

Rev. P2

PIN Diode Driver for Series / Shunt High Power Switches

Features

- High Drive Current Capability (Up to 50 mA)
- Up to 32V Back Bias in Off State
- Single CMOS Logic Input with 10K Ohm Internal Pull Down Resistor
- Fast Switching
- Low Current Consumption
- Land Grid Array Package for SMT Applications
- 260°C Reflow Compatible
- RoHS* Compliant
- Tape and Reel Packaging Available

Description

The MADR-008851-000100 Switch Driver is designed to work with M/A-COM Technology Solutions line of series /shunt SPDT HMIC switches which operate in the power range of approximately 5 to 50W CW. It is capable to provide forward bias currents up to 50 mA for each diode in the series/shunt switch, with back bias voltage configurable from 12V to 32 V. It is packaged in a Land Grid Array surface mount package and is available in tape and reel packaging for high volume applications.

Sample boards are available with M/A-COM Tech 50W switch MASW-000834-13560T.

Ordering Information¹

Part Number	Package
MADR-008851-000100	Bulk Packaging
MADR-008851-0001TR	300 piece Reel
MADR-008851-0001TB	Sample Board with Driver & MASW-000834-13560T Switch

1. Reference Application Note M513 for reel size information.

Pin Configuration

Pin No.	Pin Name	Pin No.	Pin Name
1	VCC	13	GND
2	GND	14	SH2
3	C1 (Logic)	15	GND
4	GND	16	RX Drive
5	VDD	17	GND
6	GND	18	GND
7	GND	19	GND
8	GND	20	GND
9	GND	21	GND
10	TX Drive	22	GND
11	GND	23	GND
12	SH1	-	-

Handling Procedures

Please observe the following precautions to avoid damage:

Solder & Assembly Cleaning

Driver is not approved for aqueous washing. Noclean solder is recommended

Static Sensitivity

Silicon Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

* Restrictions on Hazardous Substances, European Union Directive

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. North America Tel: 800.366.2266
Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383
Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

¹

PIN Diode Driver for Series / Shunt High Power Switches

Rev. P2

Recommended Operating Conditions

Parameter	Test Conditions	Unit	Min	Тур	Max
VCC	Nominal VCC = 3.3 V Nominal VCC = 5.0 V	V V	3.0 4.5	3.3 5.0	3.6 5.5
VDD	Input Voltage	V	12.0	28.0	32.0
TX Series Diode Bias Current ²	VDD = 12 V to 32 V	mA	_	_	50
RX Series Diode Bias Current ²	VDD = 12 V to 32 V	mA	_	—	50
Shunt Diode Bias Current ³	VDD = 12 V to 20 V VDD = 20 V to 32 V	mA mA	_		35 50
C1 (Low Level Input Voltage)	VCC = 3.0 V to 3.6V VCC = 4.5 V to 5.5 V	V V	0.0 0.0	0.0 0.0	0.8 0.3 x VCC
C1 (High Level Input Voltage)	VCC = 3.0 V to 3.6V VCC = 4.5 V to 5.5 V	V V	2.0 0.7 x VCC	VCC VCC	VCC VCC
PRF	50% duty cycle	KHz	DC	_	50

2. TX and RX currents are user selectable. Reference "Driver and SPDT Schematic" for suggested values.

3. A resistor needs to be connected between SH1 and SH2 to set the shunt diode bias current. Reference "Driver and SPDT Schematic" for suggested values.

Absolute Maximum Ratings ^{4,5}

Parameter	Absolute Maximum
VCC (+5V)	-0.5 V to +6.5 V
VDD (+28V)	-0.5 V to 40 V
C1 (Logic)	-0.5 V to 6.5 V
RX Sinking Current	60 mA
TX Sinking Current	60 mA
Power Dissipation in Still Air	100 mW
Operational Temperature	-40 to +85°C
Storage Temperature	-55 to +125°C

4. Exceeding any one or combination of these limits may cause permanent damage to this device.

Truth Table

Control Input	Condition of Driver			Condit Swit	
C1	TX Voltage			тх	RX
0	High	Low	Low	Off	On
1	Low	High	High	On	Off

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

changes to the product(s) or information contained herein without notice.

^{5.} M/A-COM Tech does not recommend sustained operation near these survivability limits.

²

PIN Diode Driver for Series / Shunt High Power Switches

Rev. P2

DC Characteristics : $T_A = +25$ °C, VCC = 3.0 to 5.5 V, VDD = 12 to 28 V

Parameter	Test Conditions	Unit	Min	Тур	Мах
Quiescent VCC Supply Current	_	nA	_	50	_
Quiescent VDD Supply Current	_	mA	_	0.8	_
Output Back Bias Voltage RX TX SH1	TX ON RX ON RX ON	V V V	 	VDD - 0.5 VDD VDD - 0.5	
Output Resistance RX TX	RX ON TX ON	Ω Ω		22.5 22.5	

Switching Speed When Driving 50 pF Capacitive Loads⁶:

Testing Conditions	Symbol Parameter	Demonster		Typical Performance		
		Unit	-40°C	+25°C	85°C	
VCC = +5.0 V VDD = +28 V I _{SERIES} = 50 mA	Switching Speed: TX T _{PLH} TPHL Tr Tf	50% CTL to 90% Voltage 50% CTL to 10% Voltage 10% - 90% 90% - 10%	ns ns ns ns	200 350 180 200	330 420 320 250	500 500 480 320
	Switching Speed: RX T _{PLH} TPHL Tr Tf	50% CTL to 90% Voltage 50% CTL to 10% Voltage 10% - 90% 90% - 10%	ns ns ns ns	200 360 180 220	350 430 330 280	520 520 500 350
VCC = +3.3 V VDD = +12 V	Switching Speed: TX T _{PLH} T _{PHL} Tr Tf	50% CTL to 90% Voltage 50% CTL to 10% Voltage 10% - 90% 90% - 10%	ns ns ns ns	200 530 180 300	400 580 370 320	570 630 550 360
VDD = +12 V I _{SERIES} = 50 mA	Switching Speed: RX T _{PLH} T _{PHL} Tr Tf	50% CTL to 90% Voltage 50% CTL to 10% Voltage 10% - 90% 90% - 10%	ns ns ns ns	200 600 180 330	400 640 390 360	580 700 570 400

6. Switching parameters for the shunt output are not listed since they can only be measured with a diode switch.

3

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

changes to the product(s) or information contained herein without notice.

PIN Diode Driver for Series / Shunt High Power Switches

Rev. P2

Switching Speed When Driving M/A-COM MASW-000834-13560T Switch⁷:

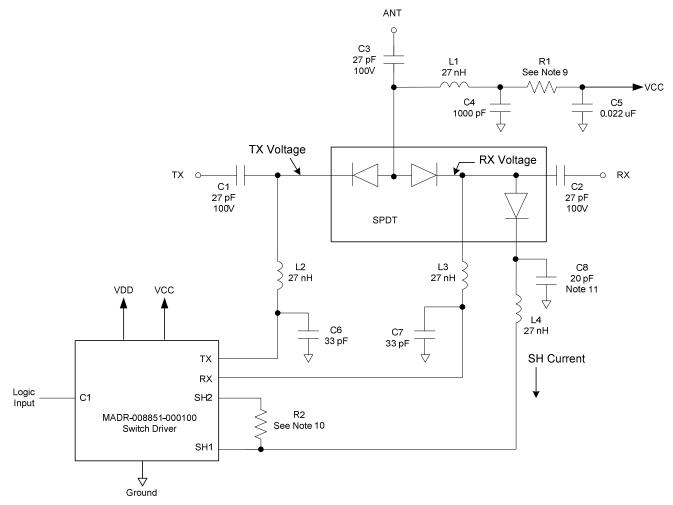
Ta stime O anditions	O. make at	Symbol Parameter	Unit	Typical Performance			
Testing Conditions	Symbol			-40°C	+25°C	85°C	
	TX Series Diode T _{ON} T _{OFF} Tr Tf	50% CTL to 90% RF 50% CTL to 10% RF 10% - 90% RF 90% - 10% RF	ns ns ns ns	250 400 80 200	450 520 200 250	600 600 300 300	
$\label{eq:VCC} \begin{array}{l} VCC = +5.0 \ V \\ VDD = +28 \ V \\ I_{SERIES} = 50 \ mA \\ I_{SHUNT} = 50 \ mA \end{array}$	RX Series Diode T _{ON} T _{OFF} Tr Tf	50% CTL to 90% RF 50% CTL to 10% RF 10% - 90% RF 90% - 10% RF	ns ns ns ns	370 220 150 80	600 300 300 120	840 350 500 160	
	RX Shunt Diode T _{ON} T _{OFF} Tr Tf	50% CTL to 90% Current 50% CTL to 10% Current 10% - 90% Current 90% - 10% Current	ns ns ns ns	480 100 470 90	550 100 540 90	620 100 610 90	
VCC = +3.3 V VDD = +12 V I _{SERIES} = 50 mA I _{SHUNT} = 35 mA	TX Series Diode T _{ON} T _{OFF} Tr Tf	50% CTL to 90% RF 50% CTL to 10% RF 10% - 90% RF 90% - 10% RF	ns ns ns ns	460 630 280 400	620 770 300 350	820 900 340 320	
	RX Series Diode T _{ON} T _{OFF} Tr Tf	50% CTL to 90% RF 50% CTL to 10% RF 10% - 90% RF 90% - 10% RF	ns ns ns ns	630 470 400 280	880 550 450 200	1200 650 550 200	
	RX Shunt Diode T _{ON} T _{OFF} Tr Tf	50% CTL to 90% Current 50% CTL to 10% Current 10% - 90% Current 90% - 10% Current	ns ns ns ns	860 100 850 90	850 100 840 90	900 100 880 90	

7. Switching parameters were measured with a 10 dBm, 2 GHz RF input.

4

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.


changes to the product(s) or information contained herein without notice.

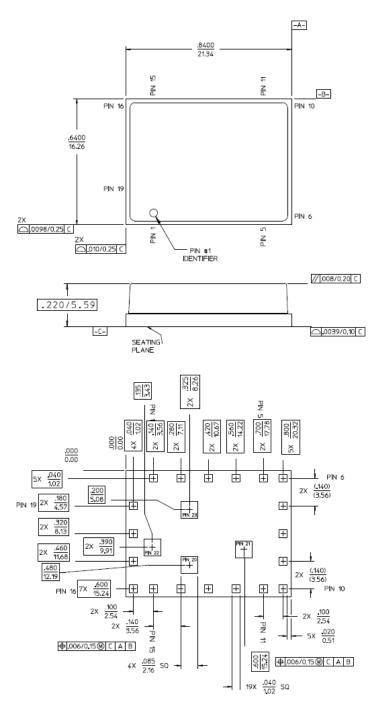
PIN Diode Driver for Series / Shunt High Power Switches

Rev. P2

Driver and SPDT Schematic for 2 GHz Applciations^{8,9,10,11,12,13,14}

- 8. Forward Bias Diode Voltage: ΔVf is ~0.9V @ 22 mA; ΔVf is ~1.0V @ 35 mA
- 9. R1 is calculated by (VCC ΔVf) / I_{series} 22 Ω, where I_{series} is the desired forward bias current for the series diodes. For 20 mA load current, R1 = 178 Ω @ VCC = 5.0V and 93 Ω @ VCC = 3.3V. For 50 mA load current, R1 = 57.6 Ω @ VCC = 5.0V and 24 Ω @ VCC = 3.3V.
- R2 is calculated by (VDD ΔVf) / I_{shunt}, where I_{shunt} is the desired forward bias current for the shunt diode. The power rating is calculated by I_{shunt} x (VDD ΔVf). For 28V VDD and 20 mA of I_{shunt}, R2 should use a 1W, 1.3k ohm resistor.
- 11. C8 is already built-in for M/A-COM MASW-000834-13560T switch.
- 12. The current through the back-biased diodes will be the leakage current for the diodes
- C1-C7, L1-L4, R1, R2, and the switch are discrete components that should be installed on the user's board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz. For other frequency band, C1-C3 and L1-L4 should be adjusted.
- 14. The switching speed will be affected by the value of VCC, VDD, C6, C7, the size of the PIN diodes, and the forward bias currents. Use higher VCC and VDD, and lower forward bias currents for faster switching.
- 5

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. North America Tel: 800.366.2266
Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383
Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

PIN Diode Driver for Series / Shunt High Power Switches

Rev. P2

Lead-Free Land Grid Array, 0.64 in x 0.84 in [†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

6

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400 • India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588
 - Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.