memory addressed b logically compared with zero. Co transferred to the status. Unless	h zero. by the X and Y-register is comparison data is

(34) YNEA Naming : Status : Format :	Y-Register Not Equal Accumulator Comparison results to status	
Function :	Y≠A	ST \leftarrow 1 (when Y \neq A) ST \leftarrow 0 (when Y = A)
<purpose></purpose>	Data of Y-register and accumula they are not equal.	
<comment></comment>	Data of the Y-register and accur compared. Results are transferred to the st the status is set.	
(35) YNEI		
Naming : Status : Format : Operand : Function :	Y-Register Not Equal Immediate Comparison results to status III Constant 0 ≤ i ≤ 15 Y ≠ i	e ST ← 1 (when Y ≠ i) ST ← 0 (when Y = i)
<comment></comment>	The constant of the Y-register is operand. Results are transferre operand is equal to the constant	logically compared with 4bit d to the status. Unless the
(36) LAK		
Naming : Status : Format : Function :	Load Accumulator from K Set │ A ← K	
<comment></comment>	Data on K are transferred to the	accumulator
(37) LAR Naming : Status : Format : Function : <comment></comment>	Load Accumulator from R Set A \leftarrow R Data on R are transferred to the	accumulator

(38) SO Naming : Status : Format : Function :	Set Output Register Latch Set \downarrow D(Y) \leftarrow 1 REMOUT \leftarrow 1(PMR=5) D0~D4 \leftarrow 1 (High-Z) R(Y) \leftarrow 1 R(Y) \leftarrow 1 D0~D9,R2~R3 \leftarrow 1	$0 \le Y \le 5$ Y = 8 Y = 9 or F $Ch \le Y \le Dh$ Y = Eh Y = Fh
<purpose></purpose>	between 0 to 7. Carrier frequency come out fr Y-register is 8. All D output line is set to logic When Y is between Ch and D When Y is Eh, R2 and R3 is s	: 1, if data of Y-register is 9 or F. Dh, one of R2 and R3 is set to logic 1.
<comment></comment>	Data of Y-register is 8, select Data of Y-register is 9 or F, so Data in Y-register, when betwee Data in Y-register, when it is Eh,	elects all D port. n Ch and Dh, selects an appropriate R port.
(38) RO Naming : Status : Format : Function :	Set Output Register Latch Set D(Y) $\leftarrow 0$ REMOUT $\leftarrow 0$ (PMR=5) D0~D4 $\leftarrow 0$ R(Y) $\leftarrow 0$ R(Y) $\leftarrow 0$ D0~D9,R2~R3 $\leftarrow 0$	$0 \le Y \le 5$ Y = 8 Y = 9 or F $Ch \le Y \le Dh$ Y = Eh Y = Fh
<purpose></purpose>	A single D output line is set to logic 0, if data of Y-register is between 0 to 7. REMOUT port is set to logic 0, if data of Y-register is 8. All D output line is set to logic 0, if data of Y-register is 9 or F. When Y is between Ch and Dh, one of R2 and R3 is set to logic 0. When Y is Eh, R2 and R3 is set to logic 0. When Y is Fh, All D output and R2 and R3 is set to logic 0.	
<comment></comment>	Data of Y-register is 8, select Data of Y-register is 9 or F, so Data in Y-register, when betwee Data in Y-register, when it is Eh,	elects all D port. n Ch and Dh, selects an appropriate R port.

(40) WDTR

Naming :	Watch Dog Timer Reset
Status :	Set
Format :	
Function :	Reset Watch Dog Timer (WDT)
<purpose></purpose>	Normally, you should reset this counter before overflowed counter for dc watch dog timer. this instruction controls this reset signal.

(41) STOP

Naming :	STOP
Status :	Set
Format :	
Function :	Operate the stop function
<purpose></purpose>	Stopped oscillator, and little current.

(42) LPY

Naming :	Pulse Mode Set
Status :	Set
Format :	
Function :	$PMR \leftarrow Y$
<comment></comment>	Selects a pulse signal outputted from REMOUT port.

(43) NOP

No Operation
Set
No operation

3.4. Guideline for S/W

- (1) All rams need to be initialized to any value in reset address for proper design.
- (2) Make the output ports `High` after reset.
- (3) Do not use WDTR instruction in subroutine.
- (4) When you try to read input port changed from external condition, you must secure chattering time more than 200uS.
- (5) To decrease current consumption, make the output port as high in normal routine except for key scan strobe and STOP mode.
- (6) We recommend you do not use all 64 ROM bytes in a page.It's recommend to add "BR \$" at first and last address of each page.Do not add "BR \$" at reset address which is first address of "00" page of "0" bank.