To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PLL FREQUENCY SYNTHESIZER AND CONTROLLER FOR FM/MW/LW TUNER (AUTOMOBILE APPLICATION)

The μ PD17012GF-058 is a CMOS LSI chip designed for use in FM/MW/LW tuners utilizing a PLL frequency synthesizer design for worldwide applications.

The device incorporates a PLL frequency synthesizer controller, prescaler, and frequency counter. The device enables detachable stereo systems, and is ideal for use in electronic volume control circuits for automobile applications, high-performance FM/MW/LW tuners with a clock, and similar applications where compact dimensions are essential.

FEATURES

- Capable of receiving broadcasts from stations in all of the world's FM and MW bands, as well as the European LW band
- Applicable to AM up-conversion
- Many preset functions including manual tuning, auto-tuning (seek, scan), and preset memory scanning
- Independent preset memory with six buttons: up to 18 FM stations (six stations, each enabling the setting of FM1, FM2, and FM3), up to 12 MW stations (six stations, each enabling the setting of MW1 and MW2), and up to six LW stations
- Last channel memory for three FM stations, two MW stations, and one LW station
- ST (stereo) display (The ST display is also supported for the MW band.)
- Display and control output of MTL (METAL)
- Auto-preset memory function
- "LI" (compact disc)/"TRPE" (cassette tape) display
- LOUD (loudness) control output and display
- Clock function for 12 -hour or 24 -hour clock display
- Compatible with the external LCD controller/driver ($\mu \mathrm{PD} 7225$)
- Built-in prescaler and frequency counter
- Remote-controller signal receiving function (when the μ PD6121 is used for transmitting signals)
- Detachable keys (or key section) and LCD panel
- Electronic volume control function (compatible with the $\mathrm{I}^{2} \mathrm{C}$ bus)
- Alarm function

ORDERING INFORMATION

Part number	Package
μ PD17012GF-058-3BE	64-pin plastic QFP $(14 \times 20 \mathrm{~mm}, 1.0 \mathrm{~mm}$ pitch $)$

FUNCTION OVERVIEW

FREQUENCY TO BE RECEIVED, CHANNEL SEPARATION, REFERENCE FREQUENCY, AND INTERMEDIATE FREQUENCY

Area	Band	Frequency to be received	Channel separation	Reference frequency	Intermediate frequency
Eastern Europe	FM1	65-74 MHz	50 kHz	25 kHz	10.7 MHz
	$\begin{aligned} & \text { FM2 } \\ & \text { FM3 } \end{aligned}$	$87.5-108.0 \mathrm{MHz}$	50 kHz	25 kHz	10.7 MHz
	MW	522-1620 kHz	9 kHz	9 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
	LW	144-290 kHz	1 kHz	1 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
Western Europe	FM	87.5-108.0 MHz	50 kHz	25 kHz	10.7 MHz
	MW	522-1620 kHz	9 kHz	9 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
	LW	144-290 kHz	1 kHz	1 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
China	FM	$87.0-108.0 \mathrm{MHz}$	50 kHz	25 kHz	10.7 MHz
	MW	$531-1602 \mathrm{kHz}$	9 kHz	9 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
Australia, Middle East	FM	87.5 - 108.0 MHz	100 kHz	25 kHz	10.7 MHz
	MW	$531-1602 \mathrm{kHz}$	9 kHz	9 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
U.S.A. 1	FM	87.5 - 108.0 MHz	100 kHz	25 kHz	10.7 MHz
	MW	$530-1620 \mathrm{kHz}$	10 kHz	10 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
U.S.A. 2	FM	87.5-107.9 MHz	200 kHz	25 kHz	10.7 MHz
	MW	$530-1620 \mathrm{kHz}$	10 kHz	10 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
U.S.A. 3	FM	87.5-107.9 MHz	200 kHz	25 kHz	10.7 MHz
	MW	$530-1710 \mathrm{kHz}$	10 kHz	10 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$
Japan	FM	$76.0-90.0 \mathrm{MHz}$	100 kHz	25 kHz	-10.7 MHz
	MW	522-1629 kHz	9 kHz	9 kHz	$450 \mathrm{kHz} /+10.71 \mathrm{MHz}$

RADIO FUNCTIONS

(1)

Manual tuning

Function	Description
Manual up Manual down	Carries out tuning in step-by-step or fast-forward mode.

(2) Auto-tuning

Function	Description
Seek up	Detects a station and retains the frequency.
Scan up Scan down	Tunes to broadcasts of different stations for five seconds each.

(3) Preset memory scanning: Tunes to broadcasts of stations held in preset memory for five seconds each.
(4) Preset memory

- FM band: FM1: Six stations, FM2: Six stations, FM3: Six stations
- MW band: MW1: Six stations, MW2: Six stations
- LW band: Six stations
(5) Last channel memory: One station each for FM1, FM2, FM3, MW1, MW2, LW
(6) LOC (local) control output and display (The auto local function can be selected.)
(7) ST (stereo) display function: Supported for the FM band. The display function is also supported for the MW band. (A switching function is supported.)
(8) Auto-storage

TAPE FUNCTIONS

(1) Tape running direction display: Can be blinked at 2.5 Hz in fast-forward mode
(2) MTL (METAL) control output and display
(3) "TRPE" (cassette tape) display function

ELECTRONIC VOLUME CONTROL FUNCTIONS

(1) Volume/bass/treble/balance/fader function

(3) Mute function (In the mute state, the entire panel display blinks.)
(4) Loudness function
(5) Four selectable gain levels ($0 \mathrm{~dB}, 3.75 \mathrm{~dB}, 7.5 \mathrm{~dB}$, or 11.25 dB)

CLOCK FUNCTIONS

(1) Selectable 12-hour clock display (with AM/PM indication) or 24 -hour clock display
(2) Selectable colon (:) flashing (1 Hz)
(3) Capable of back-up with low current consumption (up to $10 \mu \mathrm{~A}$) in no-clock mode

SECURITY FUNCTION

Enables of setting of the alarm function for security against car theft

OTHERS

(1) LOUD (loudness) control output and display: Common to radio, tape, and CD modes
(2) Key acknowledge (beep) output: Performed if a valid momentary key is on
(3) Display switching function and privileged display function
(4) "[II" (compact disc) display
(5) Compatible with the external LCD controller/driver (μ PD7225)
(6) Remote-controller signal receiving function (when the $\mu \mathrm{PD} 6121$ is used for transmitting signals)
(7) Detachable keys (or key section) and LCD panel

PIN CONFIGURATION (TOP VIEW)

64-pin plastic QFP ($14 \times 20 \mathrm{~mm}, 1.0 \mathrm{~mm}$ pitch)
μ PD17012GF-058-3BE

Remarks 1. The pin names enclosed in parentheses are those for the μ PD17012GF- $\times \times \times-3 \mathrm{BE}$.
2. IC indicates that the pin is internally connected. Leave the IC pins open.

CONTENTS

1. PIN FUNCTIONS 7
2. KEY MATRIX STRUCTURE 14
2.1 Placement of the Initial Setting Diode, Alternation, and Transistor Switch Matrixes 14
2.2 Switch Connection 14
2.3 Initial Setting Diode, Alternation, and Transistor Switch Matrix Connection 15
2.4 Momentary Key Matrix Placement 16
2.5 Momentary Key Matrix Connection 16
2.6 Description of the Key Matrixes 17
2.6.1 Initial setting diode matrixes 17
2.6.2 Alternation or transistor switch 28
2.6.3 Momentary keys 29
3. ALARM FUNCTION 52
3.1 Overview of the Alarm Function 52
3.2 Setting Alarm Mode 53
4. MODE TRANSITION 59
5. DISPLAY 66
5.1 LCD Panel 66
5.2 Character Style 66
5.3 Examples of Display 66
5.4 LCD Assignment 67
5.5 Pin Assignment of the LCD Controller/Driver (μ PD7225) 67
5.6 Description of Display 68
6. REMOTE CONTROL FUNCTION 70
6.1 Remote-Controller Key Placement (When the μ PD6121G Is Used) 70
6.2 Remote-Controller Keys 71
6.3 Remote-Controller Data Codes 71
6.4 Example of a Remote-Controller Circuit Using the μ PD6121G-001 72
6.5 Example of a Remote-Controller Preamplifier Circuit Using the μ PC2800HA 72
7. MUTE OUTPUT TIMING CHARTS 73
7.1 Radio Mute (RDMUTE Pin) Output Timing Charts 73
7.2 Radio Mute (RDMUTE Pin) and Audio Mute ($\overline{\text { AMUTE }}$ Pin) Output Timing Charts 76
8. PIN I/O CIRCUITS 78
9. SAMPLE APPLICATION CIRCUITS 82
10. ELECTRICAL CHARACTERISTICS (PRELIMINARY) 83
11. PACKAGE DRAWING 86
12. RECOMMENDED SOLDERING CONDITIONS 87
APPENDIX COMMUNICATION WITH ELECTRONIC VOLUME CONTROL IC (I2C BUS INTERFACE) 88

1. PIN FUNCTIONS

Pin No.	Symbol	Pin name	Description	I/O type
1	EVOL_SCK	Clock output of electronic volume control	Clock output pin of electronic volume control For details of data output, see Appendix.	CMOS push-pull output
2	EVOL_DA	Data input/ output of electronic volume control	Data input/output pin of electronic volume control For details of data output, see Appendix.	Input/output CMOS push-pull output
3	EO	Error out	Charge pump output pin of phase detector built into a PLL. If a divided oscillator frequency is higher than the reference frequency, the output of this pin goes high. If the divided oscillator frequency is lower, the output goes low. If the divided oscillator frequency agrees with the reference frequency, the output enters the floating state.	CMOS tristate output
$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Vod1 } \\ & \text { Vdo2 } \end{aligned}$	Power supply	Power-supply pin of the device This pin supplies a voltage of $5 \mathrm{~V} \pm 10 \%$ while the device is operating. The rise time (0 to 4.5 V) of V_{DD} must not exceed 500 ms. If the rise time is significantly long or if the voltage falls below the operating voltage but is between 0 V and 3.5 V , the state of an initial setting diode switch may be read incorrectly.	-
5	VCOL	AM local oscillator input	Input pin of the local oscillator output (VCO) in the AM (MW, LW) band When tuned to broadcasts in the MW or LW band, this pin becomes active. Otherwise, the pin is internally pulled down. To protect the built-in AC amplifier, block the flow of direct current with a capacitor, then input the frequency.	Input
6	VCOH	FM local oscillator input	Input pin of the local oscillator output (VCO) in the FM band When tuned to broadcasts in the FM band, this pin becomes active. Otherwise, the pin is internally pulled down. Because an AC amplifier is incorporated, block the flow of direct current with a capacitor, then input the frequency.	Input
7	CE	Chip enable	Input pin of the device selection signal Always pull up the pin.	Input
9	$\overline{\text { SCK }}$	Serial clock output	Serial clock output pin for controlling the LCD controller/driver (μ PD7225)	CMOS push-pull output
10	So	Serial data output	Serial data output pin for controlling the LCD controller/driver (μ PD7225)	CMOS push-pull output
11	ALARMIN	Door switch input	Input pin of the door switch See Chapter 3 for details.	Input

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin name	Description			I/O type
12	FMIFC	FM intermediate frequency input	Input pin of the To protect the with a capacitor When the ENF used to detect If the input freq satisfied, it is j A frequency w 20 ms of the P input frequenc been found.	termediate freque It-in AC amplifier hen input the freq F switch (initial station during aut ncy range and co ged that a station input frequency being locked. If nges <1> and <2 -tuning is stoppe	(IF) in the FM band k the flow of direct current cy. diode) is set to 1 , this pin is ing. ons listed below are been found. e 1 > must be input within quency is included in both is judged that a station has	Input
13	AMIFC	AM intermediate frequency input	Input pin for th band. To prot current with a If the initial set detect whethe If the input fre satisfied, it is ju A frequency w 20 ms of the P input frequenc been found.	intermediate frequ the built-in AC a acitor, then input diode ENAMIF station is found in ncy range and co ged that a station Input frequency input frequency being locked. If nges <1> and <2 -tuning is stoppe	(IF) in the AM (MW, LW) er, block the flow of direct frequency. to 1 , this pin is used to o-tuning. ons listed below are been found. e $1>$ must be input within quency is included in both is judged that a station has	Input
14	KY-IN	Key input	Input pin for th	ey return signal of	momentary key matrix	Input

Pin No.	Symbol	Pin name	Description	I/O type
15	SD	SD input	SD (station detector) signal input pin If the following voltage is applied to this pin, it is judged that an SD is found. The SD signal is used to judge whether a station is found.	Input
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { DSP1 } \\ & \text { DSP2 } \end{aligned}$	DSP control output	Output pin for the DSP chip control signal. See the description of the DSP momentary key.	CMOS push-pull output
18	BEEP	Beep output	Beep sound output pin that functions when a momentary key is pressed If a momentary key is pressed, square waves (duty cycle 50%) of 3 kHz are output for about 40 ms . This period agrees with the period of the preceding mute. A beep sound is output if a press of a momentary key causes the LCD panel display or output port state to be changed, or if a hold period of five seconds ends during scanning or preset memory scanning. The beep sound output is used as the alarm output when the alarm function is used. If this output is not used, leave the pin open.	CMOS push-pull output
19	IGNITION	Ignition input	Pin to be connected to the car ignition switch. Input a high level signal for normal operation of the device. Input a low level signal when the device is not being used.	Input
20	AGCC	AGC cut output	AGC (auto gain control) cut signal output pin in radio mode The output goes high in auto-tuning, as shown below.	CMOS push-pull output

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin name	Description			I/O type
21	LOC	Local signal output	Local signal output pin The operation depends (1) In radio mode, rad mode The LOC output go The level of the LO and LOCAL/DX sta (2) In other modes The output goes low	dio mode he mode, as desc monitor tape mod high only in auto-tun utput depends on The relationships	below: radio-monitor CD ing in the local state the tuning state listed below:	CMOS push-pull output
22	$\overline{\text { AMUTE }}$	Audio mute output	Output pin of the tape or The operation depends (1) In radio mode, rad mode, power-off The output goes low (2) In CD mode and ta The output goes hig See Chapter 7 for detail	mute signal he mode, as describ monitor tape mod mode	ed below: radio-monitor CD	cmos push-pull output
23	RDMUTE	Radio mute output	Output pin of radio mute The operation depends (1) In radio mode, rad mode; at radio-on, ing of the frequen The output goes low. (2) In CD mode and ta The output method diode MUTESEL. function is used, se See Chapter 7 for detail	nal he mode, as desc monitor tape mod dio-off; at band s o be received mode be selected by s Section 2.6.1.) UTESEL to 0 and	ed below: radio-monitor CD ching; at switch- ng the initial setting he radio-monitor ing the output low.	CMOS push-pull output
24	Xout	Crystal	Pin for connecting a cry			-
25	XIN		A $4.5-\mathrm{MHz}$ crystal is con			Input
$\begin{aligned} & 26 \\ & 58 \end{aligned}$	GND	Ground	Ground pin Connect pins No. 26 a	58 to an ident	potential.	-
27	ALARMOUT	Alarm-out output	Alarm-out output pin See Chapter 3 for detail			CMOS push-pull output
$\begin{gathered} 28 \\ \text { । } \\ 30 \end{gathered}$		Key source signal output	Output pin for the key sour	e signal for the m	entary key matrix.	N -ch opendrain output
31	LOUD	Loudness output	Output pin for the loudn When the loudness stat	control signal set, the output g	high.	CMOS push-pull output

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin name	Description			I/O type
32	POWER	Power output	The output is inverted each time the POWER key is pressed. Use this pin to turn the radio on or off. Connecting this pin to transistor switch RDSET enables power-on and off of the radio.			CMOS push-pull output
$\begin{aligned} & 33 \\ & 34 \end{aligned}$	BAND1 BAND2	Band switching signal output	Output pin of the band switching signal in radio mode The operation depends on the mode, as described below: (1) In radio mode, radio-monitor tape mode, radio-monitor CD mode If the band to be received is switched by pressing the band switching key, the output depends on the band, as listed below: (0: Low, 1: High) (2) In tape mode, CD mode, power-off mode The output goes low.			CMOS push-pull output
$\begin{gathered} 35 \\ \text { \| } \\ 37 \\ 40 \\ 42 \\ 43 \end{gathered}$	IC	IC	Internally connected pin. Leave the pins open.			-
38	POUT	Detachable panel state signal	Output pin of the detachable panel state signal When the DTH switch is set to off, the pin outputs the detachable panel state signal, having a frequency of 1 Hz and a duty cycle of 1/2.			CMOS push-pull output
39	ILLUMI	Illumination signal output	Illumination signal The output metho and ILLB initial se (1: Shorted by the	ut pin selected diodes, a \square Loudne Loudne Loudne Loudne de; 0: Op	ing to the states of the ILLA	CMOS push-pull output
41	$\overline{\text { LCD CS }}$	LCD chip select signal output	Output pin for the chip select signal This pin is used as an output pin of the chip select signal for the external LCD controller/driver (μ PD7225). When the output goes low, the external LCD controller/driver is enabled.			CMOS push-pull output

Caution When the μ PD7225 external LCD controller/driver is used, connect the C/D pin to the Vdd pin at the μ PD7225.

Pin No.	Symbol	Pin name	Description				I/O type
44	MTL	METAL signal output	METAL signal output pin The output level depends on the METAL state, as listed below: If the TPSET switch is set to on, the output level depends on the METAL state, regardless of the current mode.				CMOS push-pull output
45	CDOUT	CD mode output	CD mode output pin Each time the CD momentary key is pressed, the CDOUT output is inverted. In the following modes, the CDOUT output is always set low: - When IGNITION is low - In power-off mode (when IGNITION is high and the radio, tape, and CD are off) - When the DTH transistor switch is set to off				CMOS push-pull output
$\begin{aligned} & 46 \\ & 47 \end{aligned}$	MODE2 MODE1	Mode signal output	Mode switching signal output pin The output depends on the mode, as listed below:				CMOS push-pull output
					MODE1	MODE2	
			When IGNITION		0	0	
			When IGNITION radio, tape, and (power-off mode)	hand the off	0	0	
			In radio mode		1	0	
			In tape mode		0	0	
			In CD mode		0	1	
			In radio-monitor tape mode In radio-monitor CD mode		1	0	
			(0: Low, 1: High)				
$\begin{gathered} 48 \\ \mid \\ 57 \end{gathered}$	$\begin{gathered} \text { KS9 } \\ \text { \| } \\ \text { KS0 } \end{gathered}$	Key source signal output	Output pin of the key source signal of the key matrix				CMOS push-pull output
$\begin{gathered} 59 \\ \mid \\ 62 \end{gathered}$	$\begin{gathered} \text { K3 } \\ \text { । } \\ \text { K0 } \end{gathered}$	Key return signal input	Input pin of the key return signal of the key matrix				Input

Pin No.	Symbol	Pin name	Description	I/O type
63	MONO	MONO signal output	MONO signal output pin This pin functions as a MONO signal output pin in radio mode, radio-monitor tape mode, or radio-monitor CD mode. The output level depends on the selected band and the MONO state, as listed below: If the MW band is selected, the output level depends on the setting of the initial setting diode MWS, as listed below: (1: Shorted by the diode, 0: Open)	CMOS push-pull output
64	$\overline{\text { REM }}$	Remotecontroller signal input	Input pin for the infrared remote-controller signal. The output of the preamplifier (such as $\mu \mathrm{PC} 2800 \mathrm{HA}$) of a remote controller is connected. Use the μ PD6121G to send signals from the remotecontroller.	Input

2. KEY MATRIX STRUCTURE

2.1 Placement of the Initial Setting Diode, Alternation, and Transistor Switch Matrixes

| Input pin (pin |
| :---: | :---: | :---: | :---: | :---: |
| Oumber) |
| (pin number) | K3 (59)

\square : Initial setting diode matrix
\square Alternation or transistor switch
\square : Open

2.2 Switch Connection

Alternation switch

Transistor switch

Initial setting diode

2.3 Initial Setting Diode, Alternation, and Transistor Switch Matrix Connection
: Alternation or transistor switch
亿 : Initial setting diode

2.4 Momentary Key Matrix Placement

	$\begin{gathered} 0 \text { to } 0.04 \\ \text { VDD } \end{gathered}$	$\begin{gathered} 0.05 \text { to } \\ 0.12 \\ V_{D D} \end{gathered}$	$\begin{gathered} 0.13 \text { to } \\ 0.20 \\ \text { Vod } \end{gathered}$	$\begin{gathered} 0.21 \text { to } \\ 0.29 \\ V_{\text {DD }} \end{gathered}$	$\begin{gathered} 0.30 \text { to } \\ 0.38 \\ V_{\text {DD }} \end{gathered}$	$\begin{gathered} 0.39 \text { to } \\ 0.48 \\ \text { VDD } \end{gathered}$	$\begin{gathered} 0.49 \text { to } \\ 0.57 \\ V_{\text {DD }} \end{gathered}$	$\begin{gathered} 0.58 \text { to } \\ 0.66 \\ V_{D D} \end{gathered}$	$\begin{gathered} 0.67 \text { to } \\ 0.76 \\ \text { VDD } \end{gathered}$	$\begin{gathered} 0.77 \text { to } \\ 0.84 \\ V_{\text {DD }} \end{gathered}$	$\begin{gathered} 0.85 \text { to } \\ 0.91 \\ V_{\text {DD }} \end{gathered}$
KEYSO (30)	M1	M2	M3	M4	M5	M6	SEEK UP	ALARM	MAN UP	MAN DWN	MONO/ LOC
KEYS1 (29)	BAND	$C D$	POWER	VOL UP	VOL DWN	VOL SEL		MUTE	DISP	DSP	P.SCAN
KEYS2 (28)	RDMONI	$\begin{aligned} & \text { SCAN } \\ & \text { UP } \end{aligned}$	SCAN DWN	-	-	MTL	-	-	-	-	-

- : Open

2.5 Momentary Key Matrix Connection

2.6 Description of the Key Matrixes

2.6.1 Initial setting diode matrixes

The μ PD17012GF-058 has the following 18 initial setting diode matrixes. When the VDD is supplied with power for the first time (at a power-on reset), the states of the diodes in these matrixes are read in. In all other occasions, they are ignored.
(1) Switches to specify the reception area

AREA1, AREA2, and AREA3
(2) Switches to specify the reception band

DISFM3, DISLW, ENFM, and ENMW2
(3) Switch to specify whether to use the auto-storage function DISAMEMO
(4) Switches to specify whether to use the frequency counter for detecting broadcasting stations ENAMIF and ENFMIF
(5) Switch to specify tuning operation

AUTO500
(6) Switches to specify display priority

PRIO1 and PRIO2
(7) Switches to specify the clock function

CLKDISP, FLASH, and NOCLK
(8) Switches to specify the tape function KTAPE
(9) Switch to specify the mute output MUTESEL
(10) Switch to specify the local operation

AUTOLOC
(11) Switch to specify the intermediate frequency for the AM (MW, LW) band IFAM
(12) Switch to specify whether the MW band stereo reception function is available MWS
(13) Switch to specify that the standby mode has no clock

CKHLT
(14) Switch to specify whether the electronic volume control fader function is available FAD_SEL
(15) Switch to specify which key (VOL UP/VOL DWN or MAN UP/MAN DWN) is used for electronic volume control
VKYSEL
(16) Switches to specify the gain of the electronic volume control

VOLATT_H and VOLATT_L
(17) Switches for setting illumination control

ILLA and ILLB
(18) Switch for specifying whether the alarm function is used DISALARM

To set these switches to 1 , short the diodes in each matrix. To set these switches to 0 , keep the diodes open. The functions of the initial setting diode matrixes are summarized below (in alphabetical order).

Initial setting diode				Description
AREA1 AREA2 AREA3	These switches are used to specify the reception area. The following table lists the settings of the switches and the corresponding reception areas. See the summary of functions for the reception frequencies in each reception area.			
	AREA3	AREA2	AREA1	Area
	0	0	0	Western Europe
	0	0	1	Australia Middle and Near East
	0	1	0	Japan
	0	1	1	USA 1
	1	0	0	USA 2
	1	0	1	Eastern Europe
	1	1	0	USA 3
	1	1	1	China
	(1: Shorted by the diode; 0: Open)			
AUTO500	This switch specifies the function of the MAN UP and MAN DWN keys. With the AUTO500 switch, it is possible to use the MAN UP and MAN DWN keys also for auto-tuning (seek operation), as follows.			
	AUTO500			JP and MAN DWN ke
	0	Only manu Each time one chann increment/	ning is pe key is pre Keeping th ment.	he frequency counter is pressed for at least
	1	Both manu Each time one chann (seek oper The SEEK	and auto-tu key is pre Keeping th) to begin key beco	re performed. he frequency counter is pressed for at least 0.5 next channel. neffective.
	(1: Shorte	by the diode	Open)	

Initial setting diode	Description	
AUTOLOC	This switch specifies the local function, as follows:	
	AUTOLOC	Local function
	0	Either or DX mode is selected according to a key entry (no auto local function available). Each time the \square MONO/LOC key is pressed, switching occurs between local and DX modes. The local output is high in the local mode during auto-tuning (seek, scan, or auto-store).
	1	The auto local function is performed (if available). The MONO/LOC key becomes ineffective. Keeping the SEEK UP, SCAN UP, SCAN DWN or P.SCAN key for at least 2 seconds triggers auto-tuning, turns on the "LOC" display, and makes the local output high. After one cycle of auto-tuning is completed, a search begins in DX mode (with the "LOC" display off and local output at a low level). In modes other than auto-tuning, the "LOC" display is off and the local output is low. If a key for the same operation (for example, the SEEK UP key during seek operation) is pressed in local mode during auto-tuning, a search begins in DX mode at the same frequency used when auto-tuning began. If the key is pressed in DX mode, auto-tuning stops, and the frequency that was selected when auto-tuning began is reselected. The same operation as above occurs when the AUTO500 is set to 1 (by keeping the MAN UP or MAN DWN key pressed for at least 0.5 seconds).
	(1: Shorted by the diode; 0: Open)	
CKHLT	When the DISALARM and NOCLK initial setting diodes $=1$, and CE $=$ low, the CKHLT switch specifies which standby mode is to be used, STOP or HALT.	
	CKHLT	$C E=$ low
	0	STOP mode
	1	HALT mode
	(1: Shorted by the diode; 0: Open)	
CLKDISP	This switch specifies the clock display system (12/24) as follows:	
	CLKDISP	Clock display system
	0	12-hour system $\begin{aligned} & \longrightarrow \text { AM12:00 } \longrightarrow \text { AM11:59 } \\ & \text { PM11:59 } \end{aligned}$
	1	24-hour system
	(1: Shorted by the diode; 0: Open)	
DISALARM	This switch specifies whether the alarm function is used, as follows:	
	DISALARM	Description
	0	Used
	1	Not used
	(1: Shorted by the diode; 0: Open)	

Initial setting diode	Description					
DISAMEMO	This switch is used to inhibit the auto-storage function, as follows:					
	DISAMEMO	Description				
	$0 \quad \|$T K 0	The auto-storage function is enabled. Keeping the P.SCAN key pressed for at least 2 seconds triggers the auto-storage operation.				
	1	The auto-storage function is disabled. The P.SCAN key can be used only for the preset scan function.				
	(1: Shorted by the diode; 0: Open)					
DISFM3 DISLW ENFM ENMW2	These switches are used to specify the reception band. Each switch has the following functions. DISFM3: When set to 1, disables the FM3 band. ENMW2: When set to 1, enables the MW2 band. DISLW: When set to 1, disables the LW band for Western Europe and Eastern Europe. This switch is ineffective in the other areas. O ENFM: When set to 1 , enables only the FM band. The following table lists the settings of these switches and the corresponding reception bands in each area.					
	Area	ENFM	DISFM3	ENMW2	DISLW	Reception band
	Western Europe	- 1	0	-	-	FM1, FM2, FM3
	rn Europe	1	1	-	-	FM1, FM2
		0	0	0	0	FM1, FM2, FM3, MW1, LW
		0	0	0	1	FM1, FM2, FM3, MW1
		0	0	1	-	FM1, FM2, FM3, MW1, MW2
		0	1	0	0	FM1, FM2, MW1, LW
		0	1	0	1	FM1, FM2, MW1
		0	1	1	-	FM1, FM2, MW1, MW2
	The other areas	- 1	0	-	-	FM1, FM2, FM3
		1	1	-	-	FM1, FM2
		0	0	0	-	FM1, FM2, FM3, MW1
		0	0	1	-	FM1, FM2, FM3, MW1, MW2
		0	1	0	-	FM1, FM2, MW1
		0	1	1	-	FM1, FM2, MW1, MW2
	(1: Shorted by the diode; 0: Open; -: Don't care)					

Initial setting diode	Description			
ENAMIF ENFMIF	These switches specify whether to use the frequency counter to detect a broadcasting station, as follows:			
	ENFMIF	ENAMIF	Band	Method to detect a station
	1	1	FM	Frequency counter and SD method
			MW, LW	Frequency counter and SD method
	1	0	FM	Frequency counter and SD method
			MW, LW	SD method
	0	1	FM	SD method
			MW, LW	Frequency counter and SD method
	0	0	FM	SD method
			MW, LW	SD method
	(1: Shorted by the diode; 0: Open)			
FAD_SEL	This switch specifies whether to enable the electronic volume control fader function, as follows:			
	FAD_SEL \quad Description			
	0	The fader functio Pressing the \square below.	enabled. L key sw	es the electronic volume control mod
	1	The fader funct Pressing the V below.	disabled. L key sw	s the electronic volume control mod
	(1: Shorted by the diode; 0: Open)			
FLASH	This switch specifies how a colon (:) is used in the clock display, as follows:			
	FLASH	Colon (:) display		
	0	Stays on.		
	1	Blinks. - Frequency: 1 Hz - Duty cycle: 6 on and 4 off		
	(1: Shorted by the diode; 0: Open)			
IFAM	This switch specifies the intermediate frequency for the AM band (MW and LW), as follows:			
	IFAM	Intermedia		
	0	450 kHz		
	1	10.71 MHz		
	(1: Shorted by the diode; 0: Open)			

Initial setting diode	Description			
PRIO1 PRIO2				
	PRIO1	PRIO2	Privileged display	Description
	1	0	Frequency [I] TRPE	In 5 seconds after the DISP key is pressed to shift from the frequency, "[IT", or "iRFE" display to the clock display, the previous display is resumed if no other key is pressed. In radio mode Usually the frequency display appears and remains. Pressing the DISP key causes the clock display to appear for 5 seconds. Pressing the DISP key or a preset number key within this 5second period of the clock display resumes the frequency display. - In tape mode Usually the "iAPE" display appears and remains. Pressing the DISP key causes the clock display to appear for 5 seconds. Pressing the DISP key again within this 5 -second period of clock display resumes the "TRPE" display. - In CD mode Usually the "LIT" display appears and remains. Pressing the DISP key causes the clock display to appear for 5 seconds. Pressing the DISP key again within this 5 -second period of the clock display resumes the " $\left[\frac{D}{2}\right.$ " display. - In radio-monitor tape mode Usually the "TAPE" display appears and remains. Pressing the DISP key causes the frequency display to appear for 5 seconds. Pressing the DISP key again within this 5 -second period of the frequency display causes the clock display to appear. Pressing the DISP key again within this 5 -second period of the clock display causes the "TRPE" display to appear. Pressing a preset number key during "TRFE" or clock display causes the frequency display to appear for 5 seconds. - In radio-monitor CD mode Usually the " $[I T$ " display appears and remains. Pressing the DISP key causes the frequency display to appear for 5 seconds. Pressing the DISP key again within this 5 -second period of the frequency display causes the clock display to appear. Pressing the DISP key again within this 5 -second period of the clock display causes the " $[I$ " display to appear. Pressing a preset number key during "[I]" or clock display causes the frequency display to appear for 5 seconds.
	(1: Shorted by the diode; 0: Open)			

2.6.2 Alternation or transistor switch

In the following table, a statement that a switch is on (off) means that a high (low) level is input.

Alternation/ transistor switch	Description
CDSET	This switch selects CD mode. It is effective only when the CE pins is at a high level. Setting this switch to on selects CD mode.
DTH	This is the input switch to specify whether the detachable panel is attached. When this switch is off, it indicates that the panel is detached.
FF	This is the fast forward signal input switch for tape mode. The tape run direction indicator ($\boldsymbol{\bullet}$) may light depending on the state of the RL switch as listed below. $(D$: Does not light 0 : Off 1:On $: \text { Lights }\rangle \text { : Blinks (at } 2.5 \mathrm{~Hz}) \text {) }$
RDSET	This switch selects radio mode. It is effective only when the CE pin is at a high level. If both CDSET and TPSET switches are off, setting the RDSET switch to on selects radio mode.
RL	This is the forward run signal input switch for tape mode. The tape run direction indicator ($\boldsymbol{\Delta}$) is controlled according to the state of the FF switch. See the description of the FF switch for the state of the indicator.
ST	This switch is a stereo signal input switch for radio mode. For the FM band in radio mode, setting this switch to on turns on the "ST" display. If the stereo reception function is available for the MW band (initial setting diode MWS = 1), setting the ST switch to on with the MW band selected turns on the "ST" display. However, the display is turned off in the monaural state.
TPSET	This switch selects tape mode. It is effective only when the CE pins is at a high level. If the CDSET switch is off, setting the TPSET switch to on selects tape mode.

2.6.3 Momentary keys

The functions of the momentary keys are summarized below (in alphabetical order).

Momentary key	Description
ALARM	This key can be used only for setting alarm mode. This key is effective when the IGNITION pin is at the low level and DISALARM initial setting diode $=0$. See Chapter 3 for details.
BAND	The BAND key is used to switch the reception band. This key is effective when the current mode is radio, radio-monitor tape, or radio-monitor CD mode. When the key is pressed, the reception band is switched sequentially as follows. However, inhibited bands are skipped. They are specified by the AREA1, AREA2, and AREA3 initial setting diodes (to specify reception areas) and the DISFM3, DISLW, ENFM, and ENMW2 initial setting diodes (to specify reception bands). The band display and last channel vary during band switching within the same type of band (FM1 \rightarrow FM2 \rightarrow FM3, MW1 \rightarrow MW2). The BAND key becomes ineffective in tape and CD modes.
CD	Each time the $C D$ key is pressed, the output of the CDOUT pin (pin 45) is inverted. Using the CDOUT output makes it possible to implement an application such as described below: Turning on/off a transistor switch connected to the CDSET pin according to the CDOUT output can switch on/off the CD mode according to the state of the $C D$ key.

Momentary key				Description
DISP	The \square DISP key is used to switch the display. It is effective when NOCLK initial setting diode $=0$ (with a clock). Display switching occurs as follows: (1) In radio mode Each time the key is pressed, the display switches between the frequency and clock. The \square DISP key is ineffective during seek-scanning and auto-preset scanning. The operation depends on the states of the PRIO1 and PRIO2 initial setting diodes as follows:			
	PRIO1	PRIO2	Privileged display	Description
	0	0	None	Each time the DISP key is pressed, the display switches between the frequency and clock.
	1	0	Frequency display	Pressing the DISP key during frequency display causes the clock display to appear for 5 seconds. Pressing the DISP key during the 5 -second period of clock display causes the frequency display to appear again.
	0	1	Clock display	Pressing the DISP key during clock display causes the frequency display to appear for 5 seconds. Pressing the DISP key during the 5 -second period of frequency display causes the clock display to appear again.
	(1: Sh When radio (2) In tape Each ti The op	orted by mode is mode me the eration d	he diode; 0 : selected, the ISP key is pends on th	Open) display begins with the frequency. ressed, the display switches between "TAPE" and the clock. states of the PRIO1 and PRIO2 initial setting diodes as follows:
	PRIO1	PRIO2	Privileged display	Description
	0	0	None	Each time the \square DISP key is pressed, the display switches between the frequency and clock.
	1	0	"TRFE" display	Pressing the DISP key during "TAPE" display causes the clock display to appear for 5 seconds. Pressing the DISP key during the 5 -second period of clock display causes the "iAPE" display to appear again.
	0	1	Clock display	Pressing the DISP key during clock display causes the "iRPE" display to appear for 5 seconds. Pressing the DISP key during the 5 -second period of "TRFE" display causes the clock display to appear again.
	(1: Shorted by the diode; 0: Open) When radio mode is selected, the display begins with the "TRPE" display.			

Momentary key				Description
DISP	(3) $\begin{array}{l}\text { In CD } \\ \text { Each } \\ \text { The op }\end{array}$ PRIO1 0 1 0	mode me the eration d	ISP key is pends on th	ressed, the display switches between "[I]" and the clock. states of the PRIO1 and PRIO2 initial setting diodes as follows:
		PRIO2	Privileged display	Description
		0	None	Each time the DISP \square key is pressed, the display switches between " $[$ II" and clock.
		0	$\begin{aligned} & \text { "[I]" } \\ & \text { display } \end{aligned}$	Pressing the DISP key during "LIn" display causes the clock display to appear for 5 seconds. Pressing the DISP key during the 5second period of clock display causes the " $[I$ " display to appear again.
		1	Clock display	Pressing the DISP key during clock display causes the "[I]" display to appear for 5 seconds. Pressing the DISP key during the 5second period of "[II" display causes the clock display to appear again.

(1: Shorted by the diode; 0: Open)
When CD mode is selected, the display begins with the "[IT".

(4) In radio-monitor tape mode

Each time the DISP key is pressed, the display switches among "TRPE", frequency, and clock.
The operation depends on the states of the PRIO1 and PRIO2 initial setting diodes as follows:

PRIO1	PRIO2	Privileged display	Description
0	0	None	Each time the DISP key is pressed, the display is toggled as follows:
1	0	"TRPE" display	Each time the DISP key is pressed, the display is toggled as follows: If no key is pressed during frequency or clock display, the "TRPE" display appears again after 5 seconds.
0	1	Clock display	Each time the DISP key is pressed, the display is toggled as follows: If no key is pressed during frequency or "TRPE" display, the clock display appears again after 5 seconds.

(1: Shorted by the diode; 0: Open)
When radio-monitor tape mode is selected, the display begins with the frequency.

Momentary key	Description
DISP	(5) In radio-monitor CD mode Each time the \square DISP key is pressed, the display switches among " $\square 7 \underline{\prime \prime}$ ", frequency, and clock. The operation depends on the states of the PRIO1 and PRIO2 initial setting diodes as follows:
	PRIO1PRIO2 $\begin{array}{c}\text { Privileged } \\ \text { display }\end{array}$ Description
	(1: Shorted by the diode; 0: Open) When radio-monitor CD mode is selected, the display begins with the frequency. (6) During clock display The DISP key is used to adjust the clock. The minute and hour displays are adjusted by pressing the \square MAN UP and \square MAN DWN keys with the DISP key held pressed, as follows: - Hour adjustment Each time the MAN DWN key is pressed, the hour display is incremented by one. Keeping the key pressed for at least 0.5 seconds increments the hour display at a rate of four per second (one per 250 ms). The continuous increment continues until the key is released. The minute display, second count, or pointer movement is not affected. - Minute adjustment Each time the MAN UP key is pressed, the minute display is incremented by one. Keeping the key pressed for at least 0.5 seconds increments the minute display at a rate of eight per second (one per 125 ms). The continuous increment continues until the key is released. No carry-over occurs to the hour display. The second count is reset to 0 at each adjustment.

Momentary key	Description
DSP	Pressing the DSP key switches the output of the DSP1 and DSP2 pins, as follows. The initial value is NORMAL. While the power is off, the output mode is NORMAL. (1: Shorted by the diode; 1: Open) In radio, tape, and CD modes, the output mode which was used last is recorded in memory for each mode. In radio, tape, or CD mode, "NORMAL," "CLASSIC," "ROCK," or "POP" is displayed, according to the output mode.
LOUD/ ILLUMINATION	Key for switching LOUD (loudness) control and illumination control. (1) Loudness control It is effective in radio, tape, and CD modes. Each time the LOUD/ILLUMINATION key is pressed, the control of loudness and the electronic volume control loudness function are switched on or off. The following table lists the states of loudness, "LOUD" display, the LOUD pin output, and the electronic volume control IC. Switching radio, tape, or CD mode does not affect the state of loudness. Note In loudness ON mode, set the gain of the electronic volume to +7.5 dB . In loudness OFF mode, set the gain of the electronic volume to 0 dB . (2) Illumination control Illumination control is effective in radio, tape, and CD modes. When this key is pressed and held down for two seconds or more, the previous ILLUMI output is inverted. The initial value is low-level output. The illumination control, however, can be enabled or disabled by using the ILLA and ILLB initial setting diodes (see Section 2.6.1).

Momentary key	Description
M1 M2 M3 M4 M5 M6	In radio mode, these keys are used to access a preset memory and control whether to enable writing to it. In tape mode, the M5 keys are used for a tape function (MTL) key depending on the settings of the KTAPE initial setting diode. (1) In radio, radio-monitor tape, and radio-monitor CD modes The M1 to M6 keys are used to access a preset memory and control whether to enable writing to it. Each key can be set to the FM1, FM2, FM3, MW1, MW2 and LW bands (up to six bands) separately. The functions of these keys are as follows:

Momentary ke	Description
MAN UP	The MAN UP and MAN DWN keys are used to increment and decrement the reception frequency in radio mode, respectively. During clock display, they are also used in connection with the DISP key to adjust the clock. They are again used to increase/decrease the volume of sound during electronic volume control if VKYSEL $=1$. (1) In radio, radio-monitor tape, and radio-monitor CD modes Either of the following operations occurs depending on the state of the AUTO500 initial setting diode. (1: Shorted by the diode; 0: Open) (2) While "TAPE" is displayed in tape mode or " $\left[\frac{\pi}{}\right.$ " is displayed in CD mode The MAN UP and MAN DWN keys are ineffective. (3) During clock display While the DISP key is held pressed during clock display, pressing the MAN UP and MAN DWN keys enables adjusting the minute and hour displays, respectively. See the description of the DISP key for how to adjust the minute and hour displays. (4) When the electronic volume control function is effective and VKYSEL = 1: The MAN UP and MAN DWN keys are used to adjust (increase and decrease) the volume of sound in the electronic volume control mode selected using the VOL SEL key. Once an electronic volume control mode is selected using the VOL SEL key, the MAN UP and MAN DWN keys function in the same way as the VOL UP and VOL DWN keys. In a mode other than an electronic volume control mode, the MAN UP or MAN DWN key does not function as a volume control. Pressing the MAN UP key works for each electronic volume control mode as follows:

Momentary key	Description	
P.SCAN	The same operation occurs for the MW (MW1 and MW2) and LW bands. When the next preset memory is accessed after a 5 -second hold period, a beep is generated. During each 5 -second period, the preset memory number display blinks at 1 Hz (with a duty cycle of 50%). The " CH " display does not blink. To stop preset memory scanning during a 5-second hold period, press the \square P. SCAN key again or a prese memory key that corresponds to the preset memory being currently accessed. It is possible to write to a preset memory when another preset memory is on hold (for example, write to the M5 when the M1 is on hold). When a write operation is completed, the preset scan operation ends. Hold down one of the M1 to M6 keys for at least 2 seconds during the preset scan operation. The frequency currently being received is written into the preset memory corresponding to the pressed key. The preset scan operation ends immediately when any of these keys is pressed. During the preset scan, each key functions as follows:	
	Key	Description
	P.SCAN	The scan operation stops, and the current frequency is received.
	SCAN UP SCAN DWN SEEK UP MAN UP MAN DWN	The scan operation stops, the operation corresponding to the pressed key begins at the frequency being currently received.
	BAND	In radio, radio-monitor tape, and radio-monitor CD modes, the scan operation stops, and the operation corresponding to the pressed key begins at the frequency being currently received.
	RDMONI	Either of the following operations occurs depending on what the current mode is. (1) In radio mode The scan operation continues. The RDMONI key becomes ineffective. (2) In radio-monitor tape and radio-monitor CD modes The scan operation stops, and the operation corresponding to the pressed key begins at the frequency being currently received.
	LOUD/ ILLUMI- NATION POWER	The scan operation continues. The operation corresponding to the pressed key begins.
	MONO/LOC	Either of the following operations occurs depending on the state of the AUTOLOC initial setting diode. (1) When AUTOLOC $=0$: The scan operation continues. The operation corresponding to the MONO/LOC key begins. (2) When AUTOLOC = 1: The scan operation continues. The \square MONO/LOC key becomes ineffective.
	M1 M2 M3 M4 M5 M6	In radio, radio-monitor tape, and radio-monitor CD modes, the scan operation stops. The other operations vary depending on the timing at which the key is released. - If the key is released within $\mathbf{2}$ seconds: The preset memory corresponding to the pressed key is accessed. - If the key is kept pressed for at least $\mathbf{2}$ seconds: A frequency being currently received is written to the preset memory corresponding to the pressed key.

Momentary key	Description
P.SCAN	O Auto-storage function Broadcasting stations are searched for automatically. The frequency of a detected station is written to a preset memory. A method used to detect a station is determined according to the states of the ENAMIF and ENFMIF initial setting diodes. A broadcasting station search begins at the frequency being currently received and is performed through the frequencies in the ascending order. When a station is detected, its frequency is written to a preset memory.
For the voltage with SD, see the description of the SD in Chapter 1.	
The auto-storage operation varies depending on the state of the AUTOLOC initial setting diode as	
follows:	

(1) When AUTOLOC $=0$ (with no auto local function):

The auto-storage function varies depending on which mode has been selected, local or DX, when the function begins.
(a) If DX mode has been selected when the auto-storage function starts:

A search beings at the frequency being currently received and continues in the ascending order of the frequency. When all frequencies are searched through, the search operation ends. If the P. SCAN key is pressed during the search operation, the auto-storage operation ends, and the frequency selected when the auto-storage operation began is received.
When all frequencies are searched through, if at least one station is detected, the contents of the preset memories are updated, and the preset scan begins at the M1 preset memory.
How the contents of the preset memories are updated varies depending on the number of stations detected.

- If six or more stations are detected:

If six or more stations are detected, six stations with a higher SD input are selected and written to the preset memories. A lower frequency is written to a lower-numbered preset memory.

- If less than six stations are detected:

If less than six stations are detected, lower frequencies are written to lower-numbered preset memories. The contents of a preset memory will not be changed if there is no frequency corresponding to it.
(b) If local mode has been selected when the auto-storage function starts:

A search begins in local mode at the frequency being currently received and continues in the ascending order of the frequency. When all frequencies are searched through, if six or more stations are not detected, the search switches to DX mode and continues in it. If six or more stations are detected in local mode, or all frequencies are searched through in DX mode, the auto-storage operation ends.
Pressing the P. SCAN key during the search operation stops the auto-storage operation, and causes the frequency selected when the auto-storage memory began to be received.
If six or more stations are detected in local mode, or all frequencies are searched through in DX mode, the auto-storage operation ends. If at least one station is detected, the contents of the preset memories are updated, and the preset scan begins with the M1 preset memory.
How the contents of the preset memories are updated varies depending on the number of stations detected, as follows:

- If six or more stations are detected in local mode:

If six or more stations are detected, six stations with a higher SD input are selected and written to the preset memories. A lower frequency is written to a lower-numbered preset memory
O If less than six stations are detected in local mode and some are detected in DX mode, resulting in a total of six or more stations being detected:
Stations detected in DX mode with higher SD input levels are selected and added to the number of stations detected in local mode so that the total becomes six. In this case, the stations detected in local mode are excluded from those detected in DX mode.
The frequencies of the six stations are written to the preset memories, with a lower frequency written to a lower-numbered preset memory.

Momentary key	Description
P.SCAN	O If less than six stations are detected in local mode and some are detected in DX mode, resulting in a total of less than six stations being detected: If the same station is detected in DX and local modes, the station detected in DX mode is deleted so that the same frequency will not be written to two preset memories. The frequencies of the less than six stations detected are written to the preset memories, with a lower frequency written to a lower-numbered preset memory. The contents of a preset memory will not be changed if there is no frequency corresponding to it. (2) When AUTOLOC = 1 (with the local function): A search begins in local mode at the frequency being currently received and continues in the ascending order of the frequency. When all frequencies are searched through, if six or more stations are not detected, the search switches to DX mode and continues in it. If six or more stations are detected in local mode, or all frequencies are searched through in DX mode, the auto-storage operations ends. Pressing the P. SCAN key in local mode switches to DX mode, and restarts the search operation at the frequency selected when the previous search began. Any stations detected in local mode are made ineffective. (Stations detected in local mode are excluded during preset memory updating.) Pressing the P. SCAN key in DX mode ends the auto-storage operation, and causes the frequency selected when the auto-storage operation began to be received. If six or more stations are detected in local mode, or all frequencies are searched through in DX mode, the auto-storage operation ends. If at least one station is detected, the contents of the preset memories are updated, and the preset scan begins with the M1 preset memory. How the contents of the preset memories are updated varies depending on the number of stations detected, as follows: If six or more stations are detected in local mode: If six or more stations are detected in local mode, six stations with a higher SD input are selected and written to the preset memories, with a lower frequency written to a lower-numbered preset memory. O If less than six stations are detected in local mode, and some are detected in DX mode, resulting in a total of six or more stations being detected: Stations detected in DX mode with higher SD input levels are selected and added to the number of stations detected in local mode so that the total becomes six. In this case, the stations detected in local mode are excluded from those detected in DX mode. The frequencies of the six stations are written to the preset memories, with a lower frequency written to a lower-numbered preset memory. O If less than six stations are detected in local mode and some are detected in DX mode, resulting in a total of less than six stations being detected: If the same station is detected in DX and local modes, the station detected in DX mode is deleted so that the same frequency will not be written to two preset memories. The frequencies of the less than six stations detected are written to the preset memories, with a lower frequency written to a lower-numbered preset memory. The contents of a preset memory will not be changed if there is no frequency corresponding to it.

Momentary key		Description
RDMONI	The RDMONI key controls radio monitoring. It is effective in tape, CD, radio-monitor tape, or radiomonitor CD mode. Each time the key is pressed, radio monitor mode is set or reset. In radio monitor mode, the "RDMONI" display on the LCD panel lights. In radio monitor mode, tuning is enabled for all bands, the radio mute function ($\overline{\text { RDMUTE }} \mathrm{pin}$) is switched off, and the audio mute function ($\overline{\text { AMUTE }}$ pin) is switched on. Radio monitor mode is reset by: - Change in the TPSET switch state - Change in the CDSET switch state - Change at the CE pin from high level to low level ${ }^{\text {Note }}$ Note When using alarm mode, always pull up the CE pin.	
SCAN UP	The SCAN UP and SCAN DWN keys are used for auto-tuning (scan operation). Pressing the SCAN UP key (SCAN DWN key) increases (decreases) the frequency by one channel space and checks whether there is a broadcasting station at each reception frequency (frequency counter and SD signal). If a broadcasting station is detected, the corresponding frequency is held for five seconds. If no key is pressed within this hold time of five seconds, the seek operation restarts. If another broadcasting station is detected, the corresponding frequency is held in the frequency counter for five seconds. This operation is repeated (scan operation) sequentially. The frequency display blinks at 1 Hz (with a duty cycle of 50%) during the five-second hold time. A beep occurs at the end of the hold time. The seek operation here is the same as one performed with the \square SEEK UP key. The following table lists the operation corresponding to each key pressed during the seek operation (except the hold time).	
	Key	Description
	SCAN UP SCAN DWN	If the SCAN UP key is pressed in scan-up mode, or the \square key is pressed in scan-down mode: The scan operation stops, and the frequency that was selected when the scan operation began is reselected. If the auto local function is being used, local mode is switched. - If the \square SCAN DWN key is pressed in scan-up mode, or the \square SCAN UP key is pressed in scan-down mode: The operation corresponding to the pressed key begins at the frequency that is selected when the key is pressed.
	SEEK UP MAN UP MAN DWN P.SCAN	The scan operation stops, and the operation corresponding to the pressed key begins at the frequency that is selected when the key is pressed.
	BAND	In radio, radio-monitor tape, and radio-monitor CD modes, the scan operation stops. The frequency that was selected when the scan operation began (or the frequency on hold if a broadcasting station has been detected during the scan operation) is reselected, and the operation corresponding to the pressed key begins.
	RDMONI	Either of the following operations occurs depending on what the current mode is. (1) In radio-monitor tape and radio-monitor CD modes The scan operation stops. The frequency that was selected when the scan operation began (or the frequency on hold if a broadcasting station has been detected during the scan operation) is reselected, and the operation corresponding to the pressed key begins. (2) In radio mode The seek operation continues, and the key becomes an ineffective key.

Momentary key	Description			
VOL SEL	The \square key is used to select an electronic volume control mode．There are five electronic volume control modes as listed below：			
	Mode	Function	Panel di （initial se	
	Volume	Controls the main sound volume．	$1 \% 11$	
	Bass	Controls the bass．	뀨に官	\square
	Treble	Controls the treble．	「保に	\square
	Balance	Controls the sound volume from the right－and left－side speakers．	꾝G－	
	Fader	Controls the sound volume from the front and rear speakers．	F\％	
	Either of the Each time	modes listed below is selected depending on the state of the VKYS VOL SEL key is pressed，the mode switches as listed below．	ial setting	
	VKYSEL	Description		
	0	The first mode selected is bass mode．		
	1	The first mode selected is volume mode． VOL SEL 1 PUSH		
	（1：Shorted by the diode；0：Open）			

3. ALARM FUNCTION

The alarm function is provided as a means of preventing car theft. If the alarm system detects anyone other than the user entering the car, a warning sound is generated.

3.1 Overview of the Alarm Function

- When alarm mode is off

The signal indicating The IGNITION pin an open door is becomes high. recognized.

- When alarm mode is on

3.2 Setting Alarm Mode

Alarm mode is set as follows:

Press and hold down the P.SCAN key for two seconds. Then each time the key is pressed, the status changes in the order of the exit time, entry time, reset time, and setting end.

	Initial value (s)	Specificate value (s)
Exit time	12	3 to 180
Entry time	12	3 to 180
Reset time	30	3 to 180

Exit time : Time between opening and closing the door after pressing the ALARM key
Entry time : Time between opening the door and turning on the ignition switch
Reset time : Time during which an alarm sound is generated in alarm mode

To set alarm mode, the following pins and keys in (1) to (7) are used.

(1) IGNITION pin

The ignition switch signal is input from the key box.

IGNITION pin	State
At the low level	• Power-off • Alarm mode on (alarm being output) and alarm mode time setting enabled • In alarm mode
At the high level	Power-on enabled state

(2) ALARMIN pin

The signal indicating that the car door is open or closed is input.

- When the ALARM key has been turned on with the ALARMIN pin at the low level

ALARMIN pin	
At the low level	The door is closed.
At the high level	The door is open.

- When the ALARM key has been turned on with the ALARMIN pin at the high level

ALARMIN pin	
At the low level	The door is open.
At the high level	The door is closed.

(3) ALARMOUT pin

The state upon warning is output.
This pin is used as a power-on signal for the peripheral hardware, such as an electronic volume control or amplifier.

ALARMIN pin	
At the low level	Alarm mode off
At the high level	Alarm mode on (alarm being output)

(4) ALARM key

When this key is pressed with both of the following conditions satisfied, the alarm function is activated.

- The ignition switch is off.
- The DISALARM initial setting diode is set to 0 .

The ALARM key is effective only when the IGNITION pin $=0$.
(5) P.SCAN key

When this key is pressed and held down for two seconds or more with both of the following conditions satisfied, the system enters the alarm time setting state.

- The ignition switch is off.
- The DISALARM initial setting diode is set to 0 .
(6) MAN UP key

When this key is pressed in the alarm time setting state, the set time is incremented by one step (one second). When this key is pressed and held down for two seconds or more, the set time is incremented continuously at a rate of one step per 50 ms .
(7) MAN DWN key

When this key is pressed in the alarm time setting state, the set time is decremented by one step (one second). When this key is pressed and held down for two seconds or more, the set time is decremented continuously at a rate of one step per 50 ms .

Figure 3-1 outlines the setting and operation of alarm mode. Figures $3-2$ to $3-4$ show the transition of the alarm operations.

Figure 3-1. Outline of Setting and Operation of Alarm Mode

See Figure 3-2. See Figure 3-4.

Note 0: Alarm operation being halted
1: During alarm time setting (setting of the time for exit, entry, and reset)
2: During exit operation
3: During entry checking
4: During entry operation
5: Alarm being generated

Figure 3-2. Transition of Alarm Operations 1 (While Alarm Operation Is Halted)

Figure 3-3. Transition of Alarm Operations 2 (Alarm Time Setting)

	Initial value (s)	Specifiable value (s)
Exit time	12	3 to 180
Entry time	12	3 to 180
Reset time	30	3 to 180

Figure 3-4. Transition of Alarm Operations 3 (During Alarm Function Processing)

4. MODE TRANSITION

The radio set is turned on or off by switching the RDSET switch.
The RDSET, TPSET, and CDSET switches are enabled only when the CE and IGNITION pins are high.
When the IGNITION pin is made low, clock display is not provided regardless of state of the initial setting diode NOCLK. However, when NOCLK $=0$ (for using the clock), the clock operates.

Transition to alarm mode is possible when the IGNITION pin is at a low level.
The CE pin must be fixed to a high level.
(1) Mode transition when the IGNITION pin is raised from low to high

The RDSET switch is used to turn on or off radio mode.
The TPSET and CDSET switches are used to switch to tape mode and CD mode.

Remark The numbers in brackets ($<>$) represent the following:
<1>: CDSET switch on
<2>: CDSET switch off
<3>: TPSET switch on
<4>: TPSET switch off
<5>: RDSET switch on
<6>: RDSET switch off
<7>: IGNITION pin off (low level)
<8>: ALARM key on
<9>: DISALARM switch = 0
(2) Mode transition when the IGNITION pin is held high
(a) Transition from radio mode to another mode

Remark The numbers in brackets $(<>)$ represent the following:
<1>: CDSET switch on <5>: RDMONI key on
<2>: CDSET switch off <6>: RDSET switch on
<3>: TPSET switch on <7>: RDSET switch off
<4>: TPSET switch off <8>: Electronic volume control key on
(b) Transition from tape mode to another mode

Remark The numbers in brackets $(<>)$ represent the following:
<1>: CDSET switch on <5>: RDMONI key on
<2>: CDSET switch off <6>: RDSET switch on
<3>: TPSET switch on <7>: RDSET switch off
<4>: TPSET switch off <8>: Electronic volume control key on
(c) Transition from radio-monitor tape mode to another mode

Remark The numbers in brackets $(<\rangle)$ represent the following:
<1>: CDSET switch on
<2>: CDSET switch off
<3>: TPSET switch on
<4>: TPSET switch off
<5>: RDMONI key on
<6>: RDSET switch on
<7>: RDSET switch off
<8>: Electronic volume control key on
(d) Transition from CD mode to another mode

Remark The numbers in brackets $(<>)$ represent the following:
<1>: CDSET switch on <5>: RDMONI key on
<2>: CDSET switch off
<6>: RDSET switch on
<3>: TPSET switch on
<7>: RDSET switch off
<4>: TPSET switch off <8>: Electronic volume control key on
(e) Transition from radio-monitor CD mode to another mode

Remark The numbers in brackets $(<\rangle)$ represent the following:
<1>: CDSET switch on
<2>: CDSET switch off
<3>: TPSET switch on
<4>: TPSET switch off
<5>: RDMONI key on
<6>: RDSET switch on
<7>: RDSET switch off
<8>: Electronic volume control key on
(f) Transition from power-off mode to another mode

Remark The numbers in brackets $(<\rangle)$ represent the following:
<1>: CDSET switch on <5>: RDMONI key on
<2>: CDSET switch off <6>: RDSET switch on
<3>: TPSET switch on <7>: RDSET switch off
<4>: TPSET switch off <8>: Electronic volume control key on
5. DISPLAY
5.1 LCD Panel

5.2 Character Style

5.3 Examples of Display
(1) Tape mode

(4) Volume mode

(5) Bass mode

(6) Treble mode

FM 1
FM 2
FM 3
$M W$ LW

5.5 Pin Assignment of the LCD Controller/Driver (μ PD7225)

	COM0 (15)	COM1 (16)	COM2 (17)
S0 (19)	ST	MW	FM1
S1 (20)	4	LW	$>$
S2 (21)	POP	FM3	FM2
S3 (22)	11, i	1d	$1 f$
S4 (23)	1 g	1 e	1a
S5 (24)	1k, h	1c	1b
S6 (25)	ALARM	2 e	$2 f$
S7 (26)	2 g	2d	2a
S8 (27)	2 j	2 c	2 b
S9 (28)	:	3 e	$3 f$
S10 (29)	3 g	3d	3 a
S11 (30)	3h, k	3 c	3b
S12 (31)	.	4 e	4 f
S13 (32)	4 g	4d	4 a
S14 (34)	4j	4 c	4b
S15 (35)	AM	PM	MONO
S16 (36)	ARMING	5 e	$5 f$
S17 (37)	5 g	5d	5 a
S18 (38)	EXIT	5c	5b
S19 (39)	ENTRY	6 e	$6 f$
S20 (40)	6 g	6 d	6 a
S21 (41)	RESET	6 c	6b
S22 (42)	RDMONI	CH	MTL
S23 (43)	5	NORMAL	LOUD
S24 (44)	ROCK	CLASSIC	LOC

Remark The numbers in parentheses indicate the pin numbers of the μ PD7225G (52-pin plastic QFP).

5.6 Description of Display

Display	Description
ALARM ARMING EXIT ENTRY RESET	Indicates the state of the alarm operation. - ALARM : This indication is on in alarm mode. - ARMING: This indication is on during alarm output. - EXIT : This indication is on during exit time setting. - ENTRY : This indication is on during entry time setting. - RESET : This indication is on during reset time setting.
CLASSIC NORMAL POP ROCK	Indicates the mode for the external sound control IC. - CLASSIC: Classic mode - NORMAL: Normal mode - POP : Pops mode - ROCK : Rock mode
ST	Indicates that a stereo broadcast is currently received. (1) In CD mode or tape mode This indication is off. (2) In other modes This indication is on when the FM or MW band is selected, the ST switch is on in the station reception state, and the MONO-off state is set. (For the MW band, this indication is on only when the initial setting diode MWS = 1, and the stereo reception function is enabled.) This indication is off during tuning operation regardless of which band is selected.
LOC	Indicates that the local state is set. (1) In CD mode and tape mode This indication is off. (2) In other modes This indication is on in the local state.
LOUD	Indicates that the loudness-on state is set. This indication is on in the loudness-on state, regardless of which mode is set.
MTL	Indicates that the METAL-on state is set. (1) In tape mode and radio-monitor tape mode This indication is on in the METAL-on state. (2) In other modes This indication is off.
RDMONI	Indicates that the radio-monitor state is set.
MONO	Indicates that the MONO state is set. (1) In CD mode and tape mode This indication is off. (2) In other modes This indication is on when the FM or MW band is selected in the MONO-off state. (For the MW band, this indication is on only when the initial setting diode MWS $=1$, and the stereo reception function is enabled.)
	Indicates a tape running direction. (1) In tape mode and radio-monitor tape mode A tape running direction is displayed according to the state of the RL switch. A tape running direction blinks when the FF switch is on. (2) In other modes This indication is off.

6. REMOTE CONTROL FUNCTION

Use the $\mu \mathrm{PD} 6121 \mathrm{G}$ for sending signals from a remote-controller. The $\mu \mathrm{PD} 6121 \mathrm{G}$ incorporates a custom code. If this code is not correctly set, the $\mu \mathrm{PD} 17012 \mathrm{GF}-058$ cannot be controlled using the remote controller.

The custom code which operates the μ PD17012GF-058 is 8604 H . Set the code to 8604 H by connecting a diode and a pull-up resistor appropriately on the key matrix of the μ PD6121G. (See Section 6.4.)

6.1 Remote-Controller Key Placement (When the μ PD6121G Is Used)

	Klo (1)	Kl 1 (2)	$\mathrm{KI}_{2}(3)$	$\mathrm{KI}_{3}(4)$
$\mathrm{Kl} / \mathrm{O} 0$ (19)	M1	M2	M3	M4
KI/O1 (18)	M5	M6	SEEK UP	-
KI/O2 (17)	SCAN UP	SCAN DWN	P. SCAN	BAND
KI/O3 (16)	MODE	LOC	MONO	POWER
KI/O4 (15)	ILLUMINATION	LOUD	-	-
KI/O5 (14)	DISP	MAN UP	MAN DWN	-
KI/O6 (13)	-	-	MTL	VOL CON
KI/O7 (12)	VOL UP	VOL DWN	MUTE	CD

6.2 Remote-Controller Keys

The remote-controller keys operate in the same way as the momentary keys of the μ PD17012GF-058.

6.3 Remote-Controller Data Codes

- When each key is pressed independently

Remotecontroller key	Data code								Remotecontroller key	Data code							
	D0	D1	D2	D3	D4	D5	D6	D7		D0	D1	D2	D3	D4	D5	D6	D7
M1	0	0	0	0	0	0	0	0	ILLUMINATION	0	0	0	0	1	0	0	0
M2	1	0	0	0	0	0	0	0	LOUD	1	0	0	0	1	0	0	0
M3	0	1	0	0	0	0	0	0	-	0	1	0	0	1	0	0	0
M4	1	1	0	0	0	0	0	0	-	1	1	0	0	1	0	0	0
M5	0	0	1	0	0	0	0	0	DISP	0	0	1	0	1	0	0	0
M6	1	0	1	0	0	0	0	0	MAN UP	1	0	1	0	1	0	0	0
SEEK UP	0	1	1	0	0	0	0	0	MAN DWN	0	1	1	0	1	0	0	0
-	1	1	1	0	0	0	0	0	-	1	1	1	0	1	0	0	0
SCAN UP	0	0	0	1	0	0	0	0	-	0	0	0	1	1	0	0	0
SCAN DWN	1	0	0	1	0	0	0	0	-	1	0	0	1	1	0	0	0
P. SCAN	0	1	0	1	0	0	0	0	MTL	0	1	0	1	1	0	0	0
BAND	1	1	0	1	0	0	0	0	VOL CON	1	1	0	1	1	0	0	0
MODE	0	0	1	1	0	0	0	0	VOL UP	0	0	1	1	1	0	0	0
LOC	1	0	1	1	0	0	0	0	VOL DWN	1	0	1	1	1	0	0	0
MONO	0	1	1	1	0	0	0	0	MUTE	0	1	1	1	1	0	0	0
POWER	1	1	1	1	0	0	0	0	CD	1	1	1	1	1	0	0	0

- When two keys are pressed simultaneously

Remote-controller key			Data code							
			D0	D1	D2	D3	D4	D5	D6	D7
DISP	+	MAN UP	1	0	1	0	1	1	0	0
DISP	+	MAN DWN	0	1	1	0	1	1	0	0

6.4 Example of a Remote-Controller Circuit Using the μ PD6121G-001

6.5 Example of a Remote-Controller Preamplifier Circuit Using the $\mu \mathrm{PC} 2800 \mathrm{HA}$

7. MUTE OUTPUT TIMING CHARTS

The numbers <1> through <6> in this chapter represent the following:
$<1>$: Key-on chattering protection
<2>: Preceding mute and beep output
$<3>$: Updating of the frequency division ratio setting and indication
$<4>$: Following mute
<5>: Scan time
<6>: Wait for PLL locking

7.1 Radio Mute (RDMUTE Pin) Output Timing Charts

(1) Manual up/down
(a) 1-channel up/down
(i) When AUTO500 switch $=0$

(ii) When AUTO500 switch = 1

In either case (i) or case (ii), the time of <4> is 600 ms to 700 ms at the band edges (lowest frequency \rightleftarrows highest frequency).
(b) Continuous up/down
(i) When AUTO500 switch $=0$

At the band edges, the time of $<5>$ is 500 ms , and the time of $<4>$ is 600 ms to 700 ms .
(ii) When AUTO500 switch = 1

The auto-tuning function is enabled by holding down the key for 0.5 second or more, so that continuous up/down operation is not performed.

(2) Automatic up/down

(a) SEEK UP, SCAN UP, or SCAN DWN key

(b) When the MAN UP key is held down for 0.5 second or more when AUTO500 switch $=1$

In either case (a) or case (b), the time of <5> is 540 ms at the band edges.
An IF check is made twice in the FAST mode and SLOW mode.
(3) Calling a preset memory

(4) Write to a preset memory

Mute output operation is not performed.
(5) Band switching

Key on
(6) Turning on or off the radio set

(7) Turning on or off the tape or CD

(8) Pulling the CE pin from high to low

Caution When using alarm mode, always pull up the CE pin.
7.2 Radio Mute ($\overline{\text { RDMUTE }}$ Pin) and Audio Mute ($\overline{\text { AMUTE }}$ Pin) Output Timing Charts
(1) When the mode is switched from radio mode to tape or CD mode

(2) When the radio monitor function is used (Set MUTESEL to 0.)
(a) Switching the radio monitor function from off to on

(b) Switching the radio monitor function from on to off

8. PIN I/O CIRCUITS

The I/O circuit of each pin of the μ PD17012GF-058 is illustrated below in a simplified form.
(1) POA (POAO/ALARMIN, P0A1/SO1, POA2/SCK)

P0B (P0B1/BEEP, P0B0/IGNITION)
P1A (P1A2/MONO, P1A1/EVOL_SCK, P1A0/EVOL_DA)
P1D (P1D3/LOUD, P1D2/POWER, P1D1/BAND1, P1D0/BAND2)

(2) P1C (P1C3/AGCC, P1C2/LOC, P1C1/ $\overline{\text { AMUTE }}, \mathrm{P} 1 \mathrm{C} 0 / \overline{\mathrm{RDMUTE}})$ P2H0/POUT, P2G0/ILLUMI, P2E0/LCD CS PYA13/MTL, PYA12/CDOUT, PYA11/MODE2, PYA10/MODE1, PYA9/KS9-PYA0/KS0

(3) POC (P0C3/ALARMOUT, P0C2/KEYS2 - P0C0/KEYSO) (Output)

(4) POD (P0D3/K3-P0D0/K0) (Input)

(5) P1B (P1B1/ADC1/KY-IN, P1B0/ADC0/SD) (Input)

(6) P1B (P1B3/FMIFC, P1B2/AMIFC) (Input)

(7) CE $\left.\begin{array}{l}\text { CE } \\ \text { INT/ } / \overline{\text { REM }}\end{array}\right\}$ (Schmitt-triggered input)

(8) Хоит (Output), Xin (Input)

(9) EO (Output)

(10) VCOH
$\left.\begin{array}{l}\mathrm{VCOH} \\ \mathrm{VCOL}\end{array}\right\}$ (Input)

9. SAMPLE APPLICATION CIRCUITS

Note When the μ PD7225 external LCD controller/driver is used, connect the C/D pin to the Vod pin at the μ PD7225.

10. ELECTRICAL CHARACTERISTICS (PRELIMINARY)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Rated value	Unit
Supply voltage	Vdo		-0.3 to +6.0	V
Input voltage	V		-0.3 to $\mathrm{VDD}^{\text {d }} 0.3$	V
Output voltage	Vo	Except for P0C0 to P0C3	-0.3 to $\mathrm{VDD}+0.3$	\checkmark
Output high current	Іон	Each pin	-12.0	mA
		Total for all pins	-20.0	mA
Output low current	IoL	Each pin	15.0	mA
		Total for all pins	30.0	mA
Output withstand voltage	Vbds	P0C0 - P0C3	14.0	V
Total loss	Pt_{t}		200	mW
Operating ambient temperature	T_{A}		-40 to +85	C
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.

RECOMMENDED OPERATING RANGES ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	VDD1	When the entire chip is operating	4.5	5.0	5.5	V
	VDD2	When the CPU is operating, but the PLL is not	3.5	5.0	5.5	V
Data hold voltage	Vodr	When the crystal oscillator is stopped	2.3		5.5	V
Output withstand voltage	Vbds	P0C0 - P0C3			12.0	V
Rise time of supply voltage	trise	VDD : $0 \rightarrow 4.5 \mathrm{~V}$			500	ms

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD1	When the CPU is operating but the PLL is not, with a sinusoidal wave applied to the Xin pin (fin $=4.5 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$)			1.0	2.0	mA
	IdD2	When the CPU is operating but the PLL is not, with a sinusoidal wave applied to the Xin pin (fin $=4.5 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$) When the HALT instruction is issued			0.5	1.0	mA
Data hold voltage	VDDR1	When the crystal oscillator is operating	With timer FF for interruption detection	3.5			V
	VDDR2	When the crystal oscillator is stopped	With timer FF for interruption detection	2.3			V
	VDDR3		For holding data memory	2.0			V
Data hold current	Idor 1	When the crystal oscillator is stopped	$V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0	$\mu \mathrm{A}$
	IDDR2				2.0	20.0	$\mu \mathrm{A}$
	Idor3		$V_{D D}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	2.0	$\mu \mathrm{A}$
	Idor4		$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$		1.0	10.0	$\mu \mathrm{A}$
Input high voltage	$\mathrm{V}_{\mathrm{H} 1}$	$\begin{aligned} & \text { P0A1, P0B0 - P0B3, P1A0-P1A2, P1B0 - P1B3, } \\ & \text { P1D0 - P1D3 } \end{aligned}$		0.7 VDD		V ${ }_{\text {d }}$	V
	$\mathrm{V}_{\mathbf{H} 2}$	P0A0, P0A2, CE, INT		0.8 VDD		VDD	V
	Vінз	PODO - POD3		0.6 VDD		V ${ }_{\text {d }}$	V
Input low voltage	VIL1	$\begin{aligned} & \text { P0A1, P0B0 - P0B3, P0D0 - P0D3, P1A0 - P1A2, } \\ & \text { P1B0 - P1B3, P1D0 - P1D3 } \end{aligned}$				0.2Vdo	V
	VIL2	POA0, POA2, CE, INT				0.2VDD	V
Output high current	IoH1	$\begin{aligned} & \text { P0A0 - P0A2, P0B0 - P0B3, P1A0 - P1A2, } \\ & \text { P1C0-P1C3, P1D0 - P1D3 } \quad V_{O H}=V_{D D}-1 \mathrm{~V} \end{aligned}$		-1.0			mA
	Іон2	PYA0 - PYA9, PYA11-PYA15, P2E0, P2F0, P2G0, P2HO, EO \quad Voh $=$ VdD -1 V		-1.0			mA
Output low current	loL1	$\begin{array}{\|l\|} \hline \text { P0A0 - P0A2, P0B0 - P0B3, P1A0 - P1A2, } \\ \text { P1C0 - P1C3, P1D0 - P1D3 } \quad V o L=1 \mathrm{~V} \end{array}$		1.0			mA
	lol2	PYAO - PYA9, PYA11-PYA15, P2E0, P2F0, P2G0,P2H0, EO$V o L=1 \mathrm{~V}$		1.0			mA
	IoL3	P0C0 - P0C3 Vol $=1 \mathrm{~V}$		10			mA
Input high current	IH1	When the VCOH pin is pulled down	pulled down $\quad \mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$	0.1			mA
	1 ${ }_{\text {H2 }}$	When the VCOL pin is pulled down	pulled down $\quad \mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$	0.1			mA
	ІІнз	When the XIN pin is pulled down	ed down $\quad V_{I H}=V_{D D}$	0.1			mA
	ІІн4	When the POD0 to POD3 pins are pulled down$V_{I H}=V_{D D}$		10		150	$\mu \mathrm{A}$
Output-off leakage current	LL1	P0C0-P0C3 \quad Vor $=12 \mathrm{~V}$				1.0	$\mu \mathrm{A}$
	LL2	EO	VOH $=\mathrm{VDD}, \mathrm{VOL}=0 \mathrm{~V}$			± 1.0	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin 1	VCOL pin in MF mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.90		30	MHz
		VCOL pin in MF mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{~V}_{\text {p-p }}$	0.50		20	MHz
	fin2	VCOL pin in HF mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.15 \mathrm{~V}_{\text {pp }}$	5		25	MHz
		VCOL pin in HF mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{~V}_{\text {p-p }}$	5		40	MHz
	fin 3	VCOH pin in VHF mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.15 \mathrm{~V}_{\text {p-p }}$	60		130	MHz
		VCOH pin in VHF mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathbb{N}}=0.3 \mathrm{~V}_{\text {p-p }}$	30		250	MHz
	fin 4	AMIFC FMIFC pin in AMIF count mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}_{\text {p-p }}$	0.3		1.0	MHz
	fins	AMIFC pin in AMIF count mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.44		0.46	MHz
	fing	FMIFC pin in FMIF count mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}_{\text {p-p }}$	5		15	MHz
	fin7	FMIFC pin in FMIF count mode, with a sinusoidal wave applied at $\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	10.5		10.9	MHz

A/D CONVERTER CHARACTERISTICS ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution of A/D conversion					6	bit
Total error in A/D conversion		$T_{A}=-10$ to $+50^{\circ} \mathrm{C}$		± 1.0	± 1.5	LSB

OTHER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, for reference purposes only)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	IDD3	When the CPU and PLL are operating, with a sinusoidal wave applied to the VCOH pin (fin $=130 \mathrm{MHz}, \mathrm{VIN}=0.3 \mathrm{~V}_{\mathrm{p}-\mathrm{p})}$		12		mA
	IDD4	When the CPU and PLL are operating, with a sinusoidal wave applied to the VCOH pin $\left(f i n=250 \mathrm{MHz}, \mathrm{VIN}_{\mathrm{IN}}=0.3 \mathrm{~V}_{\mathrm{p}-\mathrm{p})}\right.$		13	mA	

64 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES		
A	23.2 ± 0.2	$0.913_{-0.008}^{+0.009}$		
B	20.0 ± 0.2	$0.787_{-0.008}^{+0.009}$		
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$		
D	17.2 ± 0.2	0.677 ± 0.008		
F	1.0	0.039		
G	1.0	0.039		
H	0.40 ± 0.10	$0.016_{-0.005}^{+0.004}$		
I	0.20	0.008		
J	$1.0($ T.P. $)$	$0.039($ T.P. $)$		
K	1.6 ± 0.2	0.063 ± 0.008		
L	0.8 ± 0.2	$0.031_{-0.009}^{+0.009}$		
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$		
N	0.10	0.004		
P	2.7	0.106		
Q	0.125 ± 0.075	0.005 ± 0.003		
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$		
S	3.0 MAX.	0.119 MAX.		
	S64GF-100-3B8, 3BE-3			

12. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD17012GF-058.
For details of the recommended soldering conditions, refer to our document SMD Surface Mount Technology Manual (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 12-1. Soldering Conditions for Surface-Mount Devices
μ PD17012GF-058-3BE: 64-pin plastic QFP ($14 \times 20 \mathrm{~mm}, 0.1 \mathrm{~mm}$ pitch)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235{ }^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or more) Maximum allowable number of reflow processes: 2 Exposure limit ${ }^{\text {Note }}$: 7 days (20 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward.) <Cautions> Non-heat-resistant trays, such as magazine and taping trays, cannot be backed before unpacking.	IR35-207-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less (at $200^{\circ} \mathrm{C}$ or more) Maximum allowable number of reflow processes: 2 Exposure limit ${ }^{\text {Note }}$: 7 days (20 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward.) <Cautions> Non-heat-resistant trays, such as magazine and taping trays, cannot be backed before unpacking.	VP15-207-2
Wave soldering	Temperature in the soldering vessel: $260^{\circ} \mathrm{C}$ or less Soldering time: 10 seconds or less Number of soldering processes: 1 Pre-heating temperature: $120{ }^{\circ} \mathrm{C}$ max. (package surface temperature) Exposure limitNote: 7 days (20 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward.) <Cautions> Non-heat-resistant trays, such as magazine and taping trays, cannot be backed before unpacking.	WS60-207-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or less Flow time: 3 seconds or less (for each side of device)	-

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: Temperature of $25{ }^{\circ} \mathrm{C}$ and maximum relative humidity at 65% or less

Caution Do not apply more than a single process at once, except for "Partial heating method."

APPENDIX COMMUNICATION WITH ELECTRONIC VOLUME CONTROL IC (²C BUS INTERFACE)

The μ PD17012-058 sends specified data, such as volume and balance data, to the electronic volume control IC. Two buses, the data bus and clock bus, are necessary to output data to the electronic volume control IC. Data and clock signals are output from the EVOL_DA pin (pin 2) and EVOL_SCK pin (pin 1) of the μ PD17012-058.

Figure A-1. Pin Connections (Electronic Volume Control)

Electronic volume control data consists of nine bits (eight bits for data and a check bit). The electronic volume address (nine bits) and control data (nine bits) are sequentially transferred N times, where N is the number of transferred data items, such as the volume and balance data.

Figure A-2. Data Transfer Format (Electronic Volume Control)

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

Caution This product contains an $I^{2} \mathrm{C}$ bus interface circuit.
When using the $\mathrm{I}^{2} \mathrm{C}$ bus interface, notify its use to NEC when ordering custom code. NEC can guarantee the following only when the customer informs NEC of the use of the interface:
Purchase of NEC $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

