BD246, A, B, C

PNP SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

The BD246 series are PNP power transistors in a TO3PN envelope.
They are the power transistors for power amplifier and high-speed-switching applications.
The complementary is BD245, A, B, C
Compliance to RoHS.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings		Value	Unit
$\mathrm{V}_{\text {ceo }}$	Collector-Emitter Voltage ($\mathrm{I}_{\mathrm{c}}=-30 \mathrm{~mA}$)	BD246	-45	V
		BD246A	-60	
		BD246B	-80	
		BD246C	-100	
$\mathrm{V}_{\text {cer }}$	Collector-Emitter Voltage ($\mathrm{R}_{\mathrm{BE}}=100 \Omega$)	BD246	-55	V
		BD246A	-70	
		BD246B	-90	
		BD246C	-115	
$\mathrm{V}_{\text {EBO }}$	Emitter-Base Voltage		-5.0	V
I_{C}	Collector Current	IC_{C}	-10	A
		$\mathrm{I}_{\text {см }}$	-15	
I_{B}	Base Current		-3	A
P_{T}	Power Dissipation	$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$	80	Watts
T_{J}	Junction Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
TS	Storage Temperature		-65 to +150	

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit
$\mathbf{R}_{\text {thJc }}$	Junction to Case Thermal Resistance	1.56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathbf{R}_{\text {thJA }}$	Junction to free air Thermal Resistance	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$

BD246, A, B, C

ELECTRICAL CHARACTERISTICS

$\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Ratings	Test Condition(s)		Min	Typ	Mx	Unit
$\mathrm{I}_{\text {ces }}$	Collector- Emitter Cut-off Current	$\mathrm{V}_{\text {CE }}=-55 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$	BD246	-	-	-0.4	mA
		$\mathrm{V}_{\text {CE }}=-70 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$	BD246A				
		$\mathrm{V}_{\text {CE }}=-90 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$	BD246B				
		$\mathrm{V}_{C E}=-115 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$	BD246C				
$\mathrm{I}_{\text {ceo }}$	Collector Cut-off Current	$V_{\text {CE }}=-30 \vee, \mathrm{I}_{\mathrm{B}}=0$	BD246	-	-	-0.7	mA
		$V_{\text {CE }}=-30 \mathrm{~V}$, $\mathrm{I}_{\text {b }}=0$	BD246A				
		$\mathrm{V}_{\text {CE }}=-60 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	BD246B				
$\mathrm{I}_{\text {ebo }}$	Emitter Cut-off Current	$\mathrm{V}_{\mathrm{EB}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		-	-	-1	mA
$\mathrm{V}_{\text {ceo }}$	Collector- Emitter Breakdown Voltage (*)	$\mathrm{I}_{\mathrm{C}}=-30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	BD246	-45	-	-	V
			BD246A	-60	-	-	
			BD246B	-80	-	-	
			BD246C	-100	-	-	
$\mathrm{h}_{\text {FE }}$	DC Current Gain (*)	$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}$		40	-	-	-
		$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}$		20	-	-	
		$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}$		4	-	-	
$\mathrm{V}_{\text {CE(SAT) }}$	Collector-Emitter saturation Voltage (*)	$\mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-300 \mathrm{~mA}$		-	-	-1	V
		$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-2.5 \mathrm{~A}$		-	-	-4	
V_{BE}	Base-Emitter Voltage (*)	$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}$		-	-	-1.6	V
		$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}$		-	-	-3	
$\mathrm{h}_{\text {fe }}$	Small Signal forward Current Transfer ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		20	-	-	-
$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	Small Signal forward Current Transfer ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		3	-	-	

RESISTIVE-LOAD-SWITCHING CHARACTERISTICS AT $25^{\circ} \mathrm{C}$ CASE TEMPERATURE

Symbol	Ratings	Test Condition(s)	Min	Typ	Mx	Unit
$\mathrm{t}_{\text {on }}$	Turn-on Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}(\text { on })}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(\text { (ff })}= \\ & 100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{BE} \text { (off) }}=3.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \Omega, \mathrm{t}_{\mathrm{p}}=20 \\ & \mu \mathrm{~S} \\ & \mathrm{dc}<2 \% \end{aligned}$	-	0.2	-	$\mu \mathrm{S}$
$t_{\text {off }}$	Turn-off Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}(\mathrm{on})}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(\text { off })}= \\ & 100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{BE}(\text { off })}=3.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \Omega, \mathrm{t}_{\mathrm{p}}=20 \\ & \mu \mathrm{~S} \\ & \mathrm{dc}<2 \% \end{aligned}$	-	0.8	-	

BD246, A, B, C

MECHANICAL DATA CASE TO3PN Non Isolated Plastic Package

DIMENSIONS (mm)		
	Min.	Max.
A	15.20	1600
B	1.90	2.10
C	4.60	5.00
D	3.10	3.30
E		9.60
F		2.00
G	0.35	0.55
H		1.40
J	5.35	5.55
K	20.00	
L	19.60	20.20
M	0.95	1.25
N		2.00
O		3.00
P		4.00
R		4.00
S		1.80
T	4.80	5.20

Pin 1:	Base
Pin 2:	Collector
Pin 3:	Emitter

Revised August 2012

[^0]
[^0]: Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

