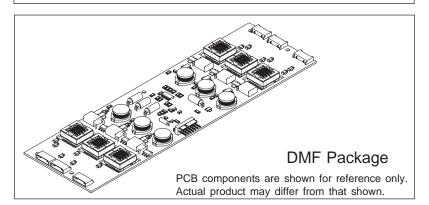


Endicott Research Group, Inc.

2601 Wayne St., Endicott, NY 13760 607-754-9187 Fax 607-754-9255 http://www.ergpower.com

Specifications and Applications Information

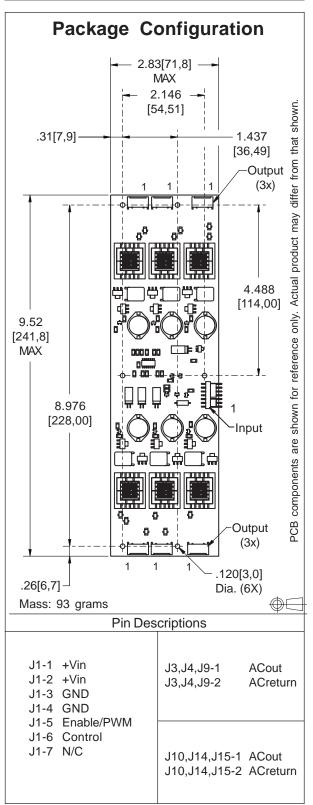

12/16/08 Preliminary

The ERG DMF63403F (**DMF Series**) DC to AC inverter features onboard connectors and can be easily dimmed using an external pulse-width modulated control signal or using the onboard PWM with an external analog voltage. This unit is less than 9mm in height and the six mounting holes makes installation very straight forward.

Powered by a regulated 12 Volt DC source, the DMF63403F is designed to power the Sharp LQ190E1LW41 6 lamp backlight, with onboard PWM.

Product Features

- ✓ Small Package Size, less than 9mm in height.
- ✓ High Dimming Ratio (Greater than 1000:1)
- ✓ High Efficiency
- ✓ Made in U.S.A.



Connectors			
Input Molex 22-05-3071	Output (J3,J4,J9) JST SM02(8.0)B-BHS-1-TB		
	Output (J10,J14,J15) JST SM02(8.0)B-BHS-1-TB		

DMF63403F

Six Lamp DC to AC Inverter

Absolute Maximum Ratings

Rating	Symbol	Value	Units
Input Voltage Range	V _{in}	-0.3 to +13.2	Vdc
Storage Temperature	T stg	-40 to +85	°C

Operating Characteristics

With a load simulating the referenced display and lamp warm-up of 20 minutes. Unless otherwise noted Vin = 12.00 Volts dc and $Ta = 25^{\circ}\text{C}$.

Characteristic	Symbol	Min	Тур	Max	Units	
Input Voltage	V _{in}	+10.8	+12.0	+12.6	Vdc	
Component Surface Temperature (note 1)	T _s	-20	-	+80	°C	
Input Current (note 2)	I _{in}	-	2.56	3.00	Adc	
Input Ripple Current	I _{rip}	-	60	-	mA _{pk-pk}	
Operating Frequency	F _o	32	37	42	kHz	
Minimum Output Voltage (note 3)	V _{out} (min)	1800	-	-	Vrms	
Efficiency (note 4)	h	-	94	-	%	
Output Current (per lamp)	I _{out}	-	6.9	-	mArms	
Output Voltage	V _{out}	-	750	-	Vrms	
Enable Pin						
Turn-off Threshold	V thoff	GND	-	0.5	Vdc	
Turn-on Threshold	V _{thon}	2.5	-	Vin	Vdc	
Impedance to Vin	R _{Enable}	-	47	-	kOhms	

Specifications subject to change without notice.

- (Note 1) Surface temperature must not exceed 80 degrees C; thermal management actions may be required.
- (Note 2) Input current in excess of maximum may indicate a load/inverter mismatch condition, which can result in reduced reliability. Please contact ERG technical support.
- (Note 3) Provided data is not tested but guaranteed by design.
- (Note 4) Calculated using 700Vrms for lamp output voltage.

Application Notes:

- 1) The minimum distance from high voltage areas of the inverter to any conductive material should be .12 inches per kilovolt of starting voltage.
- 2) Mounting hardware to be non-conductive.
- 3) Open framed inverters should not be used in applications at altitudes over 10,000 feet.
- 4) Contact ERG for possible exceptions.

DMF63403F

Onboard PWM

Unless otherwise noted Vin = 12.00 Volts DC, T_a = 25 °C and unit has been running for 20 minutes.

Characteristic	Symbol	Min	Тур	Max	Units
Frequency	fpwm	-	160	-	Hz
Control Full On	V _{ctrll}	-	<.5	-	V
Control Full Off	V _{ctrlh}	-	>4.5	-	V
Control Input Bias Current	I cbias	-	-	10	uA

Pin Descriptions

Vin Input voltage to the inverter. Both pins should be connected for optimum reliability and efficiency.

GND Inverter ground. Both pins should be connected for optimum reliability and efficiency.

Control Analog voltage input to the onboard pulse width modulator. Increasing this voltage increases the off

time of the onboard PWM resulting in decreased brightness.

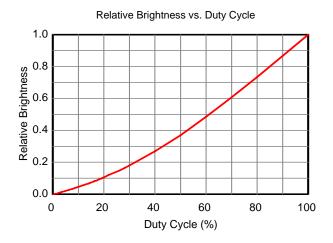
Enable/PWM Inverter Enable. If this pin is driven high, the inverter is enabled. Pull this pin low to disable inverter

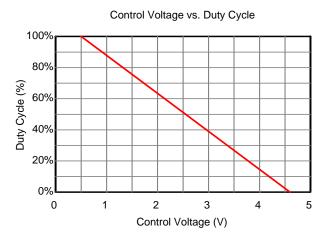
operation.

Application information

The DMF series of inverters is designed to power up to six cold cathode fluorescent lamps with combined power of up to sixty watts. An external enable control and an onboard analog controlled pulse width modulator provide flexibility in allowing either PWM or analog methods for dimming. The DMF inverter can reliably dim to less than 0.5% duty cycle, which results in an electrical dimming ratio of greater than 200:1. Depending upon the attached backlight assembly, optical dimming ratios of greater than 1000:1 can be accomplished. Graph 1 shows the relationship of relative brightness to duty cycle for a typical backlight assembly.

External shutdown or external PWM operation of the inverter is accomplished using the Enable pin. Enabling the inverter is accomplished by pulling this pin high (above Vthon). Pulling this pin low (below Vthoff) disables the inverter.


If analog voltage dimming is required, the onboard PWM can be enabled. The analog voltage is applied to the Control pin. Figure 1 shows how to connect the inverter for onboard PWM operation. Graph 2 shows the relationship of PWM duty cycle to input control voltage.


If more than one inverter is used in a backlight assembly, the PWM signal for each inverter should be synchronized to prevent flickering. Connect the Enable pin of each inverter to the external PWM source. Connect the control pin to GND.

DMF63403F

Graph 1 Graph 2

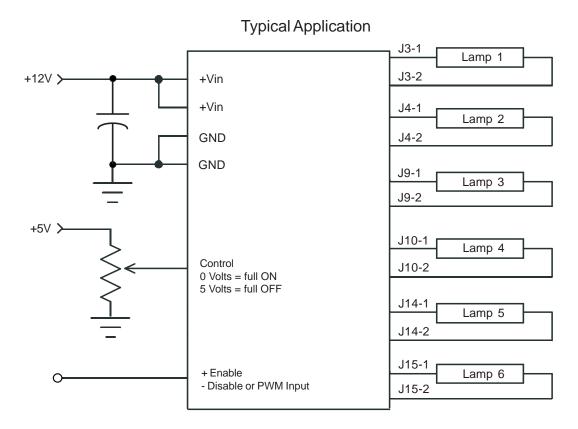


Figure 1

Endicott Research Group, Inc. (ERG) reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by ERG is believed to be accurate and reliable. However, no responsibility is assumed by ERG for its use.