

30 - 40 GHz 180 Phase Shifter

Measured Performance

Key Features and Performance

- Frequency Range: 30-40 GHz
- 3.5 dB Nominal Insertion Loss
- 10 deg Phase Error @ 35 GHz
- 0. 1 dB Amplitude Error @ 35 GHz
- Positive Control Voltage
- 0.25µm 3MI pHEMT Technology
 - Chip dimensions: 0.93 x 0.74 x 0.10 mm (0.037 x 0.029 x 0.004 inches)

Primary Applications

- Military Radar
- Transmit / Receive

Product Description

The TriQuint TGP2104 is a 180° digital phase shifter MMIC design using TriQuint's proven 0.25 μ m Three Metal Interconnect (3MI) pHEMT process. The TGP2104 will support a variety of Ka-Band phased array applications including military radar.

This design utilizes a compact topology that achieves a 0.69 mm² die area and high performance.

The TGP2104 provides a 180° digital phase shift function with a nominal 3.5 dB insertion loss and maximum 15° phase shift error over a bandwidth of 30-40 GHz.

The TGP2104 requires no off-chip components and operates with a 5V control voltage. Each device is RF tested on-wafer to ensure performance compliance. The device is available in chip form.

Lead-Free and RoHS compliant

TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com

TABLE I MAXIMUM RATINGS

Symbol	Parameter	Value	Notes
V ₁ , V ₂	Control Voltage	8 V	<u>1/ 2</u> /
Ιc	Control Supply Current	1 mA	<u>1/ 2</u> /
P _{IN}	Input Continuous Wave Power	20 dBm	<u>1/ 2</u> /
PD	Power Dissipation	0.392 W	<u>1/ 2</u> /
T _{CH}	Operating Channel Temperature	200 °C	<u>3</u> /
	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device
- $\underline{\textbf{2}}\textbf{/}$ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D
- <u>3</u>/ Junction operating temperature will directly affect the device median time to failure (Tm). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II RF CHARACTERIZATION TABLE $(T_A = 25^{\circ}C, Nominal)$ $(V_1=V_2 = 5V)$

Parameter	Test Conditions	Тур	Units
Insertion Loss	30 - 40 GHz	3.5	dB
Max Amplitude Error	30 - 40 GHz	1	dB
Max Phase Shift Error	30 - 40 GHz	15	deg
Input Return Loss	30 - 40 GHz	12	dB
Output Return Loss	30 - 40 GHz	12	dB

Note: The RF Characteristics of typical devices are determined by fixtured measurements.

State Table

State	V1	V2	Phase shift
0	5 V	0 V	Reference
1	5 V	5 V	180°

TABLE III Thermal Information

Parameter	Test Conditions	Tch (°C)	θ _{JC} (°C/W)	Tm (hrs)
θ _{JC} Thermal Resistance (channel to backside of die)	$V_1 = V_2 = 5 V$ $I_2 = 10 uA$ Pdiss = 50 uW Tbaseplate=70 C	70	204	>1 E 9

Measured Data

TGP2104

Measured Data

Mechanical Drawing

Units: millimeters (inches)

Thickness: 0.102 (0.004) (reference only)

Chip edge to bond pad dimensions are shown to center of Bond pads.

Chip size tolerance: $\pm 0.051 (0.002)$

RF Ground through Backside

Bond Pad #1 (RF Input)	0.076 x 0.150	(0.003 x 0.006)
Bond Pad #1 (RF Output)	0.076 x 0.150	(0.003 x 0.006)
Bond Pad #3 (V1)	0.100 x 0.100	(0.004 x 0.004)
Bond Pad #4 (V2)	0.100 x 0.100	(0.004 x 0.004)

Chip Assembly & Bonding Diagram

- RF Input and Output should have two 1 mil bond wires
- Input and Output Flares are 0.010" x 0.025" on 0.010" alumina substrate

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C. (30 seconds maximum)
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.