Sync Separator with AFC

Monolithic IC LVA519

Outline

This is a sync separator IC with AFC. Stable operation even in a weak electric field is made possible with the built-in AFC circuit. A regulator also is built in, providing stable operation relative to power supply and temperature fluctuations.

Features

1. Supports AFC (horizontal sync signal)
2. AFC OFF function
3. Horizontal and vertical sync signal output pins
4. Power supply voltage 4.7V~5.3V

Package

```
SIP-9A (LVA519S)
```

SOP-14A (LVA519F)

Applications

1. TV
2. VCR
3. Other video equipment

Equivalent Circuit Diagram

SIP-9A
SOP-14A

Pin Description (LVA519S)

Pin no.	Pin name	Function	Internal equivalent circuit diagram
1	VIDEO IN	Video signal input	
2	Vco	Free run frequency setting	
3	PC OUT	Phase comparison output	
4	Cfu	Integrates composite signal and inputs to vertical sync playback circuit	

5	GND	GND	Free run frequency oscillation circuit
6	Cosc		
7	Vsync	Vertical sync signal output	
8	Hsync	Horizontal sync signal	
9	output		

Pin Description (LVA519F)

Pin no.	Pin name	Function	Internal equivalent circuit diagram	
$\mathbf{1}$		VIDEO IN	Video signal input	
2	Free run frequency setting			

4	PC OUT	Phase comparison output	
5	$\mathrm{Cfu}^{\text {f }}$	Integrates composite signal and inputs to vertical sync playback circuit	
6		NC	
7	GND	GND	
8	Cosc	Free run frequency oscillation circuit	
9		NC	
10	Vsync	Vertical sync signal output	
11	Hsync	Horizontal sync signal output	
12	Vcc	Power supply	
13		NC	
14		NC	

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Ratings	Units
Storage temperature	TsTG	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating temperature	TopR	$-2 \sim+75$	${ }^{\circ} \mathrm{C}$
Power supply voltage	Vcc max.	7	V
Allowable loss	Pd	$470($ SIP-9A) $350(S O P-14 A)$	mW

Recommended Operating Conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Min.	Typ.	Max.	Units
Recommended power supply voltage range	VCC	4.7	5.0	5.3	V
Recommended input signal voltage	VIN	0.8	2.0	3.2	VP-P

Electrical Characteristics (Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{IN}=2.0 \mathrm{~V}$ P-P)

Item		Symbol	Measurement conditions	Min.	Typ.	Max.	Units
Consumption current		Id	Refer to Measuring Circuit		7.0	10	mA
Horizontal sync output (H)		VHH	Refer to Measuring Circuit	4.9	5.0		V
Horizontal sync output (L)		VHL	Refer to Measuring Circuit		0.2	0.4	V
Vertical sync output (H)		VvH	Refer to Measuring Circuit	4.9	5.0		V
Vertical sync output (L)		VVL	Refer to Measuring Circuit		0.2	0.4	V
Free-running frequency setting range		fo	Refer to Measuring Circuit	14.5		17.0	kHz
Power supply fluctuation of free-running frequency		\triangle fol	Refer to Measuring Circuit		300		\%/V
Free-running frequency temperature coefficient Capture range		$\triangle \mathrm{fo} 2$	Refer to Measuring Circuit		400		ppm/V
Capture range		fc	Refer to Measuring Circuit	1.0	1.3		kHz
Lock range		fL	Refer to Measuring Circuit	1.9	2.5		kHz
AFC output delay time		td	Refer to Measuring Circuit	0.3	0.7	1.1	$\mu \mathrm{S}$
AFC output pulse width		Pw	Refer to Measuring Circuit	3.5	5.0	6.5	$\mu \mathrm{S}$
Schmitt trigger threshold	(H)	Vth	Refer to Measuring Circuit	1.9	2.1	2.3	V
	(L)	VthL	Refer to Measuring Circuit	1.1	1.3	1.5	V
Sync separation level		Vsepa	Refer to Measuring Circuit	80	115	170	mV
AFC off resistance		Rafc	Refer to Measuring Circuit	2.7	4.0	6.0	$\mathrm{k} \Omega$

Measuring Procedures (Except where noted otherwise, $\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}=}=2.0 \mathrm{~V}_{\text {P-P }}$)

Item		Symbol	Switch state					Measuring Procedures	
		S1	S2	S3	S4	S5			
Consumption current			Id	B	B	A	A	A	Connect a DC ammeter to Vcc pin
Horizontal sync output	(H)	Vнн	B	A	B	B	A	Input standard color bar 2VP-P. Measure at TP5	
	(L)	VhL	B	A	B	B	A		
Vertical sync output	(H)	Vvi	B	A	B	B	A	Input standard color bar 2VP-P. Measure at TP4.	
	(L)	VVL	B	A	B	B	A		
Free-running frequency setting range		fo	A	B	B	B	A	Adjust VR1 and measure frequency at TP5.	
Power supply fluctuation of free-running frequency		$\triangle \mathrm{fo} 1$	A	B	B	B	A	With fo at 15.73 kHz , vary Vcc between $4.0 \mathrm{~V} \sim 6.0 \mathrm{~V}$ and measure at TP5.	
Free-running frequency temperature coefficient		$\triangle \mathrm{fo} 2$	A	B	B	B	A	With fo at 15.73 kHz , vary temperature between $-20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ and measure at TP5.	
Capture range		fc	B/A	A	B	B	A	Input standard color bar 2Vp-p and measure at TP1 and TP5. *1	
Lock range		fL	B/A	A	B	B	A	Input standard color bar 2Vp-p and measure at TP1 and TP5. *1	
AFC output delay time		td	A/B	A	B	B	A	Input standard color bar 2VP-P and measure at TP2 and TP5. *2	
AFC output pulse width		Pw	A/B	A	B	B	A	Input standard color bar 2VP-P and measure at TP5. *2	
Schmitt trigger threshold	(H)	Vthe	B	A	B	B	A	Measure at TP3 and TP4. *3	

Measuring Procedures (Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}=2}=2 . \mathrm{V}_{\mathrm{P}-\mathrm{P}}$)

Item	Symbol						Measuring Procedures	
		S2	S3	S4	S5			
Sync separation level		B	A	B	B	A	Raise horizontal sync signal level of input standard color bar 2VP-P and measure the level when a signal is output at TP5.	
AFC switching resistance		B	A	B	B	B	With Fo at 15.73kHz, vary Iafc, and determine according to Iafc value when TP5 output signal switches to a composite signal, and TP6 voltage V6. RAFC=V6/IA1	

Notes:
*1 Capture range (fc) Vary VR1 between $\max \rightarrow \min$ and $\min \rightarrow \max$ with SW1, and for each lock make SW1 A and measure at TP5.
15.73 KHz
fc1 \quad _ fc2 \cdots... Data : fc1 and fc2 smaller value
Lock range (fL)
With SW1 at B and locked, vary VR1 and when the lock is released, make SW1 A and measure at TP5.
15.73 KHz
*2

* AFC output delay time (td)

Set SW1 at A and adjust TP5 output to 15.73 kHz . Then set SW1 to B and measure td from TP2 and TP5 waveforms. (specified at 50\% of sync signal amplitude)

* AFC output pulse width (Pw)

Set SW1 at A and adjust TP5 output to 15.73 kHz . Then set SW1 to B and measure Pw from TP5 waveform. (specified at 50\% of sync signal amplitude)
*3

* Schmidt trigger threshold
(Vthн) (VthL)

Measure Vthн and Vthı at TP3 and TP4.

Measuring Circuit

SIP-9A

SOP-14A

Application Circuits

SIP-9A

SOP-14A

