AN1530
>/ A APPLICATION NOTE

ACCURATE TIMEBASE FOR LOW-COST
ST7 APPLICATIONS WITH INTERNAL RC OSCILLATOR

by Microcontroller Division Applications

INTRODUCTION

The ST7 microcontroller contains an internal RC oscillator, which may vary due to internal
component variation depending upon the surrounding conditions. This can lead to the wrong
calculation of the timing for the different peripherals like Timers, SCI etc. Timing calculation for
the peripheral can be done based on the internal RC frequency given in the datasheet, but due
to the variations in internal RC frequency from component to component, this leads to wrong
timing results in the application.

The purpose of this application note is to present a software solution for accurate timing by cal-
ibrating the internal peripheral parameters against the variation of the internal RC oscillator.
This note focuses on ST7 MCUs with a non-calibrated RC. A 50 Hz, 5V source is applied as
a reference frequency to find the real internal RC oscillator frequency. The deviation of the in-
ternal frequency with respect to the datasheet frequency is applied to correct the peripheral
parameter values to obtain timing accuracy. This solution provides an innovative way to com-
pensate the internal RC oscillator variation and to develop low cost applications.

Software is developed with using the ST7 software library (available free on the ST web site).
Software shows, how to calibrate PWM signal of TIMER A to produce a 5 KHz frequency. It
also gives an idea of how to calibrate the baud rate of the SCI (here it is calibrated for 9600
baud). An externally calibrated source (ex. Function generator) is used to apply 50 Hz and 5V
as a reference.

AN1530/0702 1/12

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

1 SOFTWARE SOLUTION

1.1 MEASUREMENT PRINCIPLE

To measure the frequency of the internal RC, software uses the input capture pin of 16-bit
TIMER A. A calibrated source is applied with 50Hz on the capture pin. Every falling edge on
this pin generates an interrupt (at 20ms time duration).

Software has taken the internal RC frequency of typically 4 MHz as per the datasheet. The
TIMER clock is selected as fcpu/2 (1 MHz). Counter overflow is generated after 65.532 ms
(OXFFFF). This internal RC frequency should be chosen between the datasheet. max. and
min. RC frequency values. Capturel and Capture2 are stored as shown in Figure 1.

Figure 1. Timer Input Capture to measure the Reference frequency.

Calibrated source for
5 Vpp, 50 Hz

-

FFFFh A
1 Free running
counter of TIMER A

Capturel Capture2

0000h

Here two possibilities can occur during the calculation of the capture elapsed time. If Capturel
and Capture2 are on the single counter (as shown in Figure 1), time is calculated simply by

Capture Counter = Capture2 - Capturel

Second possibility is that counter overflow generates between the measurement of the
Capturel and Capture2. This leads to a more complex calculation given by

Capture Counter= ((0xffff - capturel) + capture2)

This Measured Capture Counter is compared with the Ideal Capture Counter. ldeal Capture
Counter is calculated manually and here for the fcpu = 2 MHz, it gives 0x4E20. With this infor-
mation Internal RC deviation is found.

2112 (572

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

MeasuredCaptureCounter
CalculatedCaptureCounter

InternalRCDeviationFraction=

This fraction can be used to calibrate the other peripheral parameters to add precision to the
the timing calculations.

If a Mains Supply is used as an external source, this solution works for an European Supply
(50 Hz)). If a US supply (60 Hz) is used, the calculated Capture Counter will be 0x411B to find
the fraction for internal RC deviation.

A software routine is developed to find this fraction and utilize it to calibrate the peripheral pa-
rameters. this routine is included in the application. The basic software takes less than 30ms
to find the fraction, which gives the deviation of real RC frequency with reference to the da-
tasheet frequency. This application includes a glitch filter algorithm and also takes the average
of 8 samples for finding the fraction. The basic algorithm and the average + glitch algorithms
are described in the next chapters. The software takes less than 325ms with the averaging
and glitch algorithms.

This routine execution time includes the 8 capture elapsed times, waiting times for the cap-
tures and the loop calculations inside the routine. The routine execution time is affected mostly
by the capture waiting times. This routine will run in the background of the main application, so
MCU can run other tasks during this 30ms (basic software algorithm) or 325ms (for average
and glitch algorithm) period.

4

3/12

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

1.2 BASIC ALGORITHM

This algorithm measures the deviation of internal RC oscillator frequency in terms of Fraction.
This will take 30ms to find the fraction. Software is developed in “C” language with the help of
the ST7 software library. It needs 9 bytes of RAM.

The software works as shown in the following flow chart for a single sample.

Figure 2. Basic Algorithm Flowchart

| Initialisation of TIMER A capture |

Measurement of the Capturel and
Capture2 done

Is
counter overflow

generated
?

yes

'

Capture Counter= ((Oxffff - Capturel) +
Capture2)

Capture Counter= Capture2 - Capturel

¢<

Internal RC deviation fraction = Measured Capture Counter / Calculated (Ideal) Capture Counter

4/12

4

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

1.3 AVERAGING AND GLITCH ALGORITHM

This algorithm an added feature to section1.2. When the 50 Hz source has noise or spikes,
this algorithm helps to prevent a wrong measurement of the reference signal. If you develop a
permanent hardware circuit to generate the 50 Hz signal, then it may contain noise signals as
well as glitches or spikes. This algorithm is a must in this case.

This software uses 12 bytes of RAM and takes 325 ms (one loop to find the average of 8 sam-
ples) to find the deviation fraction. The flowchart shows how this algorithm works.

Figure 3. Average and Glitch Algorithm Flowchart

Initialisation of TIMER A capture and variables

Capture counter measurement
(Figure 2)

First sample of capture counter is stored (capture_range)
for glitch filtering

Check
sample = (+/-)10% of

capture_range
?

no

Is
8 samples

over
?

no

Average

Y

Internal RC deviation fraction = Average Capture Counter / Calculated (Ideal) Capture Counter

4

5/12

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

1.4 CALIBRATION OF PERIPHERAL PARAMETERS
1.4.1 PWM Counter

Software calibrates the PWM of TIMER to produce the pulse train at 5 KHz frequency. Normal
PWM counter is given by the equation,

_ gtxfepu g
PWMCOUNTER CPRESC 54
where, PWMCOUNTER = Counter value to load in OCIiR register
t = Pulse period (in seconds)
fcpu = CPU clock frequency

PRESC = Prescaler selection

Variation in the internal RC affects the fcpu in above equation. The measured fraction (section
1.3) is applied to this term of the equation. This leads above equation to the new version,

= 1 x fcpu x fraction_5D

PWMCOUNTE 0 PRESC 0

Calibration software calculates PWM counter value using the second equation. It takes care of
the internal RC variation and loads the correct value in the OCIR register to produce the de-
sired frequency.

Here for the 5 KHz frequency generation, PWMCOUNTER will be 95 for fcpu = 2 MHz. When
you convert into Hex value from decimal, resolution will be of 1 count. So the accuracy is [(1/
95)*100] = 1.05%. The accuracy will be proportional to the variation in t and same as the
counter.

1.4.2 SCI Baud rate

SCI applications are the real time-critical applications. The transmit baud rate can be deter-
mined with the following equation,

fepu

TX= G6xPR)x TRXETPR

where, Tx = Baud rate for transmission
fcpu = CPU clock frequency

PR = SCI generic prescaler

6/12

4

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

TR =Transmission rate divisor
ETPR = Extended Transmit Prescaler Division

The above equation is used normally without the ETPR selection. Due to the flexibility of
ETPR range (1 to 255), this software solution calibrates the SCI baud rate using the ETPR
register. Software keeps PR=1 and TR=1. Again the fraction is applied to the numerator of the
equation as the variation affects the fcpu only. The equation becomes,

Tx= fcpu x fraction
(16x PR)x TRx ETPR

To calibrate the baud rate, software loads the value of 9600 in Tx. This gives the value in
terms of (PR * TR * ETPR). Software loads TR=PR=1, So the value is directly assigned to the
ETPR register. This value is loaded into the PR, TR and ETPR bits. For the 9600 baud rate,
this calibration gives ~9300 baud rate (where internal RC varies (-25%)). This software is able
to communicate with the PC hyperterminal after using this calibration.

Here for the 9600 baud rate calculation, ETPR =13, PR = TR =1, for fcpu = 2 MHz. When you
convert into Hex value from decimal, resolution will be of 0.5 count. So the accuracy is [(0.5/
13)*100] = 3.84%. Accuracy will be proportional to variations in Baud rate and same as that of
the ETPR. For higher baud rate values, you have to go for a resolution 0.25 (logic can be ex-
tended as shown in software) to achieve better accuracy.

If SCl doesn’t have the ETPR prescaler then we can load PR=1 and assign the counted value
to TR directly.

2 CONCLUSION

This software solution allows you to work with any time critical applications irrespective of the
variations of the internal RC oscillator frequency. Software is calibrated with reference to the
base of 4 MHz.

Software is developed using the ST7 software library functions. It takes less than 30ms for the
simple calibration version. With the averaging and glitch algorithms, it takes less than 325 ms.

Software includes correction for the PWM counter value and the SCI baud rate. The PWM
counter value gives the frequency with an accuracy of 1-2% and the SCI baud rate gives an
accuracy of 3-4% after using this calibration software, when internal RC oscillator varies by (-
25%).

4

7/12

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

3 SOFTWARE EXAMPLE

This software example includes all the algorithms. It includes a basic algorithm for finding the
fraction and also contains average and glitch algorithms. It has calibration routines for the
PWM counter and SCI baud rate.

3.1 MAIN PROGRAM

/**

COPYRI GHT 2002 STM croel ectroni cs
Source Fil e Name: main. c
G oup : 1 PSW CMG- | PDF
Aut hor : MCD Application Team
Date First | ssued: 01/07/2002
********************************EbCUﬂEntatiOn**********************************
Cener al Purpose - Thisroutineprovidesinternal RCdeviati onneasurenent and
cal i brati on of PMMcount er and SCI baud rat e.

********************************ReviSiOn HiStory********************************

Dat e: 01/07/2002 Rel ease: 1.0
**/
#i nclude "ST7li b_config. h" /*ConfigurationFile*/

unsi gned char cap;

unsi gned i nt capturel, capture2;

const unsi gned char buff1[36] =" SCI CALI BRATI ONDONE ";

/**

MAI N APPLI CATI ON BEG NS
**/
#def i ne TI MERB_PWM_CAL
#def i ne SCI _CAL
voi d mai n (voi d)

{

/**

Vari abl e decl aration for measuringthe captureinputswthaveraging and

glitchfilter al gorithm
**/

unsi gned char i ;

unsi gned i nt capture_range;

float fracti on=0.0;

/**

Vari abl e decl arationfor calibrating PAMw.r.t I nternal RCfrequency

**/

unsi gned i nt PWM CNT, PWM CNT1;

/**

Vari abl e decl arationtocalibrate SCl baudratew.r.t I nternal RCfrequency
**/

unsi gned char CALTR,

fl oat CALTR_ TEMP = 0. 0;

/**

Initialisationof thevaribles

**/

cap=capt ur el=capt ur e2=0;
PWM_CNT = 0; PWM _CNT1 =0; CALTR=0;
capture_range = 0;

8/12

4

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

/**

Enabl e MCCtowatchthereal internal RCoscillator frequency
**/

MCC_| ni t (MCC_DEFAULT) ;

MCC | ni t (MCO_ENABLE) ;

/**

TIMERALi brary calledtocapturetherisingedge at the pi n PF4
**/

TIMERA Init(TIMER_FCPU 2); [/*Tinmer clockisfcpu/2=1 Mz at f osc=4MHz*/

TI MERA_| CAP_Mode(Tl MER_I CAP_1, TI MER_EDGE_0);

TI MERA_| T_Enabl e(TI MER_I CAP_I T_ENABLE) ;

Enabl el nterrupts;
/**

Loopto capture 8 sanpl es andto do averagingof it withusingglitch

filter al gorithmtoprotect the wong signal capture

**/

for (i=0;i<8;i++) / *aver agi ng done for 8 sanpl es*/
{
while(cap!=2); /*wait | oop for two captures*/

/ *managenment t he possi bility of overfl owof counter*/

i f (capture2<capturel)

{

capture2 = ((Oxffff - capturel) + capture?2);
}
el se
{

capture2 =(capture2 - capturel);
}
capture2 = capture2 >>3;
/**********************G itchfi|tering‘Algorithm**********************/
if (i==0)
{

capt ure_range = capt urez;
}
fraction=fraction+ capture2;
i f((capture2>(1.1*capture_range))|| (capture2<(0.9* capture_range)))
{
fraction =0; i =0;
}
capt ur el=capt ur e2=cap=0;
}
/*fraction = Measured RCfrequency/assunedinternal RCFrequency (here 4 Miz) */
fraction=((float)fraction/0x4e20);
Nop;
/**
Tl MER PARAVETER CALI BRATI ON
**l
#i f def TI MERB_PWM CAL
[rExxxEFxxxE Timpr PMMgenerati onfor 5 KHz frequency******xxkkkxskkxxx
/**
100 val uet o get 100 mi crocesconds at 2MHz f cpu, equationi s used as
per ST72F521 dat asheet

**/

PWM CNT = (int)(200* fraction); /*nunerator cal cul ati on*/

b7

9/12

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

PWM_CNT = PWM_CNT >> 1; [*di vi si on by 2%/

PWM_CNT = PWM_CNT - 5;

PWM CNT1 = (int) (400 * fraction); /*nunerator cal cul ati on*/

PWM _CNT1 = P\WM CNT1 >> 1; / *di vi si on by 2%/

PWWM_CNT1 = PWWM CNT1 - 5;

TI MERB_I ni t (TI MER_FCPU_2) ;

TI MERB_PWM_Mode(TI MER_OUTPUT1_R, TI MER_OUTPUT2_F, PWM CNT, PWM CNT1);
Nop;

#endi f

/**

SCI TRANSM T TI ME CAL| BRATI ON
**/
#i f def SCl _CAL
#i f def SCI _POLLI NG_TX
/**

SCl transmt tinecalibrationfor 9600 baudrate at fcpu=2MHz, this

comuni cationis donew thHyperterm nal of PCwi ththe configuration:

baudr at e=9600, Dat abi t s-8, stop bit-1, parity-None and Fl owcont r ol - None
**/
CALTR TEMP = (float) (13 * fraction);
[*rxxxgkxkxrx\gl ue 13 = PR*TR*ETPR, wher e PR=TR=1. ETPR = 13**** %% **xkkxxxkx k% *
CALTR=(char) (13 * fraction);
CALTR_TEMP = (fl oat) (CALTR_TEMP - CALTR);
if (CALTR_TEMP > 0. 5)
{

CALTR=CALTR+ 1;

}
[*Fxxxx%xxxkxx GO | jbrary call edtosendthe message on Hyperterm nal ¥*****x*xxx%/
SCl _I ni t (SCl _DEFAULT_PARAML, SCI _DEFAULT_PARAM?) ;
SCI _Extend_Baudrate(SCl_PR 1+SC_TR 1+SC_RR 1, CALTR, CALTR);
SCl _Mode(SCl _TX_ENABLE) ;
SCI _Put Buf fer (buffil,sizeof (buffl));
SCI _Put Byt e(0x55) ;
while(!(SCl _I sTransm t Conpl eted()));
#endi f
#endi f

}

/**
**/
/**

I nterrupt Subroutinefor TI MER

**/

#i fdef _H WARE /* test for H WARE Conpi | er */
#pr agma TRAP_PROC SAVE_REGS /* additional registersw || besaved*/
#el se
#i f def _COSM C_ /* test for Cosm c Conpil er */
@nterrupt /* Cosmicinterrupt handling*/
#el se#terror " Unsupport ed Conpi l er!" /* Conpi | er Defines not found!*/
#endi f
#endi f
voi d TI MERA | T_Rout i ne ()
{
if (!cap)
{
10/12

4

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

whi | e (TI MERA_St at us_Fl ag(TI MER_FLAG_| CF1) ! = TRUE) ;
cap++,;
capturel =TI MERA | CAP_Get val ue(TI MER_|I CAP_1);
TI MERA_Cl ear _Fl ag(TI MER_FLAG | CF1);
}
elseif (cap)

{

whi | e (TI MERA_St at us_Fl ag(Tl MER_FLAG_ | CF1) ! = TRUE) ;
capture2 =TI MERA | CAP_Get val ue(TI MER_| CAP_1);
TI MERA_Cl ear _Fl ag(TI MER_FLAG_| CF1);
cap++;
}
}

/**** (C) 2002 STM Croel ectroni cS IR IR IR SR S S I I I I I I ENDG: FI LE**/

4

11/12

ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC...

“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
02002 STMicroelectronics - All Rights Reserved.

Purchase of I>°C Components by STMicroelectronics conveys a license under the Philips I°C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I1°C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

12/12

4

