

# 2SK3408

#### **DESCRIPTION**

The 2SK3408 is a switching device which can be driven directly by a 4-V power source.

The 2SK3408 features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of dynamic clamp of relay and so on.

#### **FEATURES**

- Can be driven by a 4-V power source
- Low on-state resistance

 $R_{DS(on)1} = 195 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 10 \text{ V, ID} = 0.5 \text{ A)}$ 

 $R_{DS(on)2} = 250 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 4.5 \text{ V, ID} = 0.5 \text{ A)}$ 

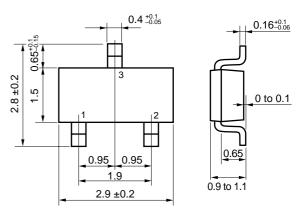
 $R_{DS(on)3} = 260 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 4.0 \text{ V, ID} = 0.5 \text{ A)}$ 

• Built-in G-S protection diode against ESD.

# ORDERING INFORMATION

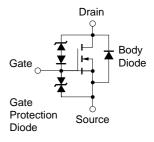
| PART NUMBER | PACKAGE                     |
|-------------|-----------------------------|
| 2SK3408     | SC-96 Mini Mold (Thin Type) |

# ABSOLUTE MAXIMUM RATINGS (TA = 25°C)


| ,               |                                                          |                                                                        |
|-----------------|----------------------------------------------------------|------------------------------------------------------------------------|
| VDSS            | 43±5                                                     | V                                                                      |
| VDGS            | 43±5                                                     | V                                                                      |
| Vgss            | ±20                                                      | V                                                                      |
| ID(DC)          | ±1.0                                                     | Α                                                                      |
| ID(pulse)       | ±4.0                                                     | Α                                                                      |
| P <sub>T1</sub> | 0.2                                                      | W                                                                      |
| P <sub>T2</sub> | 1.25                                                     | W                                                                      |
| Tch             | 150                                                      | °C                                                                     |
| Tstg            | -55 to +150                                              | °C                                                                     |
|                 | Vpgs<br>Vgss<br>Ip(pc)<br>Ip(pulse)<br>PT1<br>PT2<br>Tch | VDGS 43±5 VGSS ±20 ID(DC) ±1.0 ID(pulse) ±4.0 PT1 0.2 PT2 1.25 Tch 150 |

**Notes 1.** PW  $\leq$  10  $\mu$ s, Duty Cycle  $\leq$  1%

**2.** Mounted on FR-4 Board,  $t \le 5$  sec.


# **Remark** The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

# PACKAGE DRAWING (Unit: mm)



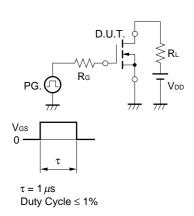
- 1 : Gate
- 2 : Source
- 3 : Drain

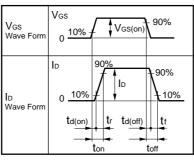
# **EQUIVALENT CIRCUIT**



Marking: XF




# 2SK3408


# **ELECTRICAL CHARACTERISTICS (TA = 25°C)**

| CHARACTERISTICS                     | SYMBOL               | TEST CONDITIONS                                 | MIN. | TYP. | MAX. | UNIT |
|-------------------------------------|----------------------|-------------------------------------------------|------|------|------|------|
| Zero Gate Voltage Drain Current     | Ipss                 | Vps = 30.4 V, Vgs = 0 V                         |      |      | 10   | μΑ   |
| Gate Leakage Current                | lgss                 | Vgs = ±16 V, Vps = 0 V                          |      |      | ±10  | μΑ   |
| Gate Cut-off Voltage                | V <sub>GS(off)</sub> | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 mA   | 1.5  | 2.0  | 2.5  | V    |
| Forward Transfer Admittance         | yfs                  | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 0.5 A  | 1    | 2.0  |      | S    |
| Drain to Source On-state Resistance | RDS(on)1             | Vgs = 10 V, ID = 0.5 A                          |      | 155  | 195  | mΩ   |
|                                     | RDS(on)2             | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 0.5 A |      | 185  | 250  | mΩ   |
|                                     | R <sub>DS(on)3</sub> | Vgs = 4.0 V, ID = 0.5 A                         |      | 195  | 260  | mΩ   |
| Input Capacitance                   | Ciss                 | V <sub>DS</sub> = 10 V                          |      | 230  |      | pF   |
| Output Capacitance                  | Coss                 | V <sub>GS</sub> = 0 V                           |      | 50   |      | pF   |
| Reverse Transfer Capacitance        | Crss                 | f = 1 MHz                                       |      | 30   |      | pF   |
| Turn-on Delay Time                  | td(on)               | V <sub>DD</sub> = 20 V                          |      | 18   |      | ns   |
| Rise Time                           | tr                   | ID = 0.5 A                                      |      | 14   |      | ns   |
| Turn-off Delay Time                 | td(off)              | V <sub>GS(on)</sub> = 10 V                      |      | 115  |      | ns   |
| Fall Time                           | tf                   | $R_G = 10 \Omega$                               |      | 38   |      | ns   |
| Total Gate Charge                   | Q <sub>G</sub>       | V <sub>DS</sub> = 30.4 V                        |      | 4.0  |      | nC   |
| Gate to Source Charge               | Qgs                  | I <sub>D</sub> = 1.0 A                          |      | 1.0  |      | nC   |
| Gate to Drain Charge                | Q <sub>GD</sub>      | V <sub>GS</sub> = 10 V                          |      | 1.0  |      | nC   |
| Body Diode Forward Voltage          | V <sub>F</sub> (S-D) | IF = 1.0 A, VGS = 0 V                           |      | 0.81 |      | V    |
| Reverse Recovery Time               | trr                  | IF = 1.0 A, Vgs = 0 V                           |      | 25   |      | ns   |
| Reverse Recovery Charge             | Qrr                  | di/dt = 100 A/μs                                |      | 16   |      | nC   |

# **TEST CIRCUIT 1 SWITCHING TIME**

# **TEST CIRCUIT 2 GATE CHARGE**



