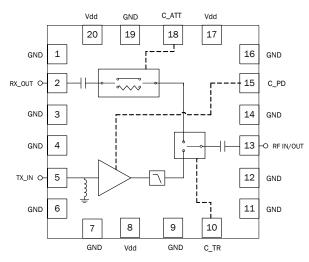


5V, 475MHZ TO 625MHZ FEM

Package: 20-Pin, 4.5mmx4.5mmx0.975mm

RFMD RF5604


RF5604

Features

- Integrated 50Ω Input/Output Match
- Power Down Control
- TX OIP3 39dBm
- OP1dB 25dB
- 15dB RX Step Attenuator

Applications

- MoCA
- Satellite Set Top Boxes

Functional Block Diagram

Product Description

The RF5604 is a 475MHz to 625MHz Front-End Module (FEM) for the distribution of digital video within the home through existing coaxial cable. The FEM contains a linear GaAs Heterojunction Bipolar Transistor (HBT) Power Amplifier (PA) with a pHEMT Single-pole Double-throw (SPDT) switch, and a 1 bit step attenuator. The device is fully integrated with 50 Ω input and output terminals with no external matching components required. The RF5604 is assembled in a small footprint 4.5mmx4.5mm RoHS package.

Ordering Information

RF5604	5V, 475MHz to 625MHz FEM, Standard 25-Piece Bag
RF5604SB	5-Piece Bag
RF5604SR	Standard 100-Piece Reel
RF5604TR13	Standard 2500-Piece Reel
RF5604PCK-410	Fully Assembled Evaluation Board and 5-Piece Bag

Optimum Technology Matching® Applied

🗹 GaAs HBT	□ SiGe BiCMOS	🗹 GaAs pHEMT	GaN HEMT
GaAs MESFET	Si BiCMOS	Si CMOS	RF MEMS
InGaP HBT	SiGe HBT	🗌 Si BJT	LDMOS

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{IM}, PowerStar®, POLARIS^{IM} TOTAL RADIO^{IM} and UltimateBlue^{IM} are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG. Inc. II S A and Legnesed for use by RFMD. All other trade names trademarks and registered trademarks are the nonperty of their respective owners. ©2006 RF Micro Devices, Inc.

RF5604

rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	+5.5	V _{DC}
Power Control Voltage (C_PD)	+5.5	V _{DC}
DC Supply Current	260	mA
PA Input RF Power	+20*	dBm
Operating Ambient Temperature	0 to +70	°C
Reduced Performance Temperatures	-40 to 0 and +70 to +85	°C
Storage Temperature	-40 to +150	°C
Moisture Sensitivity	MSL3	

*Maximum PA Input RF Power with a 50 Ω load.

-> Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified hypical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. The information in this publication is believed to be accurate and reliable. However, no reconcertibility accurated has E Miero Device. In or PEMDIV for the use or for ami

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD, RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Devementer	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
Operating Conditions					T=25 °C, V_{CC} =5.0 V_{DC} , C_PD=2.9 V_{DC} , Freq=550MHz, circuit per evaluation board schematic.	
Supply Voltage (V _{DD})	4.75	5.0	5.25	V		
Operating Ambient Temperature Range (T _{AMB})	0		70	°C		
DC Electrical Specifications						
Supply Current (I _{DD})			200	mA	V _{DD} =5.0V	
Input Logic High (V _{IH})	2.8		V _{DD}	V	For C_PD; I <3mA (sink current)	
	1.7		V _{DD}	V	For C_TR and C_ATT; I≤100 uA (sink current)	
Input Logic Low (V _{IL})	-0.5		+0.4	V	For C_PD	
	-0.5		+0.05	V	For C_TR and C_ATT I≤100 uA (source current)	
Shutdown Current		0.6	1.0	mA	C_PD=0V	
		0.4	0.8	mA	C_PD=0V, C_ATT=C_TR=0V	
RX Chain						
Frequency Range	475		625	MHz		
Input Power Range	-80		0	dBm	Receive Signal BW < 50 MHz	
Receive Gain 1 (G _{R1})	-0.7	-1.0		dB	C_ATT=L	
Receive Gain 2 (G _{R2})	-14.5	-15.7	-16.5	dB	C_ATT=H	
Receive Gain Step Difference (ΔG_R)	14.5	15.0	15.5	dB	G_{R1} to G_{R2} at any (single) Frequency	
Pass Band Ripple			0.2	dB	Over any 50MHz	
Switch Time			500	ns	G_{R2} to $G_{R1};G_{R1}$ to $G_{R2};50\%$ CTL to 10/90% RF	
Impedance (Z _{IN} /Z _{OUT})			50	Ω	Single Ended	
Input Return Loss (S ₁₁)	11	15		dB		
Output Return Loss (S ₂₂)	11	15		dB		
Input Third Order Intercept Point (IIP3)	28	30		dBm	GR ₁	
	28	33		dBm	GR ₂	
Input P1dB (IP1dB)	18			dBm	GR ₁	
	18			dBm	GR ₂	

RFMD

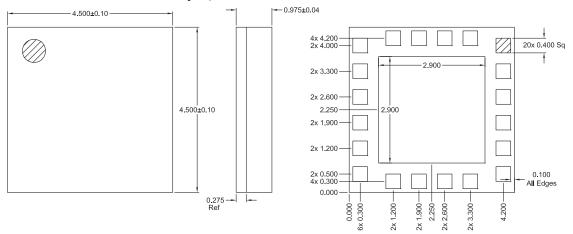
Parameter	Specification			11	Condition	
Parameter	Min. Typ. N		Max.	Unit	Condition	
RX Chain, cont.						
Noise Figure (NF)	0.7	1.0		dB	GR ₁ ; Exclusive of PA contribution	
	14.5	15.7	16.5	dB	GR ₂ ; Exclusive of PA contribution	
TX/RX Switch Time			500	ns	50% CTL to 10/90% RF; Receive mode C_TR=L; Transmit mode C_TR=H	
RX (added) Noise			-177	dBm/Hz	Noise contribution of PA output to RX_OUT in RX Mode ${\rm G}_{\rm R1}$	
TX Chain						
Frequency Range	475		625	MHz		
Pass Band Ripple			0.5	dB		
Transmit Gain (G _T)	16.0	17.5	19.0	dB	Temp Range 0°C to +70°C over any 50MHz	
Maximum Transmit Power			9.5	dBm		
Minimum Transmit Power			-33	dBm		
Input Third Order Intercept Point (IIP3)		14	19		Temp Range 0°C to +70°C; TX Power +1>+9dBm	
Input 1dB Compression Point (IP1dB)	5.5	8.5		dBm	Temp Range 0°C to +70°C; TX Power +1>+9dBm	
Noise Figure (NF)			5	dB	G _T	
Input Impedance (Z _{IN})			50	Ω		
Input Return Loss (S ₁₁)	10	15		dB		
Output Impedance (Z _{OUT})			50	Ω		
Output Return Loss (S ₂₂)	10	15		dB		
TX/RX Switch Time			500	ns	50% CTL to 10/90% RF; Receive mode C_TR=L; Transmit mode C_TR=H	
Transmit Gain Drift versus Temperature			0.015	dB∕°C		
PA Output to RX Output Isolation	24	38		dB	TX Mode (C_TR=H; C_ATT=L)	
Spurious (2nd Harmonic)			-30	dBm	TX Power=9dBm; TX Mode	
Spurious (All Others)			-50	dBm	TX Power=9dBm; TX Mode	

Truth Table

Mode	C_TR	C_PD	C_ATT
TX	Н	Н	L/H
RX	L	н	L
RX_ATTEN	L	н	н
Shut Down	L/H	L	L/H

RF5604

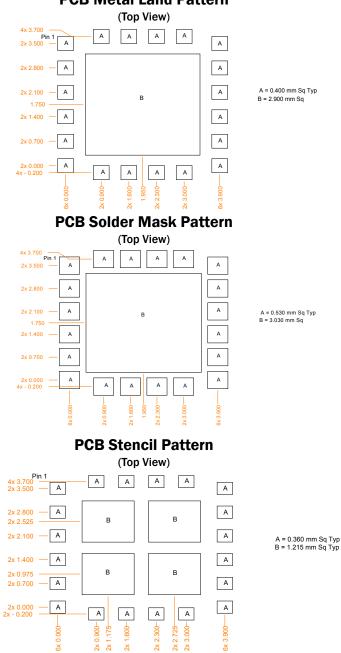
RF5604



Pin	Function	Description
1	GND	Ground connection.
2	RX OUT	RF output, internally matched to 50Ω and DC blocked.
3	GND	Ground connection.
4	GND	Ground connection.
5	TX IN	RF input, internally matched to 50Ω .
6	GND	Ground connection.
7	GND	Ground connection.
8	VDD3	Voltage supply for PA.
9	GND	Ground connection.
10	C_TR	Control voltage for 1-bit switch between transmit and receive RF paths.
11	GND	Ground connection.
12	GND	Ground connection.
13	RF I/O	RF INPUT/OUTPUT, matched to 50Ω and DC blocked.
14	GND	Ground connection.
15	C_PD	Bias voltage for PA regulator.
16	GND	Ground connection.
17	VDD2	Voltage supply for switch/regulator.
18	C_ATT	Control voltage for 1-bit attenuator between receive modes 1 and 2.
19	GND	Ground connection.
20	VDD1	Voltage supply for attenuator.
21	GND	Ground connection. The back side of the package should be connected to the ground plane through as short a connection as possible, e.g., PCB vias under the device are recommended.

Package Drawing 20-pin, 4.5mmx4.5mmx0.975mm

Notes:


- 1. Shaded area represents Pin 1 location
- 2. Defining I/O Pad Center:

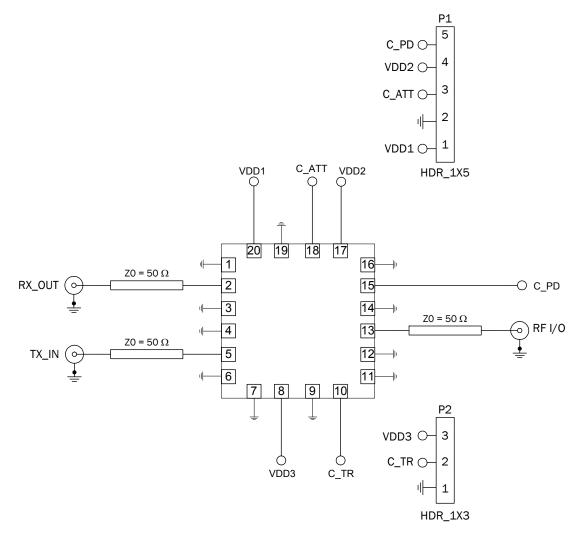
To define center of the I/O pad opening, draw a right triangle in one corner of the I/O pad

Then take the center of the hypotenuse to determine center of $\ensuremath{\mathsf{I/O}}$ pad

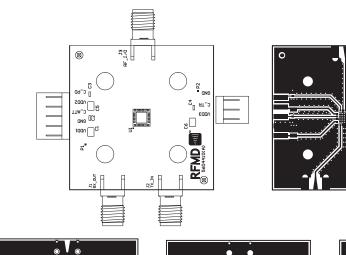


PCB Metal Land Pattern

Note: Thermal vias for center slug "B" should be incorporated into the PCB design. The number and size of thermal vias will depend on the application. Example of the number and size of vias can be found on the RFMD evaluation board layout.

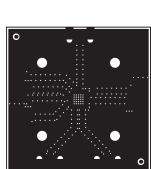

RF5604

Evaluation Board Schematic


Þ

 \triangleright

Þ


 \triangleright

RF5604

Evaluation Board Layout

۲ ۲

0