Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT

² D178004A, 178006A, 178016A, 178018A

8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD178004A, 178006A, 178016A and 178018A are 8-bit single-chip CMOS microcontrollers that incorporate hardware for digital tuning systems.

The CPU uses the 78K/0 architecture, which makes it easy to implement high-speed access to internal memory and control of peripheral hardware. Also, the instructions used are the high-speed 78K/0 instructions, suitable for system control.

The rich assortment of peripheral hardware includes an input/output port, 8-bit timer, A/D converter, serial interface, power-ON clear circuits, as well as a pre-scaler for digital tuning, a PLL frequency synthesizer and a frequency counter.

The μ PD178P018A, one-time PROM or EPROM versions which can be operated in the same supply voltage range as for the mask ROM versions, and various development tools, are also available.

For more information on functions, refer to the following User's Manuals. Be sure to read them when designing.

 μ PD178018A Subseries User's Manual: to be prepared 78K/0 Series User's Manual Instruction: U12326E

FEATURES

· Internal high-capacity ROM and RAM

Items	Program Memory		Data Memory	
Product Name	ROM	Internal High-Speed RAM	Buffer RAM	Internal Expanded RAM
μPD178004A	32 Kbytes	1 024 bytes	32 bytes	Not provided
μPD178006A	48 Kbytes			
μPD178016A				2 048 bytes
μPD178018A	60 Kbytes			

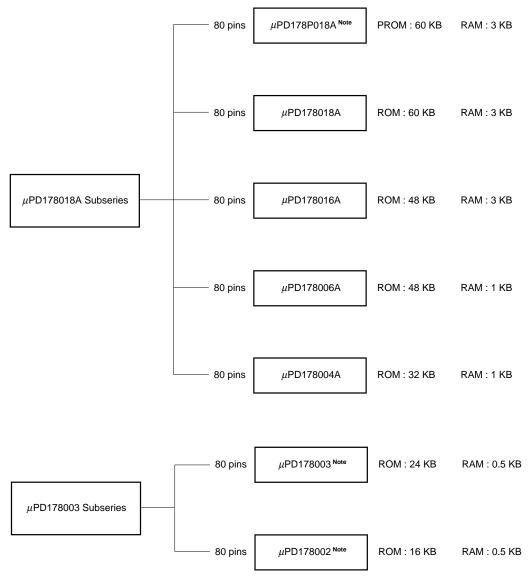
- Instruction Cycle: 0.44 μs (4.5-MHz crystal oscillator used)
- Large array of on-chip peripheral hardware
 General-purpose input/output port, A/D converter, serial interface, timer, frequency counter, power-ON clear circuits.
- On-chip hardware for a PLL frequency synthesizer.
 Dual modulus pre-scaler, programmable divider, phase comparator, charge pump.
- Vector interrupt sources: 17
- Supply Voltage: VDD = 4.5 to 5.5 V (during PLL operation)

 $V_{DD} = 3.5$ to 5.5 V (during CPU operation, when the system clock is fx/2 or lower)

 $V_{DD} = 4.5$ to 5.5 V (during CPU operation, when the system clock is fx)

The information in this document is subject to change without notice.

APPLICATIONS


Car stereo, home stereo systems.

ORDERING INFORMATION

Part Number	Package		
μPD178004AGC-×××-3B9	80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)		
μ PD178006AGC- \times \times -3B9	80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)		
μ PD178016AGC- \times \times -3B9	80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)		
μ PD178018AGC- \times \times -3B9	80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)		

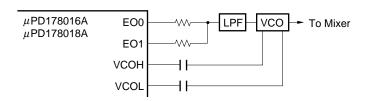
Remark ××× denotes the ROM code number. Also, the ROM code number becomes E×× when the I²C bus is used.

μ PD178018A SUBSERIES AND μ PD178003 SUBSERIES EXPANSION

Note Under development

OUTLINE OF FUNCTION

(1/2)


Product name		μPD178004A	μPD178006A	μPD178016A	μPD178018A	
Item						
Internal ROM (ROM configuration) memory		32 Kbytes (mask ROM)	48 Kbytes (mask ROM)		60 Kbytes (mask ROM)	
	High-speed RAM	1 024 bytes				
	Buffer RAM	32 bytes				
	Expansion RAM	Not provided				
General-purpose	register	8 bits × 32 register	rs (8 bits × 8 register	rs × 4 banks)		
Instruction cycle			uction execution time 8 μ s/3.56 μ s/7.11 μ s/		IHz crystal resonator)	
Instruction set		 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjustment, etc. 				
I/O port		Total : 62 pins CMOS input : 1 pin CMOS I/O : 54 pins N-ch open-drain I/O : 4 pins N-ch open-drain output : 3 pins				
A/D converter		8-bit resolution × 6 channels				
Serial interface		 3-wire/SBI/2-wire/I²C bus Note mode selectable : 1 channel 3-wire serial I/O mode (with automatic transfer/receive function of up to 32 byte) : 1 channel 				
Timer		Basic timer (timer carry FF (10 Hz)) : 1 channel 8-bit timer/event counter : 2 channels 8-bit timer (D/A converter: PWM output): 1 channel Watchdog timer : 1 channel				
Buzzer (BEEP) o	Buzzer (BEEP) output		1.5 kHz, 3 kHz, 6 kHz			
Vectored	Maskable	Internal: 8, externa	al: 7			
interrupt	Non-maskable	Internal: 1				
Source	Software	Internal: 1				
Test input	Test input		Internal: 1			

Note When using the I²C bus mode (including when this mode is implemented by program without using the peripheral hardware), consult your local NEC sales representative when you place an order for mask.

(2/2)

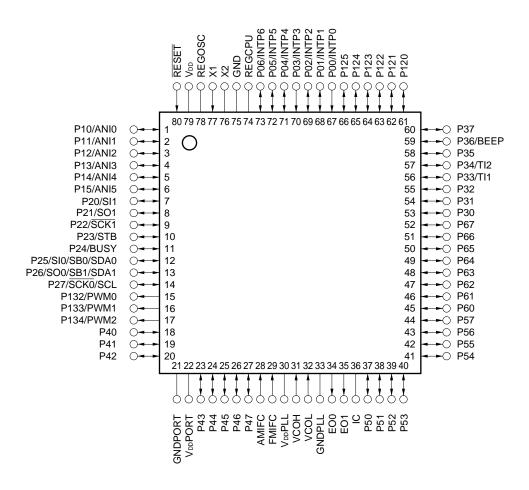
	Product name	μPD178004A	μPD178006A	μPD178016A	μPD178018A	
Item						
PLL frequency synthesizer	Division mode	Two types • Direct division mode (VCOL pin) • Pulse swallow mode (VCOH and VCOL pins)				
	Reference frequency	7 types selectable b	y program (1, 3, 5, 9,	10, 25, 50 kHz)		
	Charge pump	Error out output: 2	(EO0 and EO1 pins	Note 1)		
	Phase comparator	Unlock detectable	by program			
Frequency coun	ter	Frequency measurement AMIFC pin: for 450-kHz count FMIFC pin: for 450-kHz/10.7-MHz count				
D/A converter (F	PWM output)	8-/9-bit resolution × 3 channels (shared by 8-bit timer)				
Standby function		HALT mode STOP mode				
Reset		 Reset by RESET pin Internal reset by watchdog timer Reset by power-ON clear circuit (3-value detection) Detection of less than 4.5 V Note 2 (CPU clock: fx) Detection of less than 3.5 V Note 2 (CPU clock: fx/2 or less and on power application) Detection of less than 2.5 V Note 2 (in STOP mode) 				
Power supply vo	lltage	• V _{DD} = 3.5 to 5.5	V (with PLL operating V (with CPU operating V (with CPU operating V (with CPU operating V)	ing, CPU clock: fx/2	or less)	
Package		80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)				

Notes 1. The EO1 pin can be set to high impedance for the μ PD178016A and 178018A. The following shows an application example.

LPF: Low path filter

VCO: Voltage controlled oscillator

- To lock to a target frequency at high speed
 Setting the EO0 and EO1 pins to error out output improves the output current potential and LPF voltage control potential.
- Normal state
 Setting only the EO0 pin to error out output maintains the LPF stable.
- **2.** These voltage values are maximum values. Reset is actually executed at a voltage lower than these values.


TABLE OF CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	6
2.	BLOCK DIAGRAM	8
3.	PIN FUNCTION LIST	_
	3.2 PINS OTHER THAN PORT PINS	
	3.3 INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	. 11
4.	MEMORY SPACE	. 14
5.	PERIPHERAL HARDWARE FUNCTION FEATURES	. 15
	5.1 PORTS	
	5.2 CLOCK GENERATOR	
	5.3 TIMER	_
	5.4 BUZZER OUTPUT CONTROL CIRCUIT	
	5.5 A/D CONVERTER	_
	5.6 SERIAL INTERFACES	_
	5.7 PLL FREQUENCY SYNTHESIZER	
	5.8 FREQUENCY COUNTER	
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS	. 23
	6.1 INTERRUPT FUNCTIONS	. 23
	6.2 TEST FUNCTION	. 26
7.	STANDBY FUNCTION	. 27
8.	RESET FUNCTION	. 27
9.	INSTRUCTION SET	. 28
10.	ELECTRICAL SPECIFICATIONS	. 30
11.	PACKAGE DRAWINGS	. 46
12.	RECOMMENDED SOLDERING CONDITIONS	. 47
ΑP	PENDIX A. DIFFERENCES BETWEEN μ PD178018A AND μ PD178018 SUBSERIES	. 48
	PENDIX B. DEVELOPMENT TOOLS	
AP	FENDIA B. DEVELOPINIEN I TOOLS	. 49
ΔΡ	PENDLY C RELATED DOCLIMENTS	51

1. PIN CONFIGURATION (TOP VIEW)

• 80-PIN PLASTIC QFP (14 \times 14 mm, 0.65 mm pitch)

μPD178004AGC-xxx-3B9, 178006AGC-xxx-3B9 μPD178016AGC-xxx-3B9, 178018AGC-xxx-3B9

Cautions 1. Connect the Internally Connected (IC) pin to GND directly.

- 2. Connect VDDPORT and VDDPLL pins to VDD.
- 3. Connect the GNDPORT and GNDPLL pins to GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via a $0.1-\mu F$ capacitor.

AMIFC : AM Intermediate Frequency Counter Input

AN10 to AN15: A/D Converter Input

BEEP : Buzzer Output
BUSY : Busy Output
EO0, EO1 : Error Out Output

FMIFC : FM Intermediate Frequency Counter Input

GND : Ground
GNDPLL : PLL Ground
GNDPORT : Port Ground

IC : Internally Connected INTP0 to INTP6 : Interrupt Inputs

P00 to P06 : Port 0

P10 to P15 : Port 1
P20 to P27 : Port 2
P30 to P37 : Port 3
P40 to P47 : Port 4
P50 to P57 : Port 5
P60 to P67 : Port 6

P120 to P125 : Port 12

P132 to P134 : Port 13 PWM0 to PWM2 : PWM Output

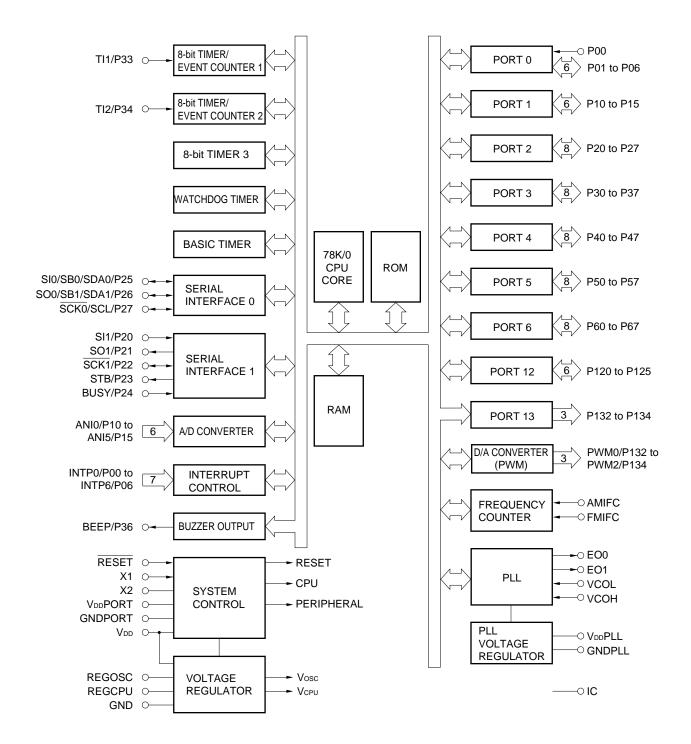
REGCPU : Regulator for CPU Power Supply
REGOSC : Regulator for Oscillator Circuit

RESET : Reset Input

SB0, SB1 : Serial Data Bus Input/Output

SCK0, SCK1 : Serial Clock Input/Output

SCL : Serial Clock Input/Output


SDA0, SDA1 : Serial Data Input/Output

SI0, SI1 : Serial Data Input
SO0, SO1 : Serial Data Output
STB : Strobe Output
TI1, TI2 : Timer Clock Input
VCOL, VCOH : Local Oscillator Input

VDD : Power Supply
VDDPLL : PLL Power Supply
VDDPORT : Port Power Supply

X1, X2 : Crystal Oscillator Connection

2. BLOCK DIAGRAM

Remark The internal ROM and RAM capacities depend on the version.

3. PIN FUNCTION LIST

3.1 PORT PINS

Pin Name	I/O	Fu	nction	After Reset	Alternate Function	
P00	Input	Port 0.	Input only	Input	INTP0	
P01 to P06	I/O	7-bit input/output port.	Input/output mode can be specified bit-wise.	Input	INTP1 to INTP6	
P10 to P15	I/O	Port 1. 6-bit input/output port. Input/output mode can be specified bit-wise.			ANI0 to ANI5	
P20	I/O	Port 2.		Input	SI1	
P21		8-bit input/output port. Input/output mode can be specified	d hit wice		SO1	
P22		inputoutput mode can be specified	d bit-wise.		SCK1	
P23					STB	
P24					BUSY	
P25					SI0/SB0/SDA0	
P26					SO0/SB1/SDA1	
P27					SCK0/SCL	
P30 to P32	I/O	Port 3.		Input	_	
P33		8-bit input/output port.	d hit wise		TI1	
P34		Input/output mode can be specified	d bit-wise.		TI2	
P35						
P36					BEEP	
P37					_	
P40 to P47	I/O	Port 4. 8-bit input/output port. Input/output mode can be specified in 8-bit units. Test input flag (KRIF) is set to 1 by falling edge detection.			_	
P50 to P57	I/O	Port 5. 8-bit input/output port. Input/output mode can be specified	d bit-wise.	Input	_	
P60 to P63	I/O	Port 6. 8-bit input/output port. Input/output mode can be	Middle voltage N-ch open drain input/output port. LEDs can be driven directly.	Input	_	
1.04.0107		specified bit-wise.	LLDS out bo attroff directly.	-		
P120 to P125	I/O	Port 12. 6-bit input/output port. Input/output mode can be specified	Input	_		
P132 to P134	Output	Port 13. 3-bit output port. N-ch open-drain output port.		_	PWM0 to PWM2	

3.2 PINS OTHER THAN PORT PINS

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 to	Input	External maskable interrupt inputs with specifiable valid edges (rising edge, falling edge, both rising and falling edges).	Input	P00 to P06
SI0	Input	Serial interface serial data input	Input	P25/SB0/SDA0
SI1				P20
SO0	Output	Serial interface serial data output	Input	P26/SB1/SDA1
SO1				P21
SB0	I/O	Serial interface serial data input/output	Input	P25/SI0/SDA0
SB1				P26/SO0/SDA1
SDA0				P25/SI0/SB0
SDA1				P26/S00/SB1
SCK0	I/O	Serial interface serial clock input/output	Input	P27/SCL
SCK1				P22
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24
TI1	Input	External count clock input to 8-bit timer (TM1)	Input	P33
TI2		External count clock input to 8-bit timer (TM2)		P34
BEEP	Output	Buzzer output	Input	P36
ANI0 to ANI5	Input	A/D converter analog input	Input	P10 to P15
PWM0 to PWM2	Output	PWM output	_	P132 to P134
EO0, EO1	Output	Error out output from charge pump of the PLL frequency synthesizer	_	_
VCOL	Input	Inputs PLL local band frequency (In HF, MF mode)	_	_
VCOH	Input	Inputs PLL local band frequency (In VHF mode)	_	_
AMIFC	Input	Inputs AM intermediate frequency counter	_	_
FMIFC	Input	Inputs FM intermediate frequency counter	_	_
RESET	Input	System reset input	_	_
X1	Input	System clock oscillation resonator connection	_	_
X2	_		_	_
REGOSC	_	Oscillation regulator. Connected to GND via a 0.1-µF capacitor.	_	_
REGCPU		CPU power supply regulator. Connected to GND via a 0.1 - μ F capacitor.	_	_
V _{DD}	_	Positive power supply	_	_
GND	_	Ground	_	_
VDDPORT	_	Positive power supply for port block	_	_
GNDPORT	_	Ground for port block	_	_
V _{DD} PLL Note	_	Positive power supply for PLL	_	_
GNDPLL Note	_	Ground for PLL	_	_
IC	_	Internally connected. Connected to GND or GNDPORT.	_	_

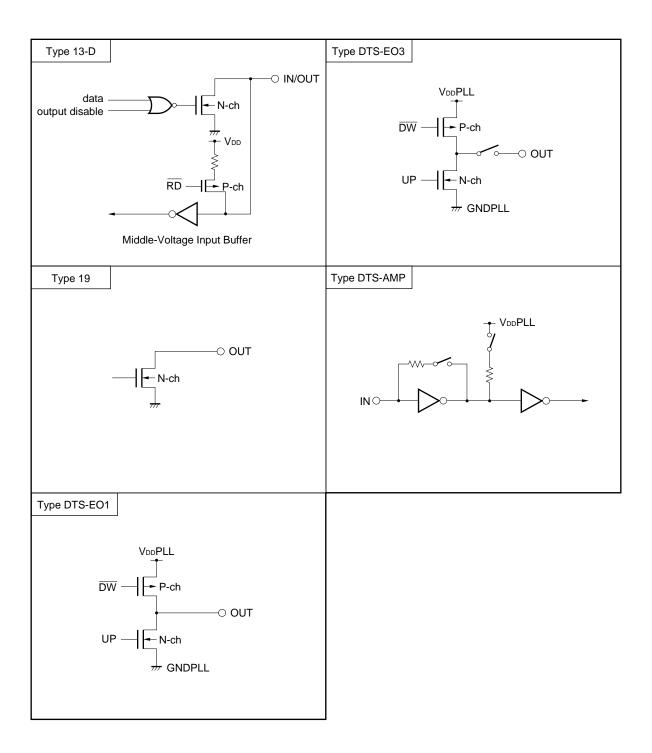
Note Connect a capacitor of approximately 1 000 pF between the VDDPLL pin and GNDPLL pin.

3.3 INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

Table 3-1 shows the input/output circuit types of pins and the recommended conditions for unused pins. Refer to Figure 3-1 for the configuration of the input/output circuit of each type.

Table 3-1. I/O Circuit Type of Each Circuit

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	2	Input	Connected to GND or GNDPORT
P01/INTP1 to P06/INTP6	8	I/O	Set in general-purpose input port mode by software and
P10/ANI0 to P15/ANI5	11-A		individually connected to VDD, VDDPORT, GND, or GNDPORT via resistor.
P20/SI1	8		via resistor.
P21/SO1	5		
P22/SCK1	8		
P23/STB	5		
P24/BUSY	8		
P25/SI0/SB0/SDA0 P26/SO0/SB1/SDA1 P27/SCK0/SCL	10		
P30 to P32	5		
P33/TI1, P34/TI2	8		
P35 P36/BEEP P37	5		
P40 to P47	5-G		
P50 to P57	5		
P60 to P63	13-D		
P64 to P67	5		
P120 to P125]		
P132/PWM0 to P134/PWM2	19	Output	Set to low-level output by software and open
EO0	DTS-EO1		Open
EO1	DTS-EO3 Note		
VCOL, VCOH	DTS-AMP	Input	Set to disabled status by software and open
AMIFC, FMIFC]		
IC	_	_	Connected to GND or GNDPORT directly


Note For the μ PD178004A and 178006A, the I/O circuit type is DTS-EO1.

Type 2 Type 8 IN O data OIN/OUT output disable Schmitt-Triggered Input with Hysteresis Characteristics Type 10 Type 5 Vdd V_{DD} data data _ ►P-ch -⊙IN/OUT O IN/OUT open-drain output ⊢N-ch output disable disable input enable Type 11-A Type 5-G V_{DD} data P-ch data OIN/OUT output O IN/OUT disable comparator output N-ch disable VREF (Threshold voltage) input enable

Figure 3-1. Pin Input/Output Circuit of List (1/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

Figure 3-1. Pin Input/Output Circuit of List (2/2)

Remark All VDD and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as VDDPORT and GNDPORT, respectively.

4. MEMORY SPACE

Figure 4-1 shows the μ PD178004A, 178006A, 178016A, and 178018A memory map.

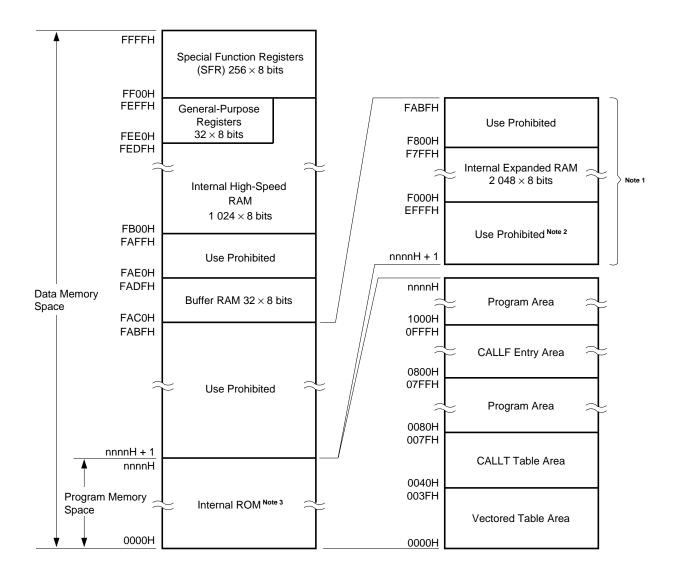


Figure 4-1. Memory Map

- **Notes 1.** Available only for μ PD178016A and 178018A
 - 2. The $\mu PD178018A$ does not contain this use prohibited area.
 - 3. The internal ROM capacity depends on the version (see the table below).

Corresponding Product	Internal ROM Last Address	
Name	nnnnH	
μPD178004A	7FFFH	
μPD178006A, 178016A	BFFFH	
μPD178018A	EFFFH	

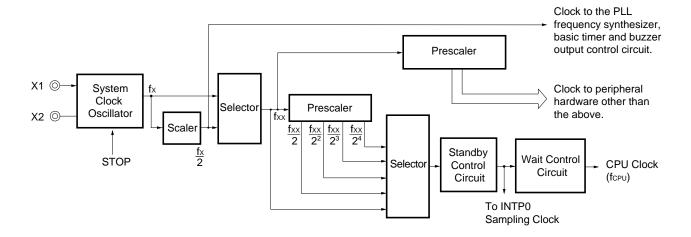
5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 PORTS

The following 3 types of I/O ports are available.

•	CMOS input (P00)	:	1
•	CMOS input/output (P01 to P06, port 1 to port 5, P64 to P67, port 12)	:	54
•	N-channel open-drain input/output (P60 to P63)	:	4
•	N-ch open drain output (Port 13)	:	3
	Total	:	62

Table 5-1. Port Functions

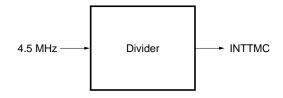

Name	Pin Name	Function		
Port 0	P00	Dedicated input port pins		
	P01 to P06	Input/output port pins. Input/output specifiable bit-wise.		
Port 1	P10 to P15	Input/output port pins. Input/output specifiable bit-wise.		
Port 2	P20 to P27	Input/output port pins. Input/output specifiable bit-wise.		
Port 3	P30 to P37	Input/output port pins. Input/output specifiable bit-wise.		
Port 4	P40 to P47	Input/output port pins. Input/output specifiable in 8-bit units. Test flag (KRIF) is set to 1 by falling edge detection.		
Port 5	P50 to P57	Input/output port pins. Input/output specifiable bit-wise.		
Port 6	P60 to P63	N-channel open-drain input/output port pins. Input/output specifiable bit-wise. LED direct drive capability.		
	P64 to P67	Input/output port pins. Input/output specifiable bit-wise.		
Port 12	P120 to P125	Input/output port pins. Input/output specifiable bit-wise.		
Port 13	P132 to P134	N-ch open drain output port.		

5.2 CLOCK GENERATOR

The instruction execution time can be changed as follows.

 $0.44 \,\mu\text{s}/0.88 \,\mu\text{s}/1.78 \,\mu\text{s}/3.56 \,\mu\text{s}/7.11 \,\mu\text{s}/14.22 \,\mu\text{s}$ (@ 4.5-MHz crystal oscillator with system clock.)

Figure 5-1. Clock Generator Block Diagram


5.3 TIMER

The μ PD178004A, 178006A, 178016A, and 178018A incorporate 5 channels of the timer.

Basic timer
 8-bit timer/event counter
 8-bit timer (D/A converter) Note
 Watchdog timer
 1 channel
 1 channel

Note Used is shared with the 8/9-bit resolution × 3-channel D/A converter (PWM output).

Figure 5-2. Basic Timer Block Diagram

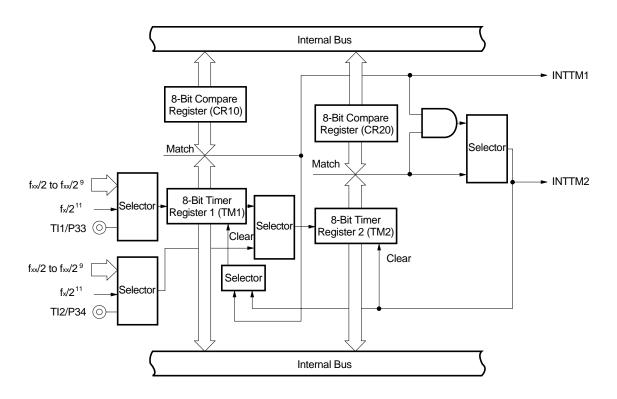
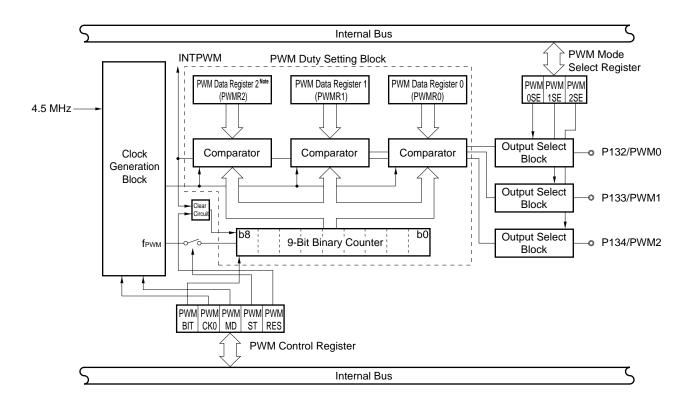



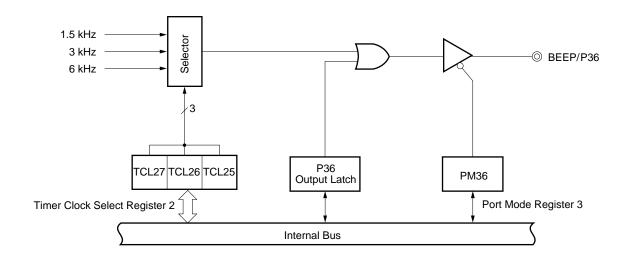
Figure 5-3. 8-Bit Timer/Event Counter Block Diagram

Figure 5-4. 8-Bit Timer (D/A Converter) Block Diagram

Note The PWM data register 2 (PWMR2) is multiplexed with the PWM timer register (PWMTMR).

Prescaler

| The description of the prescaler | The prescaler

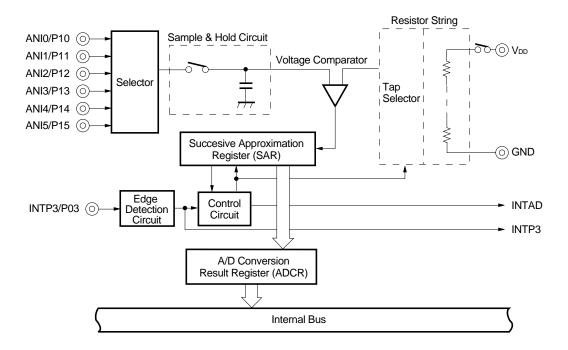

Figure 5-5. Watchdog Timer Block Diagram

5.4 BUZZER OUTPUT CONTROL CIRCUIT

The clock with the following frequency can be output as a buzzer output.

• 1.5 kHz/3 kHz/6 kHz (@ 4.5-MHz crystal oscillator with system clock)

Figure 5-6. Buzzer Output Control Circuit Block Diagram


5.5 A/D CONVERTER

An A/D converter of 8-bit resolution \times 6 channels is incorporated.

The following two types of the A/D conversion operation start-up methods are available.

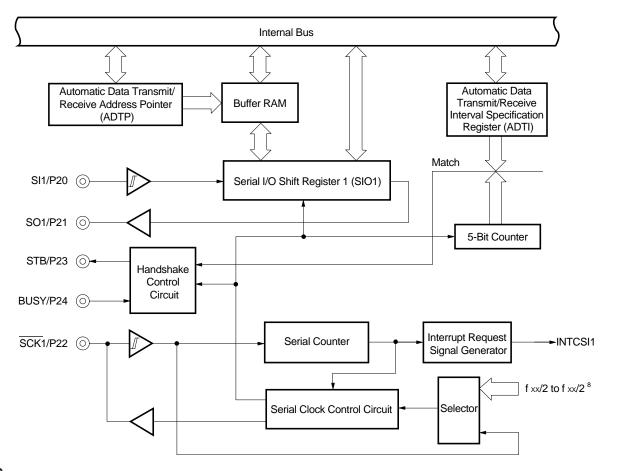
- · Hardware start
- Software start

Figure 5-7. A/D Converter Block Diagram

5.6 SERIAL INTERFACES

2 channels of the clocked serial interface are incorporated.

- Serial interface channel 0
- Serial interface channel 1


Table 5-2. Types and Functions of Serial Interface

Function	Serial Interface Channel 0	Serial Interface Channel 1
3-wire serial I/O mode	○ (MSB/LSB first switchable)	○ (MSB/LSB first switchable)
3-wire serial I/O mode with automatic transmission/ reception function	_	(MSB/LSB first switchable)
SBI (serial bus interface) mode	O (MSB first)	_
2-wire serial I/O mode	O (MSB first)	_
I ² C Bus Mode	O (MSB first)	_

Internal Bus SI0/SB0/SDA0/P25 (O) Serial I/O Shift Output Selector Register 0 (SIO0) Latch SO0/SB1/SDA1/P26 (O) Busy/Acknowledge Output Circuit Selector Bus Release/Command/ Acknowledge Detection Circuit Interrupt Request ► INTCSI0 Signal Generator SCK0/SCL/P27 (O) Serial Clock Counter fxx/2 to fxx/2 8 Serial Clock Selector Control Circuit

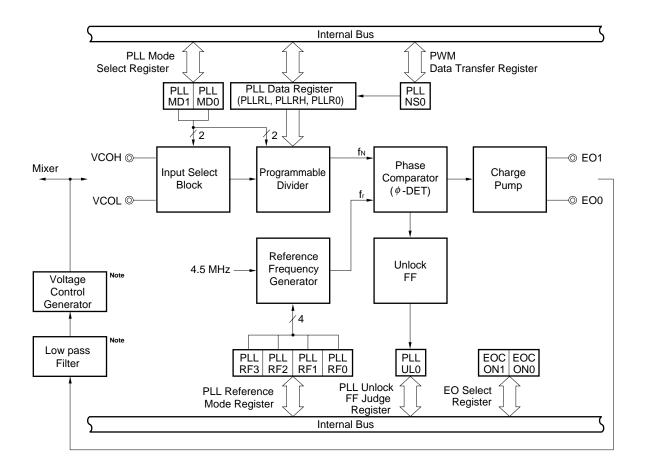
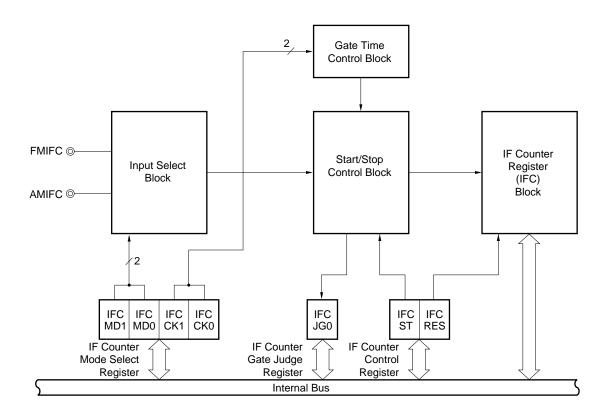

Figure 5-8. Serial Interface Channel 0 Block Diagram

Figure 5-9. Serial Interface Channel 1 Block Diagram

5.7 PLL FREQUENCY SYNTHESIZER

Figure 5-10. PLL Frequency Synthesizer Block Diagram


Note External circuit

Cautions 1. Be sure to set EOCON0 to 0.

2. For the $\mu\text{PD178004A}$ and 178006A, do not set EOCON1 to 1.

5.8 FREQUENCY COUNTER

Figure 5-11. Frequency Counter Block Diagram

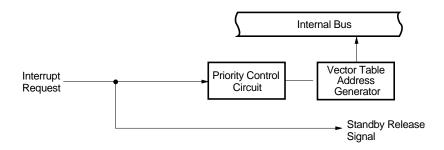
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 INTERRUPT FUNCTIONS

Interrupt functions include three types and 17 sources, as shown below.

Non-maskable: 1Maskable : 15Software : 1

Table 6-1. Interrupt Source List


Interrupt	Note 1 Default		Interrupt Source	Internal/	Vector Table	Basic Configuration
Туре	Priority	Name	Trigger	External	Address	Type Note 2
Non- maskable	_	INTWDT	Watchdog timer overflow (watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTCSI0	End of serial interface channel 0 transfer	Internal	0014H	(B)
	9	INTCSI1	End of serial interface channel 1 transfer		0016H	
	10	INTTMC	Generation of match signal of basic timer		0018H	•
	11	INTPWM	Generation of match signal of 8-bit timer		001AH	
	12	INTTM1	Generation of match signal of 8-bit timer/ event counter 1		001CH	
	13	INTTM2	Generation of match signal of 8-bit timer/ event counter 2		001EH	
	14	INTAD	End of conversion by A/D converter		0020H	
Software	_	BRK	BRK instruction execution	Internal	003EH	(E)

Notes 1. The default priority is a priority order when two or more maskable interrupts are generated simultaneously. 0 is the highest order and 14, the lowest.

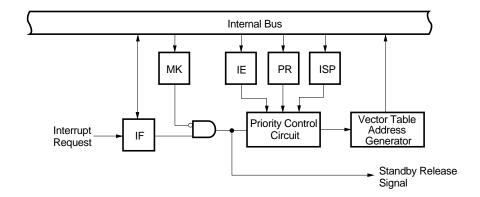

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1, respectively.

Figure 6-1. Interrupt Function Basic Configuration (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0)

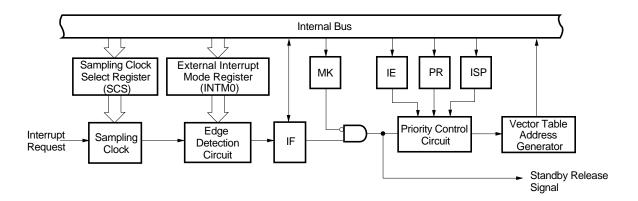
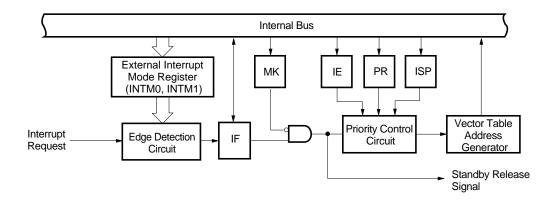
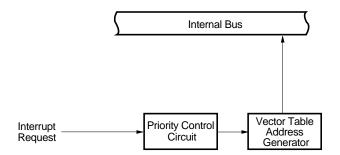
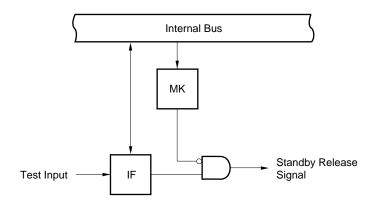




Figure 6-1. Interrupt Function Basic Configuration (2/2)

(D) External maskable interrupt (except INTP0)

(E) Software interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specification flag


6.2 TEST FUNCTION

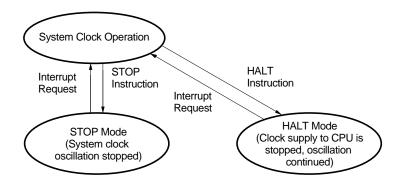
A test function with a single source is provided, as shown in Table 6-2.

Table 6-2. Test Input Source List

	Test Input Source					
Name	Trigger	Internal/External				
INTPT4	Port 4 falling edge detection	External				

Figure 6-2. Test Function Basic Configuration

IF : Test input flagMK : Test mask flag


7. STANDBY FUNCTION

There are the following two standby functions to reduce the system power consumption.

HALT mode: The CPU operating clock is stopped.
 The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.

• STOP mode: The system clock oscillation is stopped. All operations by the system clock are stopped and current consumption can be considerably reduced.

Figure 7-1. Stand-by Function

8. RESET FUNCTION

There are the following three reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection
- Internal reset by Power-On Clear (POC).

9. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	Α	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
В,С											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]													
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand First Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
гр	MOVW	MOVW Note						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand First Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol		Test Conditions		Rating	Unit
Power supply voltage	V _{DD}				-0.3 to + 7.0	V
Input voltage	VII	Excluding P60 to	P63		-0.3 to V _{DD} + 0.3	V
	V _{I2}	P60 to P63	N-ch Open-drain		-0.3 to +16	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Output withstand voltage	V _{BDS}	P132 to P134	N-ch Open-drain		16	V
Analog input voltage	Van	P10 to P15	Analog input pin		-0.3 to V _{DD} + 0.3	V
Output current high	Іон	1 pin			-10	mA
		P01 to P06, P30 t	to P37, P56, P57, P6	60 to P67,	-15	mA
		P120 to P125 tota	al			
		P10 to P15, P20 t	to P27, P40 to P47,	P50 to P55,	-15	mA
		P132 to P134 tota	al			
Output current low	I _{OL} Note	1 pin		Peak value	15	mA
				Effective value	7.5	mA
Operating ambient temperature	Та				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note Effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of alternate-function pins and port pins are the same unless specified otherwise.

RECOMMENDED SUPPLY VOLTAGE RANGES ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	V _{DD1}	During CPU operation and PLL operation.	4.5		5.5	V
	V _{DD2}	While the CPU is operating and the PLL is stopped. Cycle Time: $T_{CY} \ge 0.89~\mu s$	3.5		5.5	V
	V _{DD3}	While the CPU is operating and the PLL is stopped. Cycle Time: $T_{CY} = 0.44 \ \mu s$	4.5		5.5	V

Remark Tcy: Cycle Time (Minimum instruction execution time)

DC CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$, $V_{DD} = 3.5 \text{ to } 5.5 \text{ V}$)

(1/3)

Parameter	Symbol	Test Con-	ditions	MIN.	TYP.	MAX.	Unit
Input voltage high	V _{IH1}	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0.7 Vdd		V _{DD}	V
	V _{IH2}	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0.85 Vdd		V _{DD}	V
	VIH3	P60 to P63 (N-ch Open-drain)		0.7 V _{DD}		15	V
Input voltage low	VIL1	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0		0.3 V _{DD}	V
	V _{IL2}	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0		0.15 VDD	V
	V _{IL3}	P60 to P63	4.5 V ≤ V _{DD} ≤ 5.5 V	0		0.3 V _{DD}	V
		(N-ch Open-drain)	3.5 V ≤ V _{DD} < 4.5 V	0		0.2 V _{DD}	V
Output voltage high	Vон1		4.5 V ≤ V _{DD} ≤ 5.5 V lo _H = −1 mA	V _{DD} - 1.0			V
			$3.5 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$ loн = -100 μ A	V _{DD} - 0.5			V
Output voltage low	V _{OL1}	P50 to P57, P60 to P63	V _{DD} = 4.5 to 5.5 V, loн = 15 mA		0.4	2.0	V
		P01 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P120 to P125, P132 to P134	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ open-drain pulled-up $(R = 1 \text{ K}\Omega)$			0.2 VDD	V

Remark The characteristics of alternate-function pins and port pins are the same unless specified otherwise.

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 3.5 to 5.5 V)

(2/3)

Parameter	Symbol	Test Con-	ditions	MIN.	TYP.	MAX.	Unit
Input leakage current high	Ішн1	P00 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125, RESET	Vin = Vdd			3	μΑ
	ILIH2	P60 to P63	Vin = 15 V			80	μΑ
Input leakage current low	ILIL1	P00 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125, RESET	V _{IN} = 0 V			-3	μΑ
	ILIL2	P60 to P63				_3 Note	μΑ
Output leakage current high	Ісон	P132 to P134	Vout = 15 V			3	μΑ
Output leakage current low	ILOL	P132 to P134	Vout = 0 V			-3	μΑ
Output off leak current	ILOF	EO0, EO1	Vout = Vdd, Vout = 0 V			±1	μΑ

Note When an input instruction is executed, the low-level input leakage current for P60 to P63 becomes –200 μ A (MAX.) only in one clock cycle (at no wait). It remains at –3 μ A (MAX.) for other than an input instruction.

Remark The characteristics of alternate-function pins and port pins are the same unless specified otherwise.

REFERENCE CHARACTERISTICS (TA = 25 °C, VDD = 5 V)

(1/2)

Parameter	Symbol	Test Cond	Test Conditions			MAX.	Unit
Output current high	І он1	EO0	Vout = Vdd - 1 V		-4		mA
		EO1 (EOCON0 = 0)		-1.8			mA
Output current low	lo _{L1}	EO0	V _{OUT} = 1 V		6		mA
		EO1 (EOCON0 = 0)		3.5			mA

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 3.5 to 5.5 V)

(3/3)

Parameter	Symbol	Test Cond	ditions	MIN.	TYP.	MAX.	Unit
Power Supply Note 1 Current	I _{DD1}	While the CPU is operating and the PLL is stopped	$T_{CY} = 0.89 \ \mu s^{Note 2}$		2.5	15	mA
	fx = 4.5 N	fx = 4.5 MHz operation	$T_{CY} = 0.44 \ \mu s^{\text{Note 3}}$ $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$		4.0	27	mA
	Іррз	While the CPU is operating and the PLL is stopped HALT Mode	Tcy = $0.89 \ \mu s^{\text{Note 2}}$		0.7	1.5	mA
	IDD4	input $\frac{1}{2}$	$T_{CY} = 0.44 \ \mu s^{Note 3}$ $V_{DD} = 4.5 \ to \ 5.5 \ V$		1.0	2.0	mA
Data Hold	V _{DR1}	When the crystal is oscillating	$T_{CY} = 0.44 \ \mu s$	4.5		5.5	V
Power Supply	V _{DR2}		$T_{CY} = 0.89 \ \mu s$	3.5		5.5	V
Voltage	VDR3	•	When the crystal oscillator is stopped When power off by Power On Clear is detected			5.5	V
Data Hold	I _{DR1}	While the crystal oscillator	T _A = 25 °C, V _{DD} = 5V		2	4	μΑ
Power Supply Current	I _{DR2}	is stopped			2	30	μΑ

Notes 1. The port current is not included.

- 2. When the Processor Clock Control register (PCC) is set at 00H, and the Oscillation Mode Select register (OSMS) is set at 00H.
- 3. When PCC is set at 00H and OSMS is set at 01H.

Remarks 1. Tcy: Cycle Time (Minimum instruction execution time)

2. fx: System clock oscillator frequency.

REFERENCE CHARACTERISTICS (TA = 25 °C, VDD = 5 V)

(2/2)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Power Supply Current	IDD5	During CPU operation and PLL operation. VCOH pin sine wave input $f_{IN} = 130 \text{ MHz},$ $V_{IN} = 0.15 \text{ V}_{P\text{-}P}$	TcY = $0.44 \mu s^{Note}$		7		mA

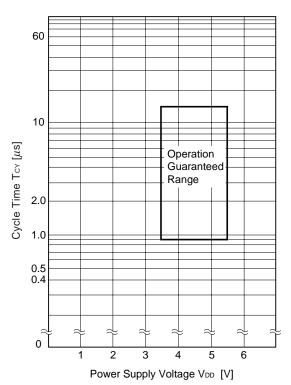
Note When the Processor Clock Control register (PCC) is set at 00H, and the Oscillation Mode Select register (OSMS) is set at 01H.

Remark Tcy: Cycle Time (Minimum instruction execution time)

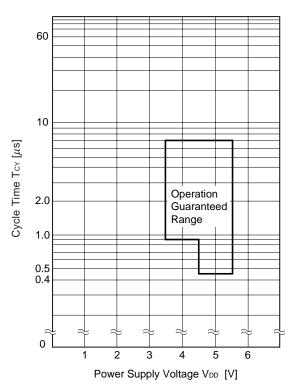
AC CHARACTERISTICS

(1) BASIC OPERATION (TA = -40 to +85 °C, VDD = 3.5 to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Tcy	$f_{XX} = f_{X}/2$ Note 1, $f_{X} = 4.5$ MHz operation		0.89		14.22	μs
(Minimum instruction execution time)		fxx = fx Note 2, fx = 4.5 MHz operation	4.5 ≤ V _{DD} ≤ 5.5 V	0.44		7.11	μs
			3.5 ≤ V _{DD} < 4.5 V	0.89		7.11	μs
TI1, TI2 input	f⊤ı	$4.5 \le V_{DD} \le 5.5 \text{ V}$ $3.5 \text{ V} \le V_{DD} \le 4.5 \text{ V}$		0		4.5	MHz
frequency				0		275	kHz
TI1, TI2 input high/ low-level width	tтıн,	$4.5 \le V_{DD} \le 5.5 V$		111			ns
	t⊤ı∟	$3.5 \text{ V} \leq \text{V}_{DD} \leq 4.5 \text{ V}$		1.8			μs
Interrupt input high/ low-level width	TINTH,	INTP0		8/f _{sam} Note 3			μs
	TINTL	INTP1 to INTP6		10			μs
RESET low level	trsl			10			μs
width							


Notes 1. When oscillation mode selection (OSMS) register is set at 00H.

- 2. When OSMS is set at 01H.
- 3. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of f_{sam} is possible between $f_{xx/2}^N$, $f_{xx/32}$, $f_{xx/64}$ and $f_{xx/128}$ (when N = 0 to 4).


Remarks 1. fxx: System clock frequency (fx or fx/2)

2. fx: System clock oscillation frequency

Tcy **vs V**DD (At Fxx = Fx/2 system clock operation)

Tcy vs VDD (At Fxx = Fx system clock operation)

(2) SERIAL INTERFACE ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 3.5 \text{ to } 5.5 \text{ V}$)

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCKO ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK0 high-/low-level width	tĸнı,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксү1/2 - 50			ns
	t _{KL1}	3.5 V ≤ V _{DD} < 4.5 V	tксү1/2 - 100			ns
SI0 setup time (to SCK0↑)	tsıĸ1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI0 hold time (from SCK0↑)	t KSI1		400			ns
SO0 output delay time from SCK0↓	tkso1	C = 100 pF Note			300	ns

Note C is the load capacitance of SO0 output line.

(ii) 3-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK0 high-/low-level width	tĸH2,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	tĸL2	3.5 V ≤ V _{DD} < 4.5 V	800			ns
SI0 setup time (to SCK0↑)	tsik2		100			ns
SI0 hold time (from SCK0↑)	t KSI2		400			ns
SO0 output delay time from SCK0↓	tkso2	C = 100 pF Note			300	ns
SCK0 at rising or falling edge time	tr2, tr2				1 000	ns

Note C is the load capacitance of SO0 output line.

(iii) SBI mode (SCK0 ... internal clock output)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		800			ns
		3.5 V ≤ V _{DD} < 4.5 V		3 200			ns
SCK0 high-/low-level width	tкнз,	4.5 V ≤ V _{DD} ≤ 5.5 V		tксүз/2 – 50			ns
	tкLз	3.5 V ≤ V _{DD} <	4.5 V	tксүз/2 – 150			ns
SB0, SB1 setup time (to SCK0↑)	tsık3	4.5 V ≤ V _{DD} ≤	5.5 V	100			ns
		3.5 V ≤ V _{DD} <	4.5 V	300			ns
SB0, SB1 hold time (from SCK0↑)	tksi3			tксүз/2			ns
SB0, SB1 output delay time from	tkso3	R = 1 kΩ	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		250	ns
SCK0↓		C = 100 pF Note	$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		1 000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
SCK0↓ from SB0, SB1↓	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	t sbl			tксүз			ns

Note R and C are the load resistance and load capacitance of SB0 and SB1 output line.

(iv) SBI mode (SCK0 ... external clock input)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tKCY4	4.5 V ≤ V _{DD} ≤	5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V		3 200			ns
SCK0 high-/low-level width	tĸн4,	4.5 V ≤ V _{DD} ≤ 5.5 V		400			ns
	tĸL4	3.5 V ≤ V _{DD} <	4.5 V	1 600			ns
SB0, SB1 setup time (to SCK0↑)	tsik4	4.5 V ≤ V _{DD} ≤	5.5 V	100			ns
		3.5 V ≤ V _{DD} <	4.5 V	300			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tkcy4/2			ns
SB0, SB1 output delay time from	t KSO4	R = 1 kΩ	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
SCK0↓		C = 100 pF ^{Note}	$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		1 000	ns
SB0, SB1↓ from SCK0↑	tкsв			tkcy4			ns
SCK0↓ from SB0, SB1↓	tsвк			tkcy4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	t sbl			tkcy4			ns
SCK0 at rising or falling edge time	t R4, t F4					1 000	ns

Note R and C are the load resistance and load capacitance of SB0 and SB1 output line.

(v) 2-wire serial I/O mode (SCK0 ... internal clock output)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy5	R = 1 kΩ		1 600			ns
SCK0 high-level width	t _{KH5}	C = 100 pF Note		tkcy5/2 - 160			ns
SCK0 low-level width	t _{KL5}		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	tксү5/2 – 50			ns
			$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	tксү5/2 – 100			ns
SB0, SB1 setup time (to SCK0↑)	tsik5		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	300			ns
			$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	350			ns
				400			ns
SB0, SB1 hold time (from SCK0↑)	t KSI5			600			ns
SB0, SB1 output delay time from $\overline{\text{SCK0}} \downarrow$	tkso5			0		300	ns

Note R and C are the load resistance and load capacitance of SCKO, SBO and SB1 output line.

(vi) 2-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t KCY6			1 600			ns
SCK0 high-level width	t кн6			650			ns
SCK0 low-level width	tĸL6			800			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, SB1 hold time (from SCK0↑)	t KSI6			tkcy6/2			ns
SB0, SB1 output delay time from	tkso6	R = 1 kΩ	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		300	ns
SCK0↓		C = 100 pF Note	3.5 V ≤ V _{DD} < 4.5 V	0		500	ns
SCK0 at rising or falling edge time	tre, tre					1 000	ns

Note R and C are the load resistance and load capacitance of SB0 and SB1 output line.

(vii) I²C Bus mode (SCL ... internal clock output)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy7	R = 1 kΩ		10			μs
SCL high-level width	tкн7	C = 100 pF Note		tксүт — 160			ns
SCL low-level width	tĸL7				tксү7 — 50		ns
SDA0, SDA1 setup time (to SCL↑)	tsık7				200		ns
SDA0, SDA1 hold time (from SCL↓)	tksi7			0			ns
SDA0, SDA1 output delay time	t KS07		4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
(from SCL↓)			3.5 V ≤ V _{DD} < 4.5 V	0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tksb			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns

Note R and C are the load resistance and load capacitance of SCL, SDA0 and SDA1 output line.

(viii) I²C Bus mode (SCL ... external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү8			1 000			ns
SCL high-/low-level width	t KH8, t KL8			400			ns
SDA0, SDA1 setup time (to SCL↑)	tsik8				200		ns
SDA0, SDA1 hold time (from SCL↓)	tksi8			0			ns
SDA0, SDA1 output delay time	t KSO8	R = 1 kΩ	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		300	ns
from SCL↓		C = 100 pF ^{Note}	$3.5 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns
SCL at rising or falling edge time	trs, trs					1 000	ns

Note R and C are the load resistance and load capacitance of SDA0 and SDA1 output line.

(b) Serial interface channel 1

(i) 3-wire serial I/O mode (SCK1 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high/low-level width	t кн9,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксу9/2 — 50			ns
	t _{KL9}	3.5 V ≤ V _{DD} < 4.5 V	tксүу/2 — 100			ns
SI1 setup time (to SCK1↑)	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI1 hold time (from SCK1↑)	t KSI9		400			ns
SO1 output delay time (from SCK1↓)	tkso9	C = 100 pF Note			300	ns

Note C is the load capacitance of SO1 output line.

(ii) 3-wire serial I/O mode (SCK1 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcY10	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high/low-level width	t кн10,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	t _{KL10}	3.5 V ≤ V _{DD} < 4.5 V	800			ns
SI1 setup time (to SCK1↑)	tsik10		100			ns
SI1 hold time (from SCK1↑)	tksi10		400			ns
SO1 output delay time (from SCK1↓)	t KSO10	C = 100 pF Note			300	ns
SCK1 at rising or falling edge time	t R10, t F10				1 000	ns

Note C is the load capacitance of SO1 output line.

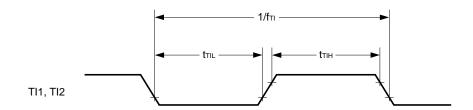
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... internal clock output)

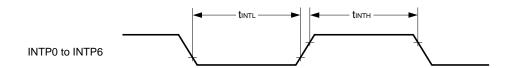
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcY11	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high/low-level width	tкн11,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксү11/2 - 50			ns
	t _{KL11}	3.5 V ≤ V _{DD} < 4.5 V	tkcy11/2 - 100			ns
SI1 setup time (to SCK1↑)	tsik11	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI1 hold time (from SCK1↑)	tksi11		400			ns
SO1 output delay time (from SCK1↓)	t KSO11	C = 100 pF Note			300	ns
STB↑ from SCK1↑	tsbd		tксүү1/2 — 100		tkcy11/2 + 100	ns
Strobe signal high-level width	tssw		tkcy11/ - 30		tксү11 + 30	ns
Busy signal setup time (to busy signal detection timing)	tBYS		100			ns
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal detection timing)		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SCK1↓ from busy inactive	tsps				2tксү11	ns

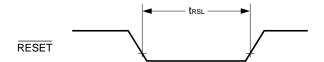
Note C is the load capacitance of SO1 output line.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... external clock input)

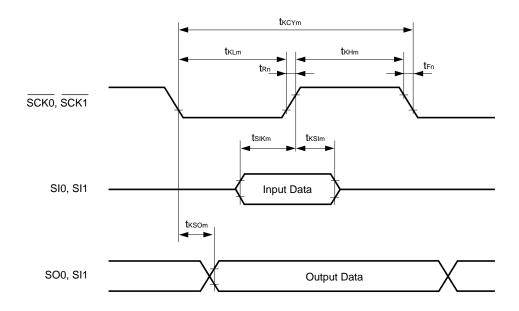
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcY12	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high/low-level width	tкн12,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	tKL12	3.5 V ≤ V _{DD} < 4.5 V	800			ns
SI1 setup time (to SCK1↑)	tsiK12		100			ns
SI1 hold time (from SCK1↑)	tksi12		400			ns
SO1 output delay time (from SCK1↓)	t KSO12	C = 100 pF Note			300	ns
SCK1 at rising or falling edge time	tr12, tr12				1 000	ns


Note C is the load capacitance of SO1 output line.


AC TIMING TEST POINT (EXCLUDING X1 INPUT)


TI Timing

Interrupt Input Timing



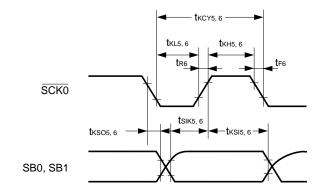
RESET Input Timing

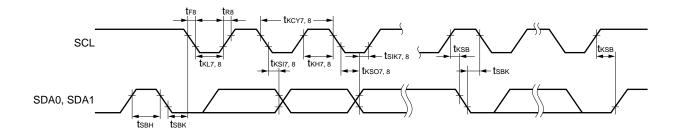

SERIAL TRANSFER TIMING

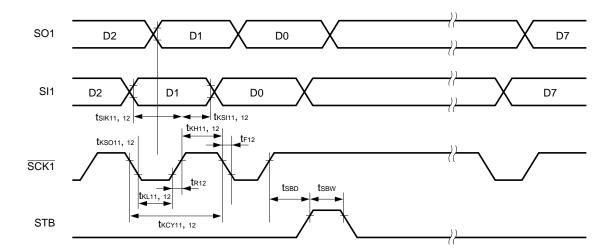
3-Wire Serial I/O Mode:

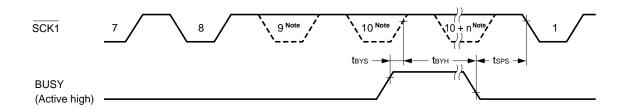
Remark
$$m = 1, 2, 9, 10$$

 $n = 2, 10$


SBI Mode (Bus Release Signal Transfer):


SBI Mode (Command Signal Transfer):


2-Wire Serial I/O Mode:


I²C Bus Mode:

3-Wire Serial I/O Mode with Automatic Transmit/Receive Function:

3-Wire Serial I/O Mode with Automatic Transmit/Receive Function (Busy Processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

A/D CONVERTER CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

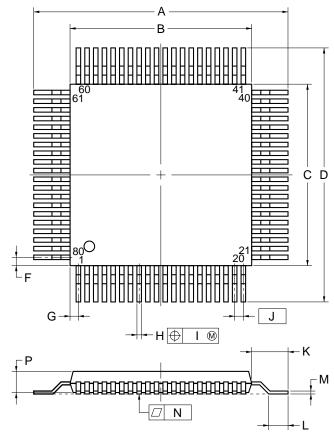
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Conversion total error					±3.0	LSB
Conversion time	tconv		22.2		44.4	μs
Sampling time	tsamp		15/fxx			μs
Analog input voltage	VIAN		0		V _{DD}	V

Remarks 1. fxx: System clock frequency (fx/2)

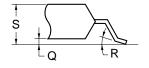
2. fx: System clock oscillation frequency

PLL CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operating	f _{IN1}	VCOL Pin MF Mode Sine wave input $V_{IN} = 0.1 V_{p-p}$	0.5		3	MHz
Frequency	f _{IN2}	VCOL Pin HF Mode Sine wave input $V_{IN} = 0.2 V_{p-p}$	9		55	MHz
	fınз	VCOH Pin VHF Mode Sine wave input $V_{IN} = 0.15 \ V_{p-p}$	60		160	MHz


IFC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operating Frequency	fin4	AMIFC Pin AMIF Count Mode Sine wave input $V_{IN} = 0.1 \ V_{P^-P}^{Note}$	0.4		0.5	MHz
	f _{IN5}	FMIFC Pin FMIF Count Mode Sine wave input $V_{IN} = 0.1 \ V_{P^-P}^{\text{Note}}$	10		11	MHz
	fin6	FMIFC Pin AMIF Count Mode Sine wave input $V_{IN} = 0.1 \ V_{P^-P}^{Note}$	0.4		0.5	MHz


Note The condition of a sine wave input of $V_{IN} = 0.1 \ V_{p-p}$ is the standard value for operation of this device during stand-alone operation, so in consideration of the effect of noise, it is recommended that operation be at an input amplitude condition of $V_{IN} = 0.15 \ V_{p-p}$.

11. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

S80GC-65-3B9-4

12. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E).**

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions

 μ PD178004AGC-×××-3B9 : 80-pin plastic QFP (14 × 14 mm, 0.65 mm pitch) μ PD178006AGC-×××-3B9 : 80-pin plastic QFP (14 × 14 mm, 0.65 mm pitch) μ PD178016AGC-×××-3B9 : 80-pin plastic QFP (14 × 14 mm, 0.65 mm pitch) μ PD178018AGC-×××-3B9 : 80-pin plastic QFP (14 × 14 mm, 0.65 mm pitch)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder bath temperature : 260 °C max., Duration : 10 sec. max., Number of times : once, Preheating temperature : 120 °C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C max. Duration: 3 sec. max. (per pin row)	_

Caution Do not use different soldering method together (except for partial heating).

APPENDIX A. DIFFERENCES BETWEEN μ PD178018A AND μ PD178018 SUBSERIES

	Product name		μPD178018A Subseries				μPD178018 Subseries			
Item		μPD178004A	μPD178006A	μPD178016A	μPD178018A μPD178P018A ^{Note}	μPD178004	μPD178006	μPD178016	μPD178018 μPD178P018	
PLL frequency	Reference frequency	, ,	7 types selectable by program (1, 3, 5, 9, 10, 25, 50 kHz)			11 types selectable by program (1, 1.25, 2.5, 3, 5, 6.25, 9, 10, 12.5, 25, 50 kHz)				
synthe- sizer	EO0 pin output format	Buffer type								
	EO1 pin output format	Buffer type	Buffer type			Constant-current power supply type			/pe	
	EO1 pin high- impedance function	Not suppo	orted	Supported	I	Not suppo	orted			

Note Under development

Remark The mask ROM of mask versions (μ PD178018A and μ PD178018) is replaced with one-time PROM or EPROM in the one-time PROM versions (μ PD178P018A and μ PD178P018).

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD178018A Subseries.

Language Processing Software

RA78K/0 Notes 1, 2, 3, 4 78K/0 Series common assembler package	
CC78K/0 Notes 1, 2, 3, 4	78K/0 Series common C compiler package
DF178018 Notes 1, 2, 3, 4, 8	μ PD178018A Subseries common device file
CC78K/0-L Notes 1, 2, 3, 4	78K/0 Series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PG-178P018GC	Programmer adapters connected to a PG-1500
PA-178P018KK-T	
PG-1500 controller Notes 1, 2	PG-1500 control program

Debugging Tools

IE-78000-R	In-circuit emulator common to 78K/0 Series
IE-78000-R-A	In-circuit emulator common to 78K/0 Series (for the integration debugger)
IE-78000-R-BK	Break board common to 78K/0 Series
IE-178018-R-EM	Emulation board common to μPD178018A Subseries
IE-78000-R-SV3	Interface adapter and cable when using EWS as a host machine (for IE-78000-R-A)
IE-70000-98-IF-B	Interface adapter when using the PC-9800 Series (except notebooks) as a host machine
	(for IE-78000-R-A)
IE-70000-98N-IF	Interface adapter and cable when using the PC-9800 Series notebook as a host machine
	(for IE-78000-R-A)
IE-70000-PC-IF-B	Interface adapter when using IBM PC/AT™ as a host machine (for IE-78000-R-A)
EP-78230GC-R	Emulation probe common to μPD78234 Subseries
EV-9200GC-80	Socket for mounting on target system board created for 80-pin plastic QFP (GC-3B9 type)
EV-9900	Jig used when removing the μ PD178P018AKK-T from the EV-9200GC-80.
SM78K0 Notes 5, 6, 7	78K/0 Series common system simulator
ID78K0 Notes 4, 5, 6, 7	Integration debugger for IE-78000-R-A
SD78K/0 Notes 1, 2	IE-78000-R screen debugger
DF178018 Notes 1, 2, 4, 5, 6, 7, 8	μPD178018A Subseries device file

Real-Time OS

RX78K/0 Notes 1, 2, 3, 4	78K/0 Series real-time OS
MX78K0 Notes 1, 2, 3, 4	78K/0 Series OS

- **Notes 1.** PC-9800 Series (MS-DOS[™]) based
 - 2. IBM PC/AT and compatible (PC DOSTM/IBM-DOSTM/MS-DOS) based
 - **3.** HP9000 Series 300[™] based
 - **4.** HP9000 Series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™]) based, EWS4800 Series (EWS-UX/V) based
 - **5.** PC-9800 Series (MS-DOS + Windows[™]) based
 - 6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
 - 7. NEWSTM (NEWS-OSTM) based
 - 8. Under development

Fuzzy Inference Development Support System

FE9000 Note 1/FE9200 Note 2	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 3	Translator
FI78K0 Notes 1, 3	Fuzzy inference module
FD78K0 Notes 1, 3	Fuzzy inference debugger

- Notes 1. PC-9800 Series (MS-DOS) based
 - 2. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
 - 3. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS) based

Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.

2. The RA78K/0, CC78K/0, SD78K/0, ID78K/0, SM78K/0 and RX78K/0 are used in combination with the DF178018.

APPENDIX C. RELATED DOCUMENTS

Device Documents

Title	Document No. (Japanese)	Document No. (English)	
μPD178018A Subseries User's Manual	To be prepared	To be prepared	
78K/0 Series User's Manual—Instruction	U12326J	U12326E	
78K/0 Series Instruction Set	U10904J	_	
78K/0 Series Instruction Table	U10903J	_	
μPD178018A Subseries Special Function Register Table	To be prepared	_	
78K/0 Series Application Note Basics (II)		U10121J	U10121E

Development Tool Documents (User's Manual)

Title		Document No. (Japanese)	Document No. (English)
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly	U11789J	U11789E
	Language		
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Notes	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	_
PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-178018-R-EM		U10668J	U10668E
EP-78230		EEU-985	EEU-1515
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Parts User open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	U11151E
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
SD78K/0 Screen Debugger PC-9800 Series (MS-DOS) Based	Introduction	EEU-852	U10539E
	Reference	U10952J	_
SD78K/0 Screen Debugger IBM PC/AT (PC DOS) Based	Introduction	EEU-5024	EEU-1414
	Reference	U11279J	U11279E

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc. 51

Related Documents for Embedded Software (User's Manual)

Title		Document No. (Japanese)	Document No. (English)
78K/0 Series Realtime OS	Basics	U11537J	_
	Installation	U11536J	_
78K/0 Series OS MX78K0	Basics	U12257J	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series		EEU-862	EEU-1444
Fuzzy Inference Development Support System—Translator			
78K/0 Series Fuzzy Inference Development Support System—Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System		EEU-921	EEU-1458
—Fuzzy Inference Debugger			

Other Documents

Title	Document No. (Japanese)	Document No. (English)
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Guides on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Semiconductor Device Quality Assurance Guide	C11893J	MEI-1202
Microcomputer-related Product Guide (Products by other Manufacturers)	U11416J	_

Caution The contents of the above documents are subject to change without notice. Ensure that the latest versions are used in design work, etc.

[MEMO]

NOTES FOR CMOS DEVICES —

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.