Static, 1/2 Duty, 1/3 Duty, 1/4 Duty 40 Outputs LCD Driver

GENERAL DESCRIPTION

The ML9480 is an LCD driver LSI, consists of a 40-bit shift register, a 160-bit data latch, 40 sets of LCD drivers, and a common signal generation circuit.
It can directly drive an LCD up to 40 segments for static display, 80 segments for 1/2-duty display, 120 segments for $1 / 3$-duty display, and 160 segments for $1 / 4$-duty display.
The three-wire serial interface and $\mathrm{I}^{2} \mathrm{C}$ interface are selectable.

FEATURES

- Logic power supply voltage :2.7 to 5.5 V
- LCD drive power supply voltage : 4.5 to 5.5 V
- Maximum number of segments
Static display $\quad: 40$ segments

1/2-duty display $: 80$ segments
1/3-duty display : 120 segments
1/4-duty display : 160 segments

- Interface with microcomputer :

Serial interface : DATA, CLOCK, LOAD
CLOCK transfer speed up to 1 MHz
$I^{2} \mathrm{C}$ interface : SDA, SCL, SDAACK
SCL transfer speed up to 400 kHz

- Built-in CR oscillator circuit using the internal resistor or External resistor
- Cascade connectable (up to sixteen chips)
- Built-in common signal generation circuit
- Built-in common output intermediate-value voltage generation circuit
- Built-in POC (Power On Clear) circuit
- Gold bump chip (ML9480DVWA)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Rating	Unit
Logic power supply voltage	V_{DD}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to 6.0	V
LCD drive power supply voltage	$\mathrm{V}_{\text {LCD }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to 6.0	V
Input voltage	V_{I}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output short-circuit current	Is	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-2.0 to +2.0	mA
Chip temperature	TC	-	125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Do not use the ML9480 by short-circuiting one output pin to another output pin as well as to other pin (input pin, input/output pin, or power supply pin).

RECOMMENDED OPERATION CONDITIONS

Item	Symbol	Condition	Range	Unit
Logic power supply voltage	$\mathrm{V}_{\mathrm{DD}}{ }^{*}$	-	2.7 to 5.5	V
LCD drive power supply voltage	$\mathrm{V}_{\mathrm{LCD}}{ }^{*}$	-	4.5 to 5.5	V
OSC IN clock frequency	$\mathrm{f}_{\mathrm{CP} 1}$	-	up to 10	kHz
Data clock frequency	$\mathrm{f}_{\mathrm{CP} 2}$	-	up to 1.0	MHz
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	-	up to 400	kHz
Operating temperature	T_{a}	-	-40 to +105	${ }^{\circ} \mathrm{C}$

Note(*): Use at $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{LCD}}$.
The relation between OSC IN clock frequency and frame frequency is as the equation below.

$$
\mathrm{f}_{\mathrm{FRM}}=\mathrm{f}_{\mathrm{OSC}} / 24
$$

Recommended setting range for external component (oscillator circuit)

$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LCD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+105^{\circ} \mathrm{C}\right)$											
Item	Symbol	Condition	Min	TYP	Max	Unit					
Oscillation resistor	R_{f}	-	423	470	517	$\mathrm{k} \Omega$					
Frame frequency	$\mathrm{f}_{\mathrm{FRM}}$	$(\mathrm{F} 1, \mathrm{FO})=(0,1)$	47	75	114	Hz					

The relation between oscillation resistor and frame frequency is as the equation below.

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{FRM}}=\mathrm{f}_{\mathrm{OSC}} /(16 \times 24) \\
& \text { fosc }=1 /\left(\text { Device coefficient } \times \text { External resistor } \mathrm{R}_{\mathrm{f}}\right) \\
& \text { Device coefficient }=73.8 \times 10^{-12} \pm 25 \%
\end{aligned}
$$

ELECTRICAL CHARACTERISTICS

DC Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LCD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}$)

Item		Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pin
" H " input voltage		V_{1}	-	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V	(*1)
"L" input voltage		VIL	-	GND	-	$0.2 V_{D D}$	V	(*1)
Input leakage current 1		LL1	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or 0 V	-1.0	-	1.0	$\mu \mathrm{A}$	(*1)
Input leakage current 2		IL2	$\begin{gathered} \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} \text { or 0V } \\ \text { POCEB="H" } \end{gathered}$	-1.0	-	1.0	$\mu \mathrm{A}$	RESETB
Pull-up current		$\mathrm{I}_{\text {pu }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \\ \text { POCEB = "L" } \end{gathered}$	30	-	140	$\mu \mathrm{A}$	RESETB
" H " output voltage		V_{OH}	$\mathrm{I}_{\mathrm{O}}=-600 \mathrm{uA}$	$0.9 \mathrm{~V}_{\mathrm{DD}}$	-	-	V	CKO, SYNCB
"L" output voltage 1		VoL1	$\mathrm{l}_{\mathrm{O}}=600 \mathrm{uA}$	-	-	$0.1 \mathrm{~V}_{\text {DD }}$	V	CKO, SYNCB
"L" output voltage 2		Vol2	$\begin{gathered} \mathrm{VDD}=5 \mathrm{~V}, \\ \mathrm{~V} \mathrm{OL}=0.4 \mathrm{~V} \end{gathered}$	3	-	-	mA	SDAACK
Driver ON resistor	Segment	$\mathrm{V}_{\text {OHS }}$	$\mathrm{V}_{\text {LCD }}=5 \mathrm{~V}$	-	5	15	k Ω	SEG1 to SEG40
	Common	V ${ }_{\text {OHC }}$	$\mathrm{V}_{\text {LCD }}=5 \mathrm{~V}$	-	5	12	k Ω	COM 1 to COM4

(*1) : DATA(SDA), CLOCK(SCL), LOAD, M/S, SYNCB, Duty1, Duty0, BIAS, SA1,SA0, A1, A0, OSC1, OSC I/E, I2C, POCEB, MODE

Item	Symbol	Condition		Min.	Typ.	Max.	Unit	Applicable pin
Static supply current	IdDS	$V_{D D}=V_{L C D}=5.5 \mathrm{~V}$ Input pin fixed to "H" or "L" Oscillation stopped, output no-load POCEB="L"		-	8	15	$\mu \mathrm{A}$	VDD
	ILCDS			-	9	15	$\mu \mathrm{A}$	VLCD
Dynamic supply current 1	ldD1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=5.5 \mathrm{~V} \quad(* 2)(* 3) \\ & \text { Clock OSC1 external input } \\ & \mathrm{f}_{\mathrm{CP} 1}=1.8 \mathrm{kHz} \end{aligned}$	(*6)	-	10	18	$\mu \mathrm{A}$	VDD
	ILCD1		(*7)	-	9	13	$\mu \mathrm{A}$	VLCD
Dynamic supply current 2	ldD2	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=5.5 \mathrm{~V} \quad(* 2)(* 3)$ Internal oscillation	(*6)	-	59	90	$\mu \mathrm{A}$	VDD
	ILCD2		(*7)	-	9	15	$\mu \mathrm{A}$	VLCD
Dynamic supply current 3	IDD3	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=5.5 \mathrm{~V} \quad\left({ }^{*} 2\right)\left({ }^{*} 4\right)\left({ }^{*} 6\right)$ Internal oscillation At three-wire serial IF data input		-	100	200	$\mu \mathrm{A}$	VDD
	ILCD3			-	9	15	$\mu \mathrm{A}$	VLCD
Dynamic supply current 4	IDD4	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=5.5 \mathrm{~V} \quad\left({ }^{*} 2\right)\left({ }^{*} 5\right)\left({ }^{*} 6\right)$ Internal oscillation At $I^{2} \mathrm{C}$ IF data input		-	188	310	$\mu \mathrm{A}$	VDD
	LLCD4			-	9	15	$\mu \mathrm{A}$	VLCD

(*2) : M/S = "H", 1/4-duty, 1/3-bias, (F1,F0,FSEL) $=(1,1,0) 95 \mathrm{~Hz}$, POCEB $=$ "L", output pin no-load.
(*3): Three-wire serial or $\mathrm{I}^{2} \mathrm{C}$ interface. Input pin fixed to "H" or "L".
(*4): Serial interface, data input frequency $=1 \mathrm{MHz}$.
$(* 5): I^{2} \mathrm{C}$ interface, data input frequency $=400 \mathrm{kHz}$.
(*6) : Alternately inputs " 0 " and " 1 " for LCD display data (checkered display).
(*7) : Inputs all " 1 s " for LCD display data (all illuminated).

Switching Characteristics

- OSC timing
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LCD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}$)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pin
OSC IN clock frequency (external input)	$\mathrm{f}_{\mathrm{CP} 1}$	Clock input from OSC1. OSC2 and OSCR open. OSC I/E = "L"	-	1.8	10	kHz	OSC1
Clock pulse width (External input)	$\mathrm{twCP1}$		40	-	-	$\mu \mathrm{S}$	OSC1
Clock rise and fall time (external input)	tosc		-	-	(*1)	$\mu \mathrm{S}$	OSC1
External Rf clock frequency (Internal oscillation)	fosc1	Between OSC1 and OSC2 $\mathrm{R}_{\mathrm{f}}=470 \mathrm{k} \Omega$ $(\mathrm{F} 1, \mathrm{~F} 0)=(0,1)$ OSCR open. OSC I/E = "H"	18	28.8	44	kHz	OSC1, OSC2
Internal clock frequency (Internal oscillation)	fosc2	OSC1 open. $(\mathrm{F} 1, \mathrm{~F} 0)=(0,1)$ OSC2 and OSCR short-circuited. \|OSC I/E = "H"	18	28.8	44	kHz	$\begin{aligned} & \text { OSC1, OSCR, } \\ & \text { OSC2 } \end{aligned}$

The relation between OSC IN clock frequency and frame frequency is as the equation below.

$$
\mathrm{f}_{\mathrm{FRM}}=\mathrm{f}_{\mathrm{OSC}} / 24
$$

(*1) $t_{\text {OSC }}$ is a reference value.
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value. Make the rise as steep as possible. Reference value: $\max =2 \mu \mathrm{~s}$.

- Serial interface timing

$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LCD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+105^{\circ} \mathrm{C}\right)$								
Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pin	
Data clock frequency	$\mathrm{f}_{\mathrm{CP} 2}$		-	-	1	MHz	CLOCK	
Data clock pulse width	$\mathrm{t}_{\mathrm{WCP2}}$		100	-	-	ns	CLOCK	
Data setup time	t_{SU}		50	-	-	ns	DATA	
Data hold time	t_{HD}		50	-	-	ns	CLOCK	
CLOCK-LOAD timing	t_{CL}		100	-	-	ns	CLOCK	
LOAD-CLOCK timing	t_{LC}		100	-	-	ns	LOAD	
LOAD pulse width	$\mathrm{t}_{\mathrm{WLD}}$		100	-	-	ns	LOAD	
Signal rise and fall time	$\mathrm{tsr}, \mathrm{tsf}$		-	-	$(* 2)$	ns	CLOCK,DATA, LOAD	

(*2) tsr and tsf shall be reference values.
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value. Make the rise as steep as possible. Reference value: $\max =10 \mathrm{~ns}$.

- $I^{2} \mathrm{C}$ interface timing

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pin
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$		-	-	400	kHz	SCL
Hold time (repeat) "STATRT" condition	$\mathrm{thr}_{\text {, STA }}$		0.6	-	-	$\mu \mathrm{S}$	SCL,SDA
SCL "L" pulse width	tow		1.3	-	-	$\mu \mathrm{s}$	SCL
SCL "H" pulse width	$\mathrm{t}_{\text {HIGH }}$		0.6	-	-	$\mu \mathrm{S}$	SCL
Setup time for repeat "START" condition	$\mathrm{tsu}_{\text {STA }}$		0.6	-	-	$\mu \mathrm{S}$	SCL,SDA
Data hold time	$\mathrm{t}_{\text {HD,DAT }}$		0	-	-	ns	SCL,SDA
Data setup time	$\mathrm{t}_{\text {SU, DAT }}$		100	-	-	ns	SCL, SDA
Setup time for "STOP" condition	$\mathrm{t}_{\text {su, Sto }}$		0.6	-	-	$\mu \mathrm{S}$	SCL,SDA
Bus free time between "STOP" condition and "START" condition	$\mathrm{t}_{\text {BuF }}$		1.3	-	-	$\mu \mathrm{S}$	SCL
Data valid acknowledge time	tvo,Ack		-	-	1.2	$\mu \mathrm{S}$	SCL,SDAAACK
Signal rise and fall time	tir,tif		-	-	(*3)	$\mu \mathrm{s}$	SCL,SDA
Data bus load capacitance	Cb		-	-	400	pF	SDA,SDAACK
Noise pulse width tolerance	t_{wf}		-	-	50	ns	SCL,SDA

(*3) tir and tif shall be reference values.
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.
Make the rise as steep as possible. Reference value: $\max =0.1 \mu$ s.

Timing chart (OSC1)

Timing chart (Serial interface)

Timing chart ($\mathbf{I}^{2} \mathbf{C}$ interface)

REFERENCE DATA

Frame frequency Characteristics
$\mathrm{VDD}=5.5 \mathrm{~V} / 2.7 \mathrm{~V} \mathrm{Rf}=470 \Omega$
Frame frequency $f_{\text {FRM }}=f_{\text {OSC }} /(16 \times 24)$
fosc $=1 /\left(\right.$ Device coefficient \times External resistor $\left.R_{f}\right)$
Device coefficient $=73.8 \times 10^{-12} \pm 25 \%$

POWER ON/OFF TIMING

To turn on the power supply, raise the logic power supply first, then LCD drive power supply in order to prevent the IC from malfunctioning.
To fall the power supply, fall the LCD drive power supply first, then the logic power supply.
For a VDD pin ranging from 0 V to VDDmin, set VDD $\geq \mathrm{VLCD}$ and $\mathrm{t} 1 \geq 0$ [ns].
To enable the Internal POC circuit, the VDD power supply rise time t 2 range needs to be $100[\mu \mathrm{~s}] \leq \mathrm{t} 2 \leq 500$ [ms]. For the VDD power supply to turn OFF then turn ON again, it is necessary to secure the POC discharge time t3 ≥ 100 [ms].

Voltage

INITIALIZATION SIGNAL TIMING

When RESETB signal is externally input
The RESETB pin input is valid both for POCEB $=$ " L " and " H ". Usable in combination with the POC.
Keep the RESETB pin at "L" level until the VDD reaches VDDmin. ($\mathrm{t} 4 \geq 200[\mathrm{~ns}])$

When Internal POC circuit is used

When using the Internal POC circuit in the initialization, set the POCEB pin to "L".
At this time, the power ON/OFF timing conditions are t 1 to t3 above mentioned.

When RESETB pin POC circuit is used

If the power ON/OFF timing conditions $t 1$ to $t 3$ cannot be kept, the RESETB pin needs to have a capacitance to configure the POC circuit. For this case, connect a capacitance value according to the power supply rise time.
For the power supply rise time t 2 and external capacitance value, use the following formula as a guide:

$$
\mathrm{C}_{\mathrm{RST}}[\mathrm{~F}]>\mathrm{t} 2[\mathrm{sec}] /\left(30 \times 10^{3}\right)
$$

PIN DESCRIPTIONS

Pad number	Symbol	I／O	Description
32	M／S	1	This is the input to switch between the master and slave modes．It has a schmitt circuit．When this pin is＂ H ＂，the mode is master．When this pin is＂L＂， the mode is slave．
3，4	$\begin{gathered} \text { Duty0 } \\ \text { Duty1 } \\ \text { *1 } \end{gathered}$	1	Display duty switch pins．These have schmitt circuits．
35	BIAS	1	This pin sets the LCD bias．It has a schmitt circuit． $\begin{aligned} & \text { BIAS="L": 1/3bias } \\ & \text { BIAS="H": } 1 / 2 \text { bias } \end{aligned}$ When the static mode selection，fix this pin at＂H＂or＂L＂level．
7，8	$\begin{aligned} & \hline \text { SA1 } \\ & \text { SA0 } \\ & \hline \end{aligned}$	I	Slave address input pins．These have schmitt circuits．
5，6	$\begin{aligned} & \text { A1 } \\ & \text { A0 } \end{aligned}$	1	Sub address input pins．These have schmitt circuits．
34	OSC I／E	1	This input selects whether to use the external clock input mode or to use the Internal oscillation mode or external oscillation mode．It has a schmitt circuit． When this pin is＂H＂，the mode is the Internal or external Rf oscillation mode． When this pin is＂L＂，the mode is the external clock input mode． Use the slave chip as it is connected to GND．
24 to 26	$\begin{gathered} \text { OSC1, } \\ \text { OSCR, } \\ \text { OSC2 } \\ \text { *2 } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	These pins are for the oscillator circuit to generate common signals． The OSC1 and OSCR pins are input pins and have a schmitt circuit． OSC2 is an output pin．It becomes an output when the OSC I／E pin＝＂ H ＂and a high impedance when the OSC I／E pin＝＂L＂． 【In the master mode（ M / S pin $==\mathrm{H} \mathrm{H}^{\prime}$ ）】 Three types are selectable：Internal oscillation mode，external oscillation mode，and external clock input mode． －Internal oscillation mode：Set the OSC I／E pin to＂H＂，short the OSCR and OSC2 pins，and open the OSC1 pin． －External Rf oscillation mode：Set the OSC I／E pin to＂H＂，connect an oscillation resistor Rf between the OSC1 and OSC2 pins，and open the OSCR pin． －External clock input mode：Set the OSC I／E pin to＂L＂，open the OSCR and OSC2 pins，and input the external clock to the OSC1 pin． 【 In the slave mode（M／S pin＝＂L＂）】 Open the OSCR and OSC2 pins and connect the OSC1 pin to the ML9480＇s CKO pin that has been set to the master mode．
27	CKO	O	Clock output pin． In the master mode（ M / S pin＝＂H＂，FSEL＝＂0＂），the $1 / 16$ division signal of the oscillation frequency is output．In the master mode（M／S pin $=$＂ H ＂， FSEL＝＂1＂），the $1 / 8$ division signal of the oscillation frequency is output． In the slave mode（ M / S pin＝＂L＂），the output is fixed to＂L＂． For a cascade connection，connect this pin to the OSC1 pin of the chip that has been set to the slave mode．

28	SYNCB	I/O	Input/output pin for common synchronization. It has a schmitt circuit. It becomes the synchronization signal output pin in the master mode (M/S pin = "H"). It becomes the synchronization signal input pin in the slave mode (M / S pin = "L"). For cascade connection, connect all of the involved ML9480s' SYNC pins by the common line.
30	I2C	1	Interface switching pin. It has a schmitt circuit. When this pin is " H ", the interface is $\mathrm{I}^{2} \mathrm{C}$. When this pin is " L ", the interface is three-wire serial.
11	$\begin{aligned} & \text { DATA } \\ & \text { (SDA) } \end{aligned}$	1	Display data input pin. It has a schmitt circuit. I2C="L": Serial interface; DATA Input the display data in the order of SEG40, SEG39, ... , SEG2, and SEG1. The display data turns on at " H " and turns off at "L". I2C="H": I ${ }^{2} \mathrm{C}$ interface; SDA Input the display data in units of 8 bits. The display data turns on at " H " and turns off at "L". This pin has a built-in noise filter through which noises in widths up to 50 ns are removed. This noise filter is valid only when $\mathrm{I} 2 \mathrm{C}=\mathrm{"H}$ ".
12	$\begin{gathered} \text { CLOCK } \\ \text { (SCL) } \end{gathered}$	1	Shift clock input pin for display data. It has a schmitt circuit. I2C="L": Serial interface; CLOCK The display data input to the DATA pin is serially input to the shift register at the CLOCK signal rise. $12 \mathrm{C}={ }^{\prime} \mathrm{H}^{\prime}: I^{2} \mathrm{C}$ interface; SCL The display data input to the SDA pin is serially input to the shift register at the SCL signal rise. This pin has a built-in noise filter through which noises in widths up to 50 ns are removed. This noise filter is valid only when $\mathrm{I} 2 \mathrm{C}=$ " H ".
13	LOAD	1	Input pin for the load signal of display data. It has a schmitt circuit. I2C="L": Serial interface; LOAD The display data in the shift register is transmitted as is to the segment driver for the " H " duration. When this pin is brought into "L", the shift register is disconnected from the segment driver. The display data in the shift register immediately before it become "L" is held in the data latch and transmitted to the segment driver. I2C="H": ${ }^{2}$ C interface Use this pin as it is connected to GND.
10	SDAACK	O	I2C="L": Serial interface Use this pin as it is opened. I2C=" ${ }^{\prime}$ ": $I^{2} \mathrm{C}$ interface The $I^{2} \mathrm{C}$ bus acknowledge output signal. Normally, use it as it is connected with the SDA pin. Connect an external pull-up resistor whenever necessary, as it is an open drain pin. The pull-up connection destination supply voltage shall be the $V_{D D}$ supply voltage or less.
33	POCEB	1	Internal POC circuit enable pin. It has a schmitt circuit. When this pin is " H ", the POC circuit becomes OFF and the constant current $(8 \mu \mathrm{~A})$ is cut. The RESETB pin pull-up resistor is cut as well. When this pin is "L", the POC circuit becomes ON. The RESETB pin is connected to a pull-up resistor.
23	$\begin{gathered} \text { RESETB } \\ * 3 \end{gathered}$	1	Reset signal input pin for initializing inside the IC. It has a schmitt circuit. The "L" level enables the reset. This pin has an Internal pull-up resistor. Open when POCEB = " H ". Pull-up when POCEB = "L". The power-on reset operation is available by connecting an external capacitor.

31	MODE	1	I2C interface command table switching pin. It has a schmitt circuit. This pin is valid only when $\mathrm{I} 2 \mathrm{C}=$ " H ". When this pin is "L", the command table is table A. When this pin is " H ", the command table is table B. When the three-wire serial interface mode selection, fix this pin at " H " or " L " level.
36	TEST1	1	Pin for testing the IC. It has a Internal pull-down resistor. Use it as it is connected to GND.
$45 \text { to } 64,$	$\begin{gathered} \text { SEG1 } \\ \sim \text { SEG40 } \end{gathered}$	0	Outputs for LCD display. Connected to the segment pins on the LCD panel. In the display off mode, all the outputs are fixed to GND.
40 to 43 , 65 to 68 , 90 to 93	$\begin{aligned} & \text { COM1 } \\ & \sim \mathrm{COM} 4 \end{aligned}$	0	Outputs for LCD display. Connected to the common pins on the LCD panel. The output pins are located at three positions: center and both ends of the chip. Each is connected inside the chip. Use the COM pins in accordance with the panel to be used. In the display off mode, all the outputs are fixed to GND. When the slave is set (M/S="L"), COM1 to COM4 outputs are GND level fixed.
14 to 16	VDD	-	Power supply pin for logic circuit.
20 to 22	VLCD	-	Power supply pin for LCD driver.
17 to 19	GND	-	Ground pin.
9,29	VDDO	-	VDD output pin. Use this pin when fixing the mode setting input pin to " H " on the COG.
2,37	GNDO	-	Ground output pin. Use this pin when fixing the mode setting input pin to "L" on the COG.
$\begin{gathered} 1,38 \\ 39,44 \\ 89,94 \end{gathered}$	DUMMY	-	Floating pin. At this time, avoid this pin from shorting with pins other than DUMMY in the wiring on the COG.

*1: For details of the COM /SEG waveform when a duty is selected, refer to "Common waveform" on page 24 and "Common Segment waveform" on page 25 to 29.
*2: Oscillator circuit configuration

- When M/S = "H", OSC I/E = "H" [Internal Rf oscillation mode]

[External Rf oscillation mode]

- External clock input mode when $\mathrm{M} / \mathrm{S}=$ " H " and $\mathrm{OSC} \mathrm{I} / \mathrm{E}=$ "L"

- M/S = "L", slave mode, external clock input mode

*3: Reset circuit configuration
- External input to RESTB when POCEB = "H"

- POC circuit configuration when POCEB $=$ "L"

DESCRIPTION

Operation description (Serial interface)

- Display data input

As described in the Data configuration section, the display data consists of the data field that corresponds to each segment on/off and the command field that indicates the display data input.
When inputting the display data, the "F3" command is set in the command field. When the "F1" or "F2" command is set in the command field, the display data in the data field becomes invalid.
The data input to the DATA pin is loaded to the shift register at the CLOCK pulse rise, transferred to the display data latch during the LOAD pulse at the " H " level, then output via the segment driver.

- Display on, Display off

The display becomes off at power-on reset. To display, write the display on command.
The display off is the command that makes all segments off. Writing the display off command, turns off the lights regardless of the display data.
The display on is the command to release the display off. Writing the display on command returns the display to the original state.

List of Commands

The ML9480 have two type command table. Command table can be selected by I2C and MODE input pins.

I2C Pin	MODE Pin	I/F	COMMAND
L	$*$	Serial	Command table A
H	L	I2C	Command table A
H	H	I2C	Command table B

List of Command table A Serial interface and I2C interface (When MODE pin is "L")

| Command
 name | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | | F0 |
| :---: |
| F1 |

x : Don't care
(*1): For the $\mathrm{I}^{2} \mathrm{C}$ interface, SA1 and SA0 are set at a slave address.
These bits become "Don't care".
(*2): The register is set to the following value by the RESETB $=$ " L " input or by the power-on POC. F1="0", F0="0", FSEL="0", D="0"

List of Command table B $\quad I^{2} \mathrm{C}$ interface(When MODE pin is "H")

Command name	Operation code								Initialize
	C7	C6	C5	C4	C3	C2	C1	C0	
Mode Set	C	1	0	x	D	B	M1	M0	$\mathrm{D}=\mathrm{B}=\mathrm{M} 1=\mathrm{M} 2=$ " 0 "
Display RAM Address	C	0	P5	P4	P3	P2	P1	P0	
Chip Address	C	1	1	0	0	A2	A1	A0	
Frame Frequency Select	C	1	1	0	1	F1	F0	FSEL	$\begin{aligned} & \text { F1=FSEL="0" } \\ & \text { F0="1" } \end{aligned}$
Bank Select	C	1	1	1	1	0	I	O	$\mathrm{I}=\mathrm{O}=$ " 0 "
Blink select	C	1	1	1	0	AB	BF1	BF0	$\mathrm{AB}=\mathrm{BF} 1=\mathrm{BF} 0=>0$ "

x: Don't care
C: Continue bit 0:last control byte in the transfer \quad 1:control byte continue

MODE SET

	C7	C6	C5	C4	C3	C2	C1	C0
MODE SET	C	1	0	x	D	B	M1	M0

D: Display ON/OFF
" 0 ": OFF (COM=SEG=GND)
" 1 ": ON
B: LCD Bias Setting
" 0 ": $1 / 3$ Bias
"1": $1 / 2$ Bias
This command becomes effective at I2C pin ="H" and MODE pin="H".
M[1:0]: Duty setting
$\mathrm{M}[1: 0]=(0,1)$: Static
M $[1: 0]=(1,0): 1 / 2$ Duty
$\mathrm{M}[1: 0]=(1,1): 1 / 3$ Duty
$\mathrm{M}[1: 0]=(0,0): 1 / 4$ Duty
This command becomes effective at I2C pin ="H" and MODE pin="H".

Display RAM Address

	C7	C6	C5	C4	C3	C2	C1	C0
Display RAM address	C	0	P5	P4	P3	P2	P1	P0

$\mathrm{P}[5: 0]=00 _0000$ to $10 _0111$
The increment of the display RAM address is carried out automatically.
Static $+8, \quad 1 / 2$ duty $+4, \quad 1 / 3$ duty $+3, \quad 1 / 4$ duty +2

Chip Address

	C 7	C 6	C 5	C 4	C 3	C 2	C 1	C 0
Display RAM address	C	1	1	0	0	A 2	A 1	A 0

$\mathrm{A}[2: 0]=111$ to 000
The terminal corresponding to A2 is SA1 pin.
The terminal corresponding to A1 is A1 pin.
The terminal corresponding to A0 is A0 pin.
Frame frequency select

	C7	C6	C5	C4	C3	C2	C1	C0
Frame Frequency	C	1	1	0	1	F1	F0	FSEL

Frame frequency setting.
This command becomes effective at I2C pin ="H", MODE pin="H", BIAS pin ="L" and internal CR oscillation.
When BIAS pin ="H" and internal CR oscillation, frame frequency is set to 75 Hz (initialize).
When FSEL $=$ " 0 "
$(\mathrm{F} 1, \mathrm{~F} 0)=(0,0): 65 \mathrm{~Hz}$
$(\mathrm{F} 1, \mathrm{~F} 0)=(0,1): 75 \mathrm{~Hz}$
(F1,F0)=(1, 0): 85 Hz
$(\mathrm{F} 1, \mathrm{~F} 0)=(1,1): 95 \mathrm{~Hz}$
When FSEL $=" 1 "$
$(\mathrm{F} 1, \mathrm{~F} 0)=(0,0): 130 \mathrm{~Hz}$
$(\mathrm{F} 1, \mathrm{~F} 0)=(0,1): 150 \mathrm{~Hz}$
$(\mathrm{F} 1, \mathrm{~F} 0)=(1,0): 170 \mathrm{~Hz}$
$(\mathrm{F} 1, \mathrm{~F} 0)=(1,1): 190 \mathrm{~Hz}$

Bank Select

	C7	C6	C5	C4	C3	C2	C1	C0
Bank Select	C	1	1	1	1	0	I	O

I: Input bank selection

I	Static	$1 / 2$ Duty
0	COM1	COM1 \& COM2
1	COM3	COM3 \& COM4

This command has no effect in 1/3Duty and 1/4Duty mode.
O: Output bank selection

O	Static	1/2Duty
0	COM1	COM1 \& COM2
1	COM3	COM3 \& COM4

This command has no effect in 1/3Duty and 1/4Duty mode.

Blink Select

	C 7	C 6	C 5	C 4	C 3	C 2	C 1	C 0
Blink Select	C	1	1	1	0	AB	BF 1	BF 0

AB : Blink mode selection
" 0 ": Normal Blinking
" 1 ": Alternate RAM blinking does not apply in 1/3Duty and $1 / 4$ Duty.
BF[1:0]: Blink frequency selection

BF1	BF0	Blink Frequency			
0	0	Blink OFF			
			$65 \mathrm{~Hz} / 130 \mathrm{~Hz}$	$75 \mathrm{~Hz} / 150 \mathrm{~Hz}$	$85 \mathrm{~Hz} / 170 \mathrm{~Hz}$

Display data RAM

This is the RAM storing the data of display and has an organization of 40×4.
Display RAM data RAM address map
Display RAM data " 1 " ... Dot is displayed
Display RAM data " 0 " ... Dot is not displayed
Display data RAM address map

	$\begin{gathered} \text { SEG } \\ 1 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 2 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 3 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 4 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 5 \end{gathered}$		$\begin{gathered} \text { SEG } \\ 37 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 38 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 39 \end{gathered}$	$\begin{gathered} \text { SEG } \\ 40 \end{gathered}$
COM1						-••				
COM2						-••				
COM3						-••				
COM4						-••				

Static drive ... COM1
1/2duty drive ... COM1, COM2
1/3duty drive ... COM1, COM2, COM3
1/4duty drive ... COM1, COM2, COM3, COM4

Cascade connection
When command table B is chosen (I2C pin ="H", MODE pin ="H"), ML9480 cannot used cascade connection.

Data configuration

- Data configuration (Serial interface)

First bit
Corresponding to SEG40

Note 1: The commands F1 and F2 settings become valid when the least four bits of C4 to C7 are input. (The bits from D1 to D40 and from C0 to C3 are not necessary.)
Note 2: If the dummy bit is needed for the reason of number of transfer bits, put it on the first bit side.
Note 3: The command execution follows the contents of the C 7 to C 0 registers immediately before the LOAD becomes " H ".

- Data configuration ($\mathrm{I}^{2} \mathrm{C}$ interface, When MODE pin is "L")

Salve address: 011001
CO: Consecutive control byte setting bit
0 : Last control byte, 1: Consecutive control byte
RS: Command/data setting bit
0 : Command data, 1: Display data
For the $\mathrm{I}^{2} \mathrm{C}$ interface, each IC is assigned with a 7-bit slave address. The first one byte in the transfer consists of this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input " 0 " to the eighth R/W bit because the ML9480 is a write-only LSI.
The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting bit and the next one bit is RS: command/data setting bit (the remaining six bits are the Don't care bits).

When $\mathrm{CO}=$ " 0 ": Means the last control byte.
When $\mathrm{CO}=" 1$ ": Means the control bytes are successively input.
When RS = " 0 ": Means the data to be input next is the command data.
When RS = "1": Means the data to be input next is the display data.
The display data can be successively input.

Example of Data Setting

- When inputting two commands

When inputting two commands

$$
\begin{array}{|l|}
\hline S & 0 & 1 & 1 & 0 & 0 & \text { SAT } S A 0 & 0 & A & 1 & 0 & & & & & & & & & \\
\hline
\end{array}
$$

\rightarrow| $0\|O\|$ | COMMAND | $\|A\| P$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

- When inputting the command and display data

- Data configuration ($\mathrm{I}^{2} \mathrm{C}$ interface, When MODE pin is " H ")

For the $\mathrm{I}^{2} \mathrm{C}$ interface, each IC is assigned with a 7-bit slave address. The first one byte in the transfer consists of this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input " 0 " to the eighth R/W bit because the ML9480 is a write-only LSI.
The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting bit.

When $\mathrm{CO}=$ " 0 ": Means the last control byte.
When $\mathrm{CO}=" 1$ ": Means the control bytes are successively input.

Data write method

- Serial interface

The data is written to the address set by the data write setting command (F3).
For the Serial interface, the data is written in units of 40 bits.
Written from D40 to SEG1, D39 to SEG2, ... , D2 to SEG39, and D1 to SEG40.

- I ${ }^{2} \mathrm{C}$ interface (When MODE pin is "L")

The data is written to the address set by the slave address.
For the $\mathrm{I}^{2} \mathrm{C}$ interface (When MODE pin is "L"), the data is written to the specified address starting with the LSB side in units of 8 bits.
(The data is written in the order from SEG33-40, SEG25-SEG32, SEG17-SEG24, SEG9-SEG16, and SEG1-SEG8.)

- $\mathrm{I}^{2} \mathrm{C}$ interface (When MODE pin is " H ")

The data is written to the address set by the display RAM address.
For the $\mathrm{I}^{2} \mathrm{C}$ interface (When MODE pin is " H "), the data is written to the specified address starting with the LSB side in units of 8 bits.

- 1/2Duty

	LSB				Segment Output				9				MSB	
	1	2	3	4	5	6	7	8			37	38	39	40
COM1	D8	D6	D4	D2	D8	D6	D4	D2	D8		D8	D6	D4	D2
COM2	D71	D5t	D3*	D1	D7	D5	D3	D1	D7		D7	D5	D3	D1
COM3	x	x	x	x		x	X	X	X		X	X	x	x
COM4	x	X	X	X		X	X	x	X		x	X	X	X

■ 1/3Duty

	SB					Se	nt	put					MSB
	1	2	3	4	5	6	7	8	9	37	38	39	40
COM1	D8	AD5	4D2	D8	D5	D2	D8	D5	D2	D2	D8	D5	D2
COM2	D7	D4	D17	D7	D4	D1	D7	D4	D1	D1	D7	D4	D1
COM3	D6	D3	x	D6	D3	x	D6	D3	x	x	D6	D3	x
COM4	x	x	x	x	X	x	x	x	x	x	x	x	x

- 1/4Duty

COM
COM2
COM3
COM4

> LSB

Segment Output
MSB

- RAM writing in $1 / 3$ duty drive mode (When I2C pin is "H" and MODE pin is "H")

■ 1/3Duty (Standard RAM filling)

	1	2	3	4	5	6	7	8	9	.
COM1	a8	a5	a2	b8	b5	b2	c8	c5	c2	\cdots
COM2	a7	a4	a1	b7	b4	b1	c7	c4	c1	\cdots
COM3	a6	a3	x	b6	b3	x	c6	c3	x	\cdots
COM4	x	X	X	X	X	X	X	X	X	

- 1/3Duty (Entire RAM filling by rewriting)

COM1
COM2
COM3
COM4

LSB1				Segment Output				MSB	
	2	3	4	5	6	7	8	9	
a8	a5	a2/b8	b5	b2/c8	c5	c2/d8	d5	d2/e8	
a7	a4	a1/b7	b4	b1/c7	c4	c1/d7	d4	d1/e7	
a6	a3	b6	b3	c6	c3	d6	d3	e6	
x	x	x	X	X	x	X	X	X	

- Common waveforms
(1) At static

(2) At 1/2-duty

At $1 / 2$-bias

(3) At 1/3-duty

(4) At 1/4-duty

- Common and segment output waveforms
- At Static

- Common and segment output waveforms
- At 1/2 Duty, 1/2bias

$$
\begin{array}{llll}
1 / 2 \text { bias } & \text { S } & \text { S } & \text { S } \\
& \text { E } & \text { E } & \text { E } \\
\text { Display example } & \text { G } & \text { G } & \text { G } \\
1 & 2 & 3
\end{array}
$$

Off

Common and segment output waveforms

- At $1 / 2$ Duty, 1/3bias

On
Off

- Common and segment output waveforms At 1/3-duty

- Common and segment output waveforms - At 1/4-duty

POWER ON SEQUENCE

POWER OFF SEQUENCE

EXAMPLE OF APPLICATION CIRCUIT

Cascade configuration 1

Serial interface
Internal CR oscillator circuit used
1/4Duty
RESETB pin + external capacitance connection to configure POC circuit
The common outputs of the slave chip output GND-level. So Com1 to Com4 set to open.
[External component]
$\mathrm{Cp}=0.1[\mu \mathrm{~F}]$ (bypass capacitor between power supplies)
Crst $=4.7[\mu \mathrm{~F}]$ (capacitance for external POC circuit)

Cascade configuration 2

$\mathrm{II}^{2} \mathrm{C}$ interface
External Rf-based CR oscillator circuit used 1/4Duty
External RESETB signal input
The common outputs of the slave chip output GND-level. So Com1 to Com4 set to open.
[External component]
$\mathrm{Cp}=0.1[\mu \mathrm{~F}]$ (bypass capacitor between power supplies),
$\mathrm{Rf}=470[\mathrm{k} \Omega]$ (external R , resistor for CR oscillator circuit),
Rup $=$ Resistor for SDA data bus pull-up

PAD CONFIGURATION

Pad layout (pattern face)

Chip size	$: 3.30 \mathrm{~mm} \times 0.90 \mathrm{~mm}$
Chip thickness	$: 400 \mu \mathrm{~m} \pm 20 \mu \mathrm{~m}$
Minimum bump pitch	$: 50 \mu \mathrm{~m}$
Bump height	$: 15 \mu \mathrm{~m} \pm 3 \mu \mathrm{~m}$

Bump and alignment mark dimensions (pattern face)

PAD No.1~38	$: 32 \mu \mathrm{~m} \times 80 \mu \mathrm{~m}$
PAD No.39~94	$: 30 \mu \mathrm{~m} \times 84 \mu \mathrm{~m}$
Alignment marks A and B	$:$ See below

[Mark A]

[Mark B]

Alignment Mark	X-coordinate $(\mu \mathrm{m})$	Y-coordinate $(\mu \mathrm{m})$
Mark A	1506	-190
Mark B	-1539	309

Pad center coordinates

$\begin{gathered} \text { Pad } \\ \text { number } \end{gathered}$	Pad name	$\begin{array}{\|c\|} \hline \text { X-coordinate } \\ (\mu \mathrm{m}) \end{array}$	Y-coordinate ($\mu \mathrm{m}$)	$\begin{gathered} \text { Pad } \\ \text { number } \end{gathered}$	Pad name	X-coordinate ($\mu \mathrm{m}$)	Y-coordinate ($\mu \mathrm{m}$)
1	DUMMY	-1430	-308	41	COM2	1325	309
2	GNDO	-1350	-308	42	COM3	1275	309
3	Duty1	-1270	-308	43	COM4	1225	309
4	Duty0	-1190	-308	44	DUMMY	1175	309
5	A0	-1110	-308	45	SEG1	1125	309
6	A1	-1030	-308	46	SEG2	1075	309
7	SA0	-950	-308	47	SEG3	1025	309
8	SA1	-870	-308	48	SEG4	975	309
9	VDDO	-790	-308	49	SEG5	925	309
10	SDAACK	-710	-308	50	SEG6	875	309
11	DATA(SDA)	-630	-308	51	SEG7	825	309
12	CLOCK(SCL)	-550	-308	52	SEG8	775	309
13	LOAD	-470	-308	53	SEG9	725	309
14	VDD	-390	-308	54	SEG10	675	309
15	VDD	-310	-308	55	SEG11	625	309
16	VDD	-230	-308	56	SEG12	575	309
17	GND	-150	-308	57	SEG13	525	309
18	GND	-70	-308	58	SEG14	475	309
19	GND	10	-308	59	SEG15	425	309
20	VLCD	90	-308	60	SEG16	375	309
21	VLCD	170	-308	61	SEG17	325	309
22	VLCD	250	-308	62	SEG18	275	309
23	RESETB	330	-308	63	SEG19	225	309
24	OSC1	410	-308	64	SEG20	175	309
25	OSC2	490	-308	65	COM1	125	309
26	OSCR	570	-308	66	COM2	75	309
27	CKO	650	-308	67	COM3	25	309
28	SYNCB	730	-308	68	COM4	-25	309
29	VDDO	810	-308	69	SEG21	-75	309
30	I2C	890	-308	70	SEG22	-125	309
31	MODE	970	-308	71	SEG23	-175	309
32	M/S	1050	-308	72	SEG24	-225	309
33	POCEB	1130	-308	73	SEG25	-275	309
34	OSCI/E	1210	-308	74	SEG26	-325	309
35	BIAS	1290	-308	75	SEG27	-375	309
36	TEST1	1370	-308	76	SEG28	-425	309
37	GNDO	1450	-308	77	SEG29	-475	309
38	DUMMY	1530	-308	78	SEG30	-525	309
39	DUMMY	1425	309	79	SEG31	-575	309
40	COM1	1375	309	80	SEG32	-625	309

$\left.\begin{array}{c|c|c|c|c|c|c}\hline \begin{array}{c}\text { Pad } \\ \text { number }\end{array} & \text { Pad name } & \begin{array}{c}\text { X-coordinate } \\ (\mu \mathrm{m})\end{array} & \begin{array}{c}\text { Y-coordinate } \\ (\mu \mathrm{m})\end{array} & \text { Pad number } & \text { Pad name } & \begin{array}{c}\text { X-coordinate } \\ (\mu \mathrm{m})\end{array} \\ \hline 81 & \text { SEG33 } & -675 & 309\end{array} \begin{array}{c}\text { Y-coordinate } \\ (\mu \mathrm{m})\end{array}\right)$

REVISION HISTORY

Document No.	Issue Date	Page		Description
		New Edition		
FEDL9480-01	Oct $.1,2012$	-	-	Final edition 1 issued

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

