

The LMBT3904DW1T1 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-363 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

- hFE, 100–300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$

TY Semicondutor[®]

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in 8 mm, 7–inch/3,000 Unit Tape and Reel
- Device Marking: LMBT3904DW1T1 = MA

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	200	mAdc
Electrostatic Discharge	ESD	HBM>16000, MM>2000	V

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Package Dissipation ⁽¹⁾ T _A = 25°C	P _D	150	mW
Thermal Resistance Junction to Ambient	$R_{ hetaJA}$	833	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

ORDERING INFORMATION

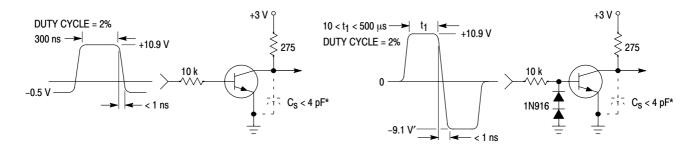
Device	Package	Shipping	
LMBT3904DW1T1	SOT-363	3000 Units/Reel	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage ⁽²⁾ ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V(BR)CEO	40	_	Vdc
Collector–Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V(BR)CBO	60	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V(BR)EBO	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	IBL	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	ICEX	_	50	nAdc
ON CHARACTERISTICS (2)	· · ·			
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)	hfe	40 70 100 60 30	- - 300 - -	_
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{CE(sat)}		0.2 0.3	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	0.65 _	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current–Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	300	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	4.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz}$)	C _{ibo}	_	8.0	pF

 $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.



ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
Small–Signal Current Gain (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{fe}	100 100	400 400	-
Output Admittance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{OE}	1.0 3.0	40 60	μmhos
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)	NF	-	5.0 4.0	dB

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc)	td	_	35	
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	tr	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc)	t _S	-	200	
Fall Time	(I _{B1} = I _{B2} = 1.0 mAdc)	t _f	-	50	ns

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit