

AM1431P

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SC70-6 saves board space
- Fast switching speed
- High performance trench technology

PRODUCT SUMMARY			
V _{DS} (V)	V) $r_{DS(on)}$ (OHM) I_D (A		
-30	$0.112@V_{CS}=-10V$	-3.1	
	$0.172 @V_{CS} = -4.5V$	-2.5	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	-30	W	
Gate-Source Voltage		V_{GS}	±20	V	
C (D C (a	T _A =25°C	т	-3.1		
Continuous Drain Current ^a	T _A =25°C	I_{D}	-2.5	Α	
Pulsed Drain Current ^b		I_{DM}	-10		
Continuous Source Current (Diode Conduction) ^a		I_S	±1.4	A	
D a	T _A =25°C	D	1.56	W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	$\Gamma_{\rm D}$	0.81	'	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Units	
N	$t \le 5 \sec$	D	80	°C/W	
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	125		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

AM1431P

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)						
D	6 1 1	TE ACC PAR	Limits			TT •4
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Static						
Gate-Threshold Voltage	VGS(th)	$V_{DS}=V_{GS}$, $I_D=-250$ uA	-1			V
Gate-Body Leakage	IGSS	$V_{DS} = 0 V, V_{CS} = \pm 20 V$			±100	nA
Zero Gate Voltage Drain Current	Ipss	$V_{DS} = -24 V, V_{GS} = 0 V$	-1		-1	uA
Zero Cate voltage Dain Current	IDSS	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10	uA
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-5			Α
D · C O D · A		V_{GS} =-10 V, I_D =-3.1 A			79	mΩ
Drain-Source On-Resistance ^A	TDS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -2.5 \text{ A}$			110	
Forward Tranconductance ^A	gs	$V_{DS} = -5 \text{ V}, I_{D} = -3.1 \text{ A}$		9		S
Diode Forward Voltage	Vsd	$I_S = -0.46 A, V_{GS} = 0 V$		-0.65		V
Dynamic ^b						
Total Gate Charge	Qg	X/ - 10X/X/ - 45X/		7.2		nC
Gate-Source Charge	Qgs	V_{DS} =-10 V, V_{GS} =-4.5 V, I _D =-3.1 A		1.7		
Gate-Drain Charge	Qgd	$I_D = -3.1 \text{ A}$		1.5		
Turn-On Delay Time	t _{d(on)}			10		
Rise Time	tr	$V_{DD} = -10 \text{ V}, I_L = -1 \text{ A},$		9		
Turn-Off Delay Time	td(off)	V_{GEN} = -4.5 V, R_G = 6 Ω		27		ns
Fall-Time	t _f			11		

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.
- c. Repetitive rating, pulse width limited by junction temperature.