

Triac

600V, 8A STANDARD TRIAC

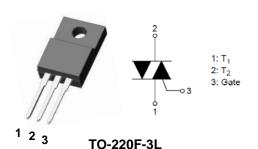
This device is suitable for low power AC switching application, phase control application such as fan speed and temperature modulation control, lighting control and static switching relay.

Features

• Repetitive Peak Off-State Voltage : V_{DRM}=600V

• R.M.S On-State Current : I_{T(RMS)}=8A

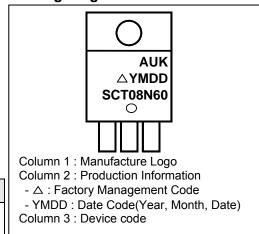
• Gate trigger current : I_{GT}=40mA max (Mode I - II - III)


• High Commutation: (dl/dt)_C =4.0 A/ms(Min)

Applications

- Switching mode power supply, light dimmet
- TV sets, stereo, refrigerator, washing machine
- Electric blanket, solenoid driver, small motor control
- Photo copier, electric tool

Ordering Information


Device	Marking Code	Package	Packaging
SCT08N60FD	SCT08N60	TO-220F-3L	Tube

Product Characteristics

Symbol	Rating
I _{T(RMS)}	8A
V_{DRM}	600V

Marking Diagram

Absolute Maximum Ratings (Limiting Values)

Characteristic	Symbol	Value	Unit
Repetitive Peak Off-state Voltage	V_{DRM}	600	V
RMS on-state current (full sine wave)	I _{T(RMS)}	8	Α
Non- repetitive surge peak on-state current (full cycle, Tj initial = 25 ℃)	I _{TSM}	84	А
I ² t Value for fusing	l ² t	36	A ² s
Peak gate current	I _{GM}	4	Α
Peak gate power dissipation	P _{GM}	5	W
Average gate peak dissipation	P _{G(AV)}	1	W
Storage temperature range	T _{stg}	-40 to +150	$^{\circ}$
Operating junction temperature range	Tj	-40 to +125	$^{\circ}$

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Maximum thermal resistance junction to case (AC)	$R_{th(j-c)}$	4.9	℃/W
Maximum thermal resistance junction to ambient (AC)	R _{th(j-a)}	60	°C/W

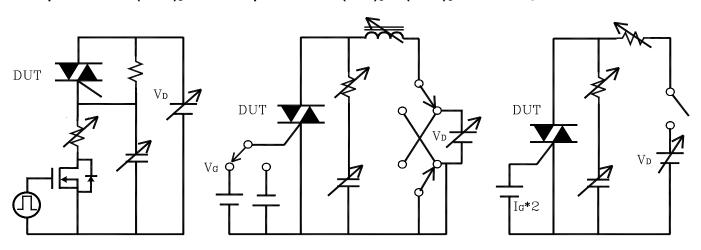
Electrical Characteristics (TJ=25°C, unless otherwise specified)

Off Characteristics

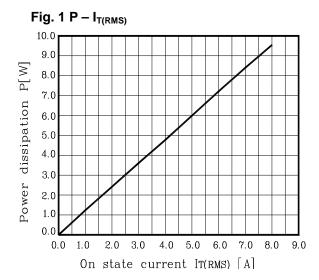
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Repetitive peak Off-state current	I _{DRM}	$V_D = V_{DRM}$	-	-	5	uA
Repetitive peak reverse current	I _{RRM}	$V_R = V_{RRM}$	-	-	5	μA

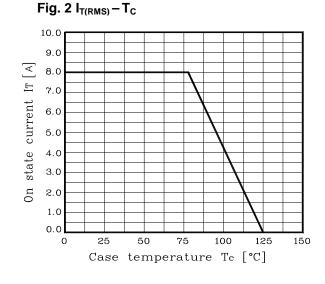
On Characteristics

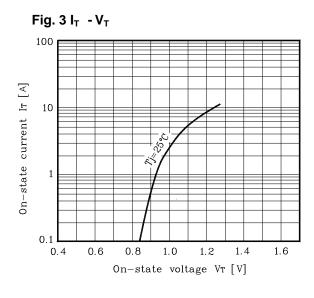
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Peak On-state voltage	V_{TM}	I _T = 11A	-	-	1.55	V
Holding current	I _H	$V_D = 12V, I_T = 0.2A$	-	1	50	mA
Cata trigger ourrent	l _{GT} (I - II - III)	$V_D = 12V, R_L = 30\Omega$	-	-	40	mA
Gate trigger current	I _{GT} (IV)	-	-	-	-	mA
Gate trigger voltage	V _{GT} (I - II - III)	$V_D = 12V, R_L = 30\Omega$	-	-	1.3	V
Gate Non-trigger voltage	$V_{\sf GD}$	$V_D = 2/3 \ V_{DRM}, \ T_j = 125 \ ^{\circ} C$	0.2	-	-	V

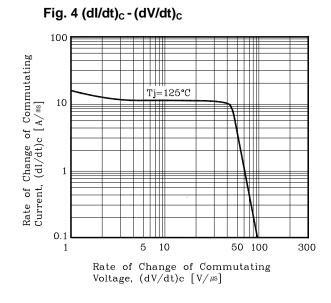

Dynamic Characteristics

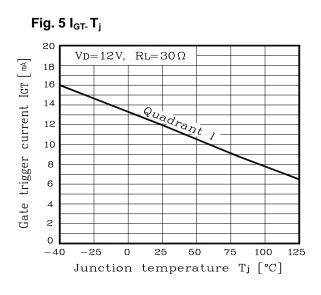
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Critical rate of rise of Off-state Voltage	(dV/dt) _S	$V_D = 2/3 V_{DRM}, T_j = 125 ^{\circ}C$	1000	-	-	V/ µS
Rate of Change of Commutation Current	(dl/dt) _C	(dV/dt) _C =10V/μs ↓ , T _j =125 ℃	4.0	ı	ı	A/ms
Critical rate of rise of on-state current	dI/dt	f=120hz, $I_G = 2 \times I_{GT}$ $t_r \le 100 \text{ ns}, T_j=125 ^{\circ}\text{C}$	-	-	50	A/ μS

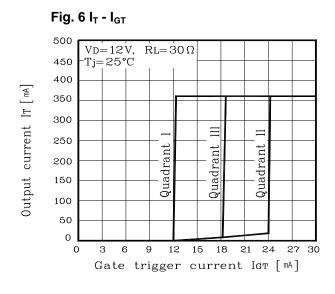

Simple circuit for (dV/dt)s


Simple circuit for $(dI/dt)_C$ vs $(dV/dt)_C$


Simple circuit for dl/dt




Electrical Characteristic Curves



Electrical Characteristic Curves

Fig. 7 V_{GT} - T_j

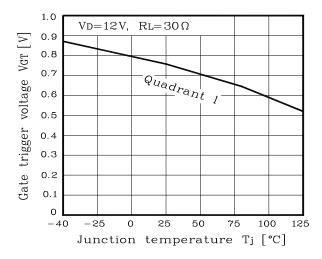


Fig. 8 I_T - V_{GT}

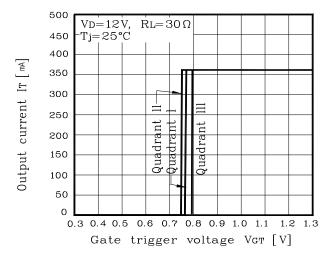
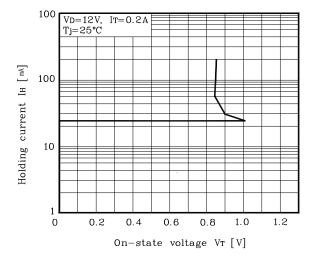
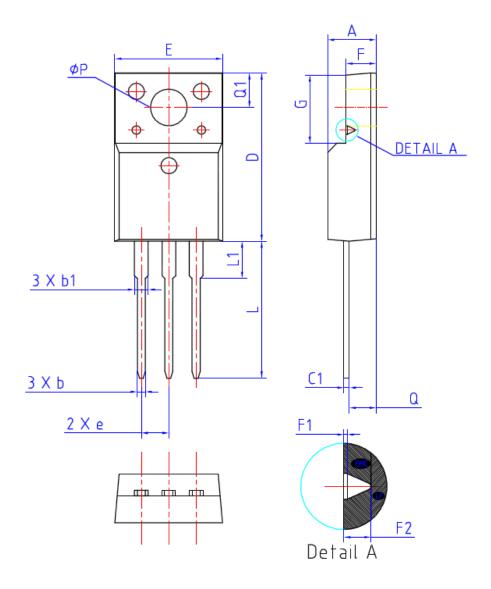




Fig. 9 $I_{H-}V_T$

Package Outline Dimensions

		MILLIMETER	:S	NOTE
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE
Α	4.50	4.70	4.90	
b	0.70	0.80	0.90	
b1	1.33	1.40	1.47	
C1	0.45	0.50	0.60	
D	15.67	15.87	16.07	
E	9.96	10.16	10.36	
е				
F	2.34	2.54	2.74	
F1	((
F2				
G	6.48	6.68	6.88	
L	12.78	12.98	13.18	
L1	3.03	3.23	3.43	
Q	2,56	2.76	2.96	
Q1	3.10	3.30	3.50	
ØΡ	3.08	3.18	3.28	

KSD-S0O005-000 5

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.