Designer's ${ }^{\text {TM }}$ Data Sheet SWITCHMODE Series NPN Silicon Power Darlington Transistor

The MJ10000 Darlington transistor is designed for high-voltage, high-speed,

```
    20 AMPERE
    NPN SILICON
POWER DARLINGTON
    TRANSISTORS
        350 VOLTS
        175 WATTS
``` power switching in inductive circuits where fall time is critical. It is particularly suited for line operated switchmode applications such as:
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits
\(100^{\circ} \mathrm{C}\) Performance Specified for:
Reversed Biased SOA with Inductive Loads Switching Times With Inductive Loads 210 ns Inductive Fall Time (Typ)
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS

THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|}
\hline Characteristic & Symbol & Max & Unit \\
\hline Thermal Resistance, Junction to Case & \(R_{\theta J C}\) & 1 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \begin{tabular}{c}
Maximum Lead Temperature for Soldering \\
Purposes: \(1 / 8^{\prime \prime}\) from Case for 5 Seconds
\end{tabular} & \(\mathrm{T}_{\mathrm{L}}\) & 275 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
(1) Pulse Test: Pulse Width \(=5 \mathrm{~ms}\), Duty Cycle \(\leq 10 \%\).
}

\section*{MJ40000}

ELECTRICAL CHARACTERISTICS \(\left(T_{C}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Characteristic} & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{OFF CHARACTERISTICS (2)} \\
\hline Collector-Emitter Sustaining Voltage (Table 1) (\(\mathrm{I} \mathrm{C}=250 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~V}_{\text {clamp }}=\) Rated \(\mathrm{V}_{\mathrm{CEO}}\)) & MJ10000 & \(\mathrm{V}_{\text {CEO }}\) (sus) & 350 & - & - & Vdc \\
\hline Collector-Emitter Sustaining Voltage (Table 1, Figure 12)
\[
\begin{aligned}
& I_{C}=2 \mathrm{~A}, V_{\text {clamp }}=\text { Rated } V_{C E X}, T_{C}=100^{\circ} \mathrm{C} \\
& I_{C}=10 \mathrm{~A}, V_{\text {clamp }}=\text { Rated } V_{C E X}, T_{C}=100^{\circ} \mathrm{C}
\end{aligned}
\] & \begin{tabular}{l}
M.J10000 \\
MJ10000
\end{tabular} & VCEX(sus) & \[
\begin{aligned}
& 400 \\
& 275
\end{aligned}
\] & & - & Vdc \\
\hline Collector Cutoff Current
\[
\begin{aligned}
& \left(V_{C E V}=\text { Rated Value, } V_{B E(\text { off })}=1.5 \mathrm{Vdc}\right) \\
& \left(V_{C E V}=\text { Rated Value, } V_{B E(o f f)}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right)
\end{aligned}
\] & & ICEV & - & - & \[
\begin{gathered}
0.25 \\
5
\end{gathered}
\] & mAdc \\
\hline Collector Cutoff Current
\[
\left(V_{C E}=\text { Rated } V_{C E V}, R_{B E}=50 \Omega, T_{C}=100^{\circ} \mathrm{C}\right)
\] & & \({ }^{\text {I CER }}\) & - & - & 5 & mAdc \\
\hline Emitter Cutoff Current
\[
\left(V_{E B}=8 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)
\] & & IEBO & - & - & 150 & mAdc \\
\hline
\end{tabular}

SECOND BREAKDOWN
\begin{tabular}{|l|l|l|l|}
\hline Second Breakdown Collector Current with base forward biased & \(\mathrm{I} / \mathrm{b}\) & See Figure 11 \\
\hline
\end{tabular}

ON CHARACTERISTICS (2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { DC Current Gain } \\
& (I C=5 \mathrm{Adc}, \mathrm{VCE}=5 \mathrm{VdC}) \\
& \left(I_{C}=10 \mathrm{Adc}, V_{C E}=5 \mathrm{Vdc}\right)
\end{aligned}
\] & \(h_{\text {he }}\) & 50
40 & - & 600
400 & - \\
\hline \[
\begin{aligned}
& \text { Collector-Emitter Saturation Voltage } \\
& \left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=400 \mathrm{mAdc}\right) \\
& \left(\mathrm{IC}_{\mathrm{C}}=20 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{Adc}\right) \\
& \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=400 \mathrm{mAdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right. \text {) }
\end{aligned}
\] & \(V_{\text {CE }}(\mathrm{sat})\) & - & - & 1.9
3
2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Base-Emitter Saturation Voltage } \\
& \text { (IC } \left.=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=400 \mathrm{mAdc}\right) \\
& \left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=400 \mathrm{mAdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right. \text {) }
\end{aligned}
\] & \(V_{B E}(\) sat \()\) & - & - & 2.5
2.5 & Vdc \\
\hline Diode Forward Voltage (1)
\[
(1 F=10 \mathrm{Adc})
\] & \(V_{f}\) & - & 3 & 5 & Vdc \\
\hline
\end{tabular}

\section*{DYNAMIC CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c}
Small-Signal Current Gain \\
\(\left(\mathrm{I} \mathrm{C}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}_{\text {test }}=1 \mathrm{MHz}\right)\)
\end{tabular} & \(\mathrm{h}_{\mathrm{fe}}\) & 10 & & - & - \\
\hline \begin{tabular}{l}
Output Capacitance \\
\(\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{IE}=0, \mathrm{f}_{\text {test }}=100 \mathrm{kHz}\right)\)
\end{tabular} & \(\mathrm{C}_{\mathrm{ob}}\) & 100 & & 325 & pF \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Resistive Load (Table 1)} \\
\hline Delay Time \(\quad\left(\mathrm{VCC}=250 \mathrm{Vdc}, \mathrm{l}_{\mathrm{C}}=10 \mathrm{~A}\right.\), & \(t_{d}\) & - & 0.12 & 0.2 & \(\mu \mathrm{s}\) \\
\hline Rise Time \(\quad \mathrm{I}_{81}=400 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE} \text { (off) }}=5 \mathrm{Vdc}, \mathrm{t}_{\mathrm{p}}=50 \mu \mathrm{~s}\), & \(t_{r}\) & - & 0.20 & 0.6 & \(\mu \mathrm{s}\) \\
\hline Storage Time \(\quad\) Duty Cycle \(\leq 2 \%\)) & \(t_{s}\) & - & 1.5 & 3.5 & \(\mu \mathrm{s}\) \\
\hline Fall Time & \(\mathrm{tf}_{\text {f }}\) & - & 1.1 & 2.4 & \(\mu \mathrm{s}\) \\
\hline \multicolumn{6}{|l|}{Inductive Load, Clamped (Table 1)} \\
\hline Storage Time (\({ }^{\text {l }} \mathrm{C}=10 \mathrm{~A}(\mathrm{pk}), \mathrm{V}_{\text {clamp }}=\) Rated \(\mathrm{V}_{\text {CEX }}, \mathrm{I}_{\mathrm{B} 1}=400 \mathrm{~mA}\), & & - & 3.5 & 5.5 & \\
\hline Crossover Time \(\quad \mathrm{V}_{\mathrm{BE} \text { (off) }}=5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\)) & \(\mathrm{t}_{\mathrm{c}}\) & - & 1.5 & 3.7 & \(\mu \mathrm{s}\) \\
\hline Storage Time (\({ }^{\mathrm{l}} \mathrm{C}=10 \mathrm{~A}(\mathrm{pk}), \mathrm{V}_{\text {clamp }}=\) Rated \(\mathrm{V}_{\text {CEX }}, \mathrm{I}_{\mathrm{B} 1}=400 \mathrm{~mA}\), & \(\mathrm{t}_{\text {sv }}\) & - & 1.0 & - & \(\mu \mathrm{s}\) \\
\hline Crossover Time \(\quad \mathrm{V}_{\mathrm{BE} \text { (off) }}=5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{t}_{\mathrm{c}}\) & - & 0.7 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}```

