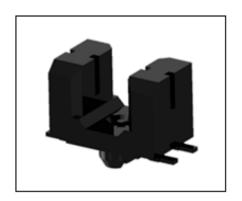
Photo Interrupter

KIT2015S

Description


The KIT2015S photo interrupter high-performance standard type, combines high-output GaAs IRED with high sensitivity phototransistor.

Features

- Transmissive with phototransistor output
- 2.2mm gap, 0.3mm slit with
- Compact size
- Lead Free and RoHS Compliant.
- MSL 3

Applications

- Cameras.
- Encoders.
- Printers.
- DVD.

Absolute Maximum Ratings (T_a=25°C, Unless otherwise specified)

Characteristic		Symbol	Ratings	Unit
Input LED	Power Dissipation	P _D	75	mW
	Forward Current	l _F	50	mA
	Reverse Voltage	V _R	6	V
	Pulse Forward Current *1	I _{FP}	0.5	А
Output Detector	Collector Dissipation	Pc	75	mW
	Collector Current	I _C	20	mA
	C-E Voltage	V _{CEO}	35	V
	E-C Voltage	V _{ECO}	6	V
Operating Temperature *2		Topr.	-40 ~ +85	°C
Storage Temperature *2		Tstg.	-40 ~ +100	$^{\circ}$
Soldering Temperature *3		Tsol.	260	°C

^{*1 :} Pulse width tw \leq 100 μ s period T=10 ms

The contents of this data sheet are subject to change without advance notice for the purpose of improvement. When using this product, would you please refer to the latest specifications.

^{*2:} No icebound or dew

^{*3:} The soldering should be 0.3mm or more away from bottom of the case t=within 3sec

Electrical Characteristics ($T_a=25^{\circ}C$)

Characteristic		Symbol	Min.	Тур.	Max.	Unit	Condition
Input LED	Forward Voltage	V _F	-	1.2	1.4	V	I _F =20 mA
	Reverse Current	I _R	1	-	10	μA	V _R =5V
	Peak Wavelength	λ_{P}	-	940	-	nm	$I_{\text{F}}=20~\text{mA}$
Output Detector	Dark Current	I _{CEO}	-	1	100	nA	V _{CE} =10V, 0Lux
	Peak Wavelength	λ_{P}		880	-	nm	-
Transmission Characteristics	Light Current (Collector Current)	Ic	0.10	-	0.65	mA	I _F =5 mA, V _{CE} =5V Non shading
	Leakage Current	I _{CEOD}	-	0.5	10	μΑ	I _F =5 mA, V _{CE} =5V Shading
	C-E Saturation Voltage	V _{CE} (sat)	-	0.15	0.4	V	I _F =10 mA, I _C =0.04 mA
Response Time	Rise Time	tr	-	50	150	μs	V_{CC} =5 V , I_{C} =1 mA R_{L} =1 $k\Omega$
	Fall Time	tf	-	50	150	μs	

Circuit for measuring response time

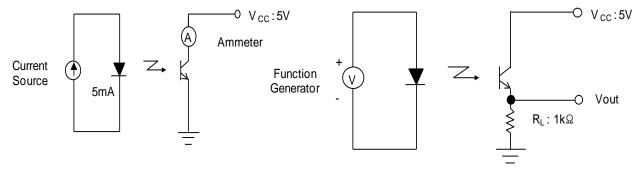


Fig 1. Test Circuit for I_C

Fig 2. Test Circuit for Rise and Fall Time

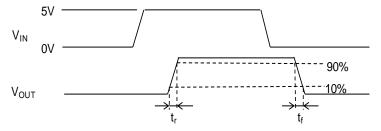
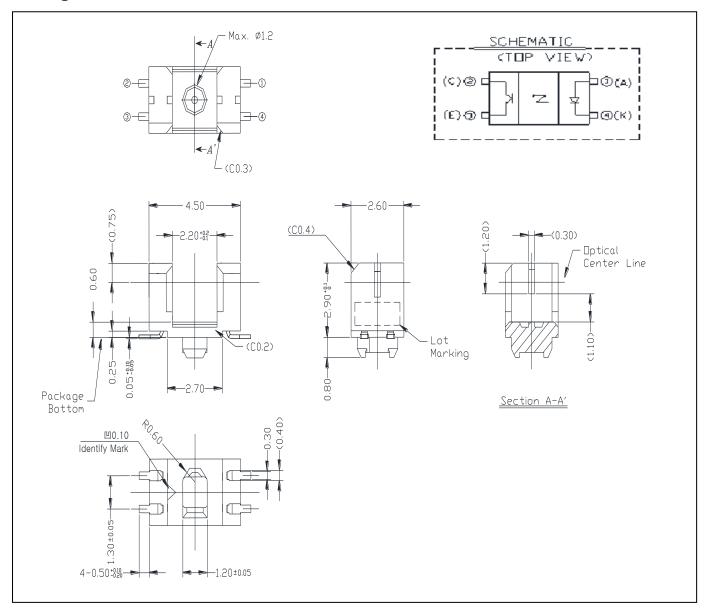



Fig 3. Definitions for Response Times

The contents of this data sheet are subject to change without advance notice for the purpose of improvement. When using this product, would you please refer to the latest specifications.

Package Outline Dimensions

The contents of this data sheet are subject to change without advance notice for the purpose of improvement. When using this product, would you please refer to the latest specifications.