

Applications

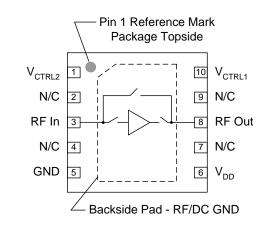
- Base Station Receivers
- Tower Mount Amplifiers
- Repeaters
- FDD-LTE, TDD-LTE, WCDMA
- General Purpose Wireless

Product Features

- 500-2000 GHz Operational Bandwidth
- LNA with Integrated Bypass Mode
- Ability To Turn LNA and Bypass Mode OFF
- Ultra Low Noise, 0.42 dB at 900 MHz
- 19 dB Gain
- +36 dBm Output IP3
- +43 dBm Input IP3 in Bypass Mode
- Internally Matched
- Positive Supply Only, +3.3 to +5 V
- 3 x 3 mm 10-pin DFN Plastic Package

General Description

The TQL9042 is a high-linearity, ultra-low noise gain block amplifier with a bypass mode functionality integrated in the product. At 900 MHz, the amplifier typically provides 19 dB gain, +36 dBm OIP3, and 0.42 dB noise figure while drawing 70 mA current from a +5 V supply. The component also provides high linearity in the bypass mode with +43 dBm IIP3.


The TQL9042 is internally matched using a high performance E-pHEMT process and only requires four external components for operation from a single positive supply: an external RF choke and blocking/bypass capacitors. This low noise amplifier contains an internal active bias to maintain high performance over temperature.

The TQL9042 covers the 500-2000 MHz frequency band and is targeted for wireless infrastructure. The TQL9042 is packaged in a 3x3mm and is pin compatible with the 1.5-2.7 GHz TQL9043 and 1.5-2.7 GHz TQL9044.

10-pin 3 x 3 mm DFN Package

Functional Block Diagram

Pin Configuration

Pin No.	Label
1	V _{CTRL2}
2, 4, 7, 9	N/C
3	RFin
3 5 6 8	GND
6	V _{DD}
8	RFout
10	Vctrl1
Backside Paddle	RF/DC GND

Ordering Information

Part No.	Description		
TQL9042	500–2000 MHz Bypass LNA		
TQL9042-PCB	Evaluation Board		
Standard T/R size = 2500 pieces on a 7" reel			

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−65 to 150 °C
Drain Voltage (V _{DD})	+7 V
Input Power (CW)	+22 dBm

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Drain Voltage (VDD)	+3.3	+5.0	+5.25	V
Operating Temp. Range	-40		+85	°C
T _{ch} (for>10 ⁶ hrs MTTF)			+190	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

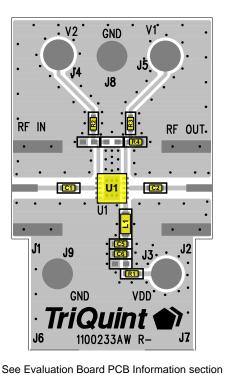
Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		500		2000	MHz
Test Frequency			900		MHz
Gain	Bypass OFF	17.5	19	20.5	dB
Input Return Loss	Bypass OFF		11		dB
Output Return Loss	Bypass OFF		20		dB
Noise Figure	Bypass OFF		0.42	0.8	dB
Output P1dB	Bypass OFF		+23		dBm
Output IP3	Bypass OFF, Pout=+5 dBm/tone, Δf=1 MHz	+30	+36		dBm
Insertion Loss	Bypass ON		1	1.9	dB
Return Loss	Bypass ON		13		dB
Input IP3	Bypass ON Pin=+6 dBm/tone, Δf=1 MHz		+43		dBm
Isolation	LNA OFF, Bypass OFF		-8.5		dB
Control Voltage $V = V \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	V _{IH}	2.4		V _{DD}	V
Control Voltage, V ₁ , V ₂ ⁽¹⁾	VIL	0		0.4	V
Current I	Bypass OFF	40	70	110	mA
Current, Id	Bypass ON		3	4.5	mA
Switching Speed	Bypass to LNA Mode		926		ns
Switching Speed	LNA to Bypass Mode		55		ns
Thermal Resistance, θ_{jc}	Channel to case		100		°C/W

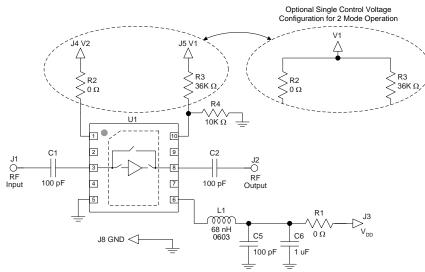
Notes:

1. The limits shown are true when using the external resistive divider values as shown on the TriQuint app board.

Control Truth Table


VCTRL2	VCTRL1	State
0	1	LNA OFF, Bypass OFF
1	1	LNA OFF, Bypass ON
0	0	LNA ON, Bypass OFF
1	0	Reserved (Do not use)

	State	Bias Condition
	Low	≤ 0.1 V
Vctrl1	High	≥ 0.52 V
	Low	≤ 0.4 V
V _{CTRL2}	High	≥ 1.3 V



TQL9042 500 – 2000 MHz Bypass LNA

TQL9042-PCB Evaluation Board

for PCB material and stack-up.

Note:

If a TQL9042 application requires only two operational modes, LNA and bypass, the modes may be set using a single control voltage with the control lines tied together as shown above right. The corresponding truth table is shown below.

Control Truth Table – 2 Mode Operation			
V 1	State		
1	LNA OFF, Bypass ON		
0	LNA ON, Bypass OFF		

Bill of Material – TQL9042-PCB

Reference Des.	Value	Description	Manuf.	Part Number
U1	n/a	Bypass LNA	TriQuint	TQL9042
C1, C2, C3, C4, C5	100 pF	CAP, 0402, +/-5%, 50V	Panasonic	ECJ-0EC1H101J
C6	1.0 uF	CAP, 0402, 10%, 10V, X5R	various	
R1, R2	0 Ω	RES, 0402, +/-5%, 1/10W	Various	
R3	36K	RES, 0402, +/-5%, 1/10W	Various	
R4	10K	RES, 0402, +/-5%, 1/10W	Various	
L1	68 nH	IND, 0603, +/-5%, 600mA	Coilcraft	0603CS-68NXJL

Power-up and Power-down Sequencing

		VDD	VCTRL1 & VCTRL2
LNA ON, Bypass OFF	Power-up	1 st	2 nd
	Power-down	1 st	2 nd
LNA OFF, Bypass ON	Power-up	1 st	2 nd
	Power-down	1 st	2 nd

Typical Performance (LNA Mode)

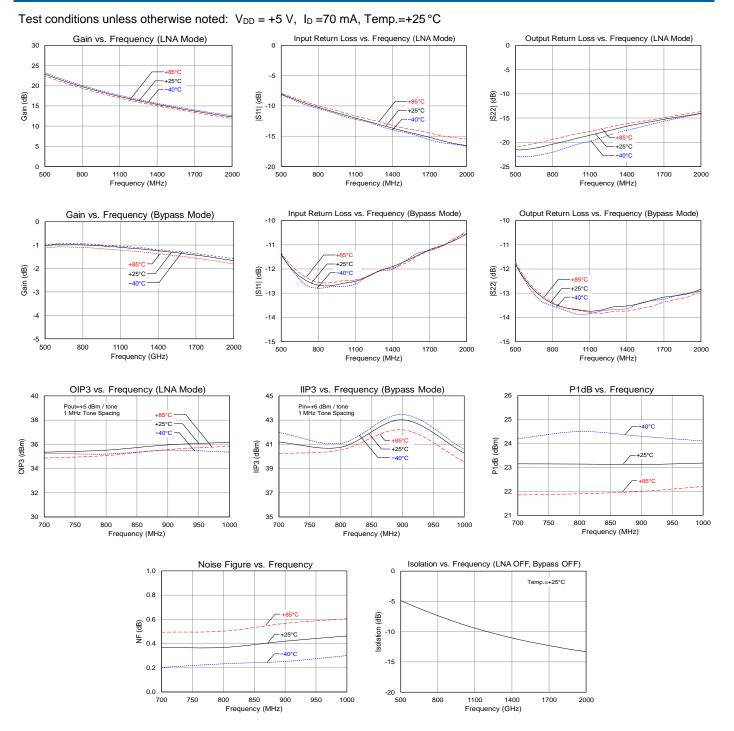
Test conditions unless otherwise noted: $V_{DD} = +5 \text{ V}$, $I_D = 70 \text{ mA}$, Temp.=+25 °C.

Parameter		Typical	Units		
Frequency	700	800	900	1000	MHz
Gain	20.8	19.9	19.0	18.2	dB
Noise Figure	0.37	0.37	0.42	0.46	dB
Input Return Loss	9.6	10.2	10.8	11.4	dB
Output Return Loss	21.0	20.4	19.8	19.1	dB
Output P1dB	+23.1	+23.1	+23.1	+23.2	dBm
OIP3 (Pout/tone=+5 dBm, Δf = 1 MHz)	+35.3	+35.5	+36.0	+36.0	dBm

Typical Performance (Bypass Mode)

Test conditions unless otherwise noted: $V_{DD} = +5 \text{ V}$, $I_D = 3 \text{ mA}$, Temp.=+25 °C.

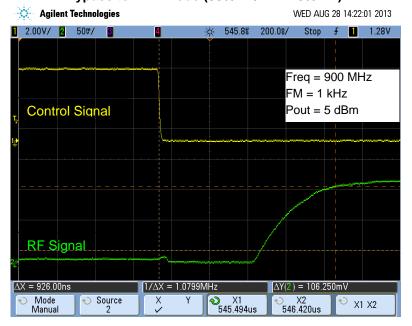
Parameter	Typical Value			Units	
Frequency	700	800	900	1000	MHz
Insertion Loss	0.95	0.96	0.98	1.00	dB
Input Return Loss	12.5	12.6	12.7	12.6	dB
Output Return Loss	13.1	13.4	13.6	13.7	dB
Input IP3 (Pin/tone=+6 dBm, Δf = 1 MHz)	+41.2	+40.8	+43.0	+40.2	dBm

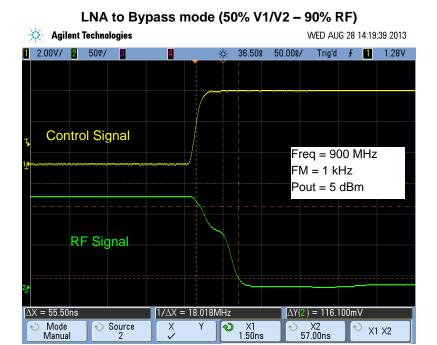

Typical Performance (LNA OFF, Bypass OFF Mode)

Test conditions unless otherwise noted: $V_{DD} = +5 V$, Temp. = +25 °C.

Parameter	Typical Value Units				
Frequency	700	800	900	1000	MHz
Isolation	6.6	7.4	8.2	8.8	dB

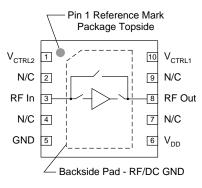
Performance Plots



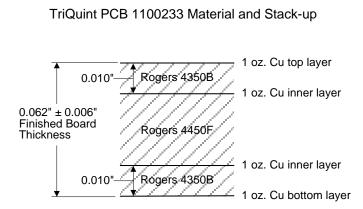

Switching Speed

Switching Speed Measurement on TQS Application Board

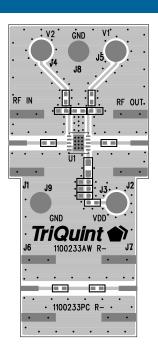
Transition	Measurements	Units
Bypass to LNA mode (50% V1/V2 – 10% RF)	926	ns
LNA to Bypass mode (50% V1/V2 – 90% RF)	55.5	ns



Bypass to LNA mode (50% V1/V2 – 10% RF)

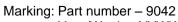


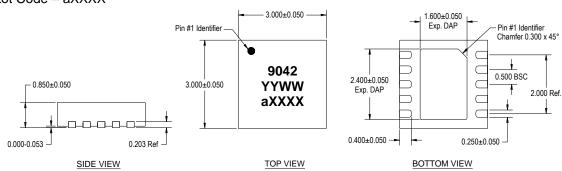
Pin Configuration and Description



Pin No.	Label	Description	
1	V _{CTRL2}	Control pin for bypass mode and LNA mode. Internal resistor divider. Refer to truth table.	
2, 4, 7, 9	N/C	No internal connection. Provide grounded PCB land pads for mounting integrity.	
3	RFin	RF input pin. DC block required.	
5	GND	RF/DC Ground pin.	
6	Vdd	Supply voltage pin.	
8	RFout	RF output pin. DC block required.	
10	Vctrl1	Control pin for bypass mode and LNA mode. Requires external resistor divider. Refer to truth table.	
Backside Paddle	RF/DC GND	RF/DC Ground. Follow recommended via pattern and ensure good solder attach for best thermal and electrical performance.	

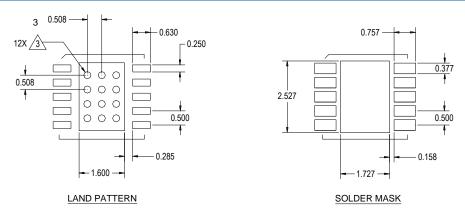
Evaluation Board PCB Information


50 ohm line dimensions: width = .020", spacing = .032"



Mechanical Information

Package Marking and Dimensions


Year/Week – YYWW Lot Code – aXXXX

NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline conforms to JEDEC standard MO-229.
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

PCB Mounting Pattern

NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Product Compliance Information

ESD Sensitivity

Caution! ESD-Sensitive Device

ESD Rating: Class 1A Value: ≥250V to 500V Test: Human Body Model (HBM) Standard: JEDEC Standard JS-001-2012

ESD Rating: Class C3 Value: ≥1000 V Test: Charged Device Model (CDM) Standard: JEDEC Standard JESD22-C101F

MSL Rating

MSL Rating: Level 1 Test: 260°C convection reflow Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260°C max. reflow temperature) and tin/lead (245°C max. reflow temperature) soldering processes.

Package contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.503.615.9000
Email:	info-sales@triquint.com	Fax:	+1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.