LA7137M
 Monolithic Linear IC DVD Analog Video Output IIF IC

Overview

The LA7137M is a video output interface IC for DVD players and is optimal as the driver IC for DVD players that provide composite signal/S signal, component signal, and RGB signal video outputs.
Since this IC integrates a Y/C mixer on the same chip, the D/A converter composite output can be omitted. The LA7137M also integrates S1 and S2 DC voltage and D/A converter reference yolage generation on chip, allowing most components other than the drivers to be omitted.

Functions

- Clamps
- Amplifier
- 75Ω driver
- Y/C mixer
- S1 and S2 DC outpat
- D/A converter reference voltage output

Features

- Video signal-to-noise ratio : -80dB
- Frequency characteristics : flat to 10 MHz
- Y/C time difference : less than 2ns
- Signal dynamic range : 170IRE.
- Can support all major signal types : composite/S signals, component signals, and baseband (RGB) signals. Furthermore, the IC input type can be switched by the system microcontroller (since the input capacitors are shared).
- Two 75Ω driver systems that can be independently muted by the system microcontroller.
- The clamp pulses required for component signal input are generated internally in the IC.
- Either of two amplifier gain levels, 8.5 and 6 dB , can be selected.
- A built-in regulator circuit provides a stable DC voltage output that is independent of VCC fluctuations.

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }} \max$		10.0	V
Allowable power dissipation	Pd max	Ta $\leq 75^{\circ} \mathrm{C} *$ Mounted on a board	525	mW
Operating temperature \square	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

* Only when mounted on a $114.3 \times 76.1 \times 1.6 \mathrm{~mm}^{3}$ glass epoxy board

LA7137M
Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		8.0	V
Operating supply voltage range	V_{CC} op		7.6 to 8.4	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=7.6$ to 8.4 V

LA7137M

Continued from preceding page.

Parameter	Symbol	Input signal	Test point	Conditions	Ratings			Unit
					min	typ	max	
(I) The pin 3 (B-Y or R-Y signal) input when component is selected								
Amplifier gain (high)	$\mathrm{G}_{\mathrm{N}} \mathrm{H}$	Sig. 4	T21/23	The gain for a $761 \mathrm{mVp}-\mathrm{p} 100 \mathrm{kHz}$ signal	7.38	7.6	7.81	dB
Input pedestal clamp voltage	$\mathrm{P}_{3} \mathrm{H}$	Sig. 4	T3	The T3 pedestal potential for a $761 \mathrm{mVp}-\mathrm{p}$ input	4.4	4.75	5.1	V
(J) The gain ratios between the different signals when component is selected								
Y/component amplifier gain ratio 1	$\Delta \mathrm{Y} 1$	Sig. 1 Sig. 4	$\begin{aligned} & \mathrm{T} 13 / 15 \\ & \mathrm{~T} 17 / 19 \end{aligned}$	The ratio of the $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ gain for (E) and the $\mathrm{G}_{\mathrm{N}} \mathrm{H}$ gain for (F)	-3			\%
Y/component amplifier gain ratio 2	$\Delta Y 2$	Sig. 1 Sig. 4	$\begin{aligned} & \mathrm{T} 13 / 15 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	The ratio of the $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ gain for (E) and the $\mathrm{G}_{\mathrm{N}} \mathrm{H}$ gain for (G)				
Component amplifier gain ratio	$\Delta \mathrm{N}$	Sig. 4 Sig. 4	$\begin{aligned} & \mathrm{T} 17 / 19 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	The ratio of the $\mathrm{G}_{\mathrm{N}} \mathrm{H}$ gain for (F) and the $\mathrm{G}_{\mathrm{N}} \mathrm{H}^{\text {gain for (G) }}$				
(K) The pin 10 (RGB signal) input when baseband is selected								
Amplifier gain (low)	$\mathrm{GB}_{\mathrm{B}} \mathrm{M}$	Sig. 1	T13/15	The gain for a 996mVp-p 100kHz signal	5.05	5.27	5.48	dB
Amplifier gain (high)	$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	Sig. 1	T13/15	The gain for a $761 \mathrm{mVp}-\mathrm{p} 100 \mathrm{kHz}$ signal	7.3	7.6	7.81	dB
Input clamp voltage	$\mathrm{C}_{10} \mathrm{H}$	Sig. 1	T10	The T10 sync tip potential for a 761 mVp -p input	3.85		4.55	V
(L) The pin 6 (RGB signal) input when baseband is selected								
Amplifier gain (low)	$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	Sig. 1	T13/15	The gain for a $996 \mathrm{mVp}-\mathrm{p} 100 \mathrm{kHz}$ signal	5.05	5.27	5.48	dB
Amplifier gain (high)	$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	Sig. 1	T13/15	The gain for a $761 \mathrm{mvp}-\mathrm{p} 100 \mathrm{kHz}$ signal	7.3	7.6	7.81	dB
Input clamp voltage	$\mathrm{C}_{6} \mathrm{H}$	Sig. 1	T10	The T10 sync tip potential for a $761 \mathrm{~m} V \mathrm{p}$-p input		4.35	4.7	V
(M) The pin 3 (RGB signal) input when baseband is selected								
Amplifier gain (low)	$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	Sig. 1	T13/15	The gain for a 996mVp-p 100kHz signal	5.05	5.27	5.48	dB
Amplifier gain (high)	$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	Sig. 1	T13/15	The gain for a $761 \mathrm{mVp}-\mathrm{p} 100 \mathrm{kHz}$ signal	7.38	7.6	7.81	dB
Input clamp voltage	$\mathrm{C}_{3} \mathrm{H}$	Sig. 1	T10	The J10 sync tip potential for a $761 \mathrm{~m} V \mathrm{p}$-p input	4.0	4.35	4.7	V
(N) The gain ratios between the different signals when baseband is selected								
Baseband amplifier gain ratio 1	$\Delta \mathrm{B} 1$	Sig. 1 Sig. 1	T13/15 T17/19	The ratio of the $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ gain for (l) and the $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ gain for (J)	-3	0	3	\%
Baseband amplifier gain ratio 2	$\Delta \mathrm{B} 2$	Sig. 1 Sig. 1	T13/15 T21/23	The ratio of the $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ gain for (I) and the $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ gain for (K)	-3	0	3	\%
Baseband amplifier gain ratio 3	$\Delta \mathrm{B} 3$	$\begin{aligned} & \mathrm{Sig} 1 \\ & \text { Sig. } 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{T} 17 / 19 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	The ratio of the $G_{B} H$ gain for (J) and the $\mathrm{G}_{\mathrm{B}}{ }^{\mathrm{H}}$ gain for (K)	-3	0	3	\%

(O) Gain frequency characteristics (Common to all modes and input signals other than Y/C mixed mode)

6MHz low-pass filter attenuation	$F_{Y} 6$	Sig.	$T 13 / 15$	The difference between $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ and the gain for a $761 \mathrm{mVp}-\mathrm{p}, 6 \mathrm{MHz}$ input	-0.5	0	+0.5	dB
10MHz low-pass filter attenuation			T13/15	The difference between $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ and the gain for a $761 \mathrm{mVp}-\mathrm{p}, 10 \mathrm{MHz}$ input	-0.5	0	+0.5	dB

(P) DC voltage when output muting applied (Common to all modes)

Note : The amplifier gain and amplifier gain ratios are the values when the components shown in the test circuit diagram are all connected.

Switching Characteristics ("-" indicates OK under all conditions)

Symbol	Control voltage (unit: V)						Switching conditions	
	VDC1	VDC2	VDC4	VDC5	VDC11	VDC22	SW1	SW2
${ }^{1} \mathrm{CC}{ }^{1}$	0	0	3.3	0	3.3	3.3	ON	ON
ICC^{2}	0	0	3.3	0	3.3	3.3	ON	ON

(A) For a pin 10 (Y signal) input when composite/ S selected

G_{YM}	$0 / 3.3$	0	-
$\mathrm{G}_{\mathrm{Y}} \mathrm{H}$	$0 / 3.3$	0	-
$\mathrm{C}_{10} \mathrm{H}$	$0 / 3.3$	0	-
(B) For a pin 6 (chrominance signal) input when composite/S selected			

$\mathrm{G}_{\mathrm{C}} \mathrm{M}$	$0 / 3.3$	0	-
$\mathrm{G}_{\mathrm{C}} \mathrm{H}$	$0 / 3.3$	0	-
$\mathrm{C}_{6} \mathrm{H}$	$0 / 3.3$	0	-

-	0
-	3.3
-	3.3

3.3	
3.3	
	3.3

ON/OFF	ON	
ON/OFF	ON	
	ON/OFF	ON

(C) For a pin 3 (composite signal) input when composite selected

$\mathrm{G}_{\mathrm{S}} \mathrm{M} 1$	0/3.3	0	-	-	0		/OFF	ON
GSH1	0/3.3	0	-	-	3.3	3.3	ON/OFF	ON
$\mathrm{C}_{3} \mathrm{H}$	0/3.3	0	-	-			ON/O	ON
(D) For a pins 3 (S signal) input when S is selected								
GSM2	0/3.3	0	-	-			ON/OFF	ON
$\mathrm{Gs}_{\mathrm{S}} \mathbf{}$	0/3.3	0	-	-		3.3	ON/OFF	ON

(E) The gain ratios between the different signals when composite is selected

(F) The gain ratios between the different signals when S is selected

(J) The gain ratios between the different signals when component is selected

$\Delta Y 1$	$0 / 3.3$	3.3	-	-	3.3	3.3	ON/OFF	ON
$\Delta Y 2$	$0 / 3.3$	3.3	-	-	3.3	3.3	ON/OFF	ON
$\Delta \mathrm{N}$	$0 / 3.3$	3.3	-	-	3.3	3.3	ON/OFF	ON

(K) The pin 10 (RGB signal) input when baseband is selected

G_{B}	$0 / 3.3$	-	-	-	0	3.3	ON/OFF	OFF
$\mathrm{GBH}_{\mathrm{BH}}$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF
$\mathrm{C}_{10 \mathrm{H}}$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF

(L) The pin 6 (RGB signal) input when baseband is selected

$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	$0 / 3.3$	-	-	-	0	3.3	ON/OFF	OFF
$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	$0 / 3.3$	-	-	-	3.3	3.3	$\mathrm{ON} / \mathrm{OFF}$	OFF
$\mathrm{C}_{6} \mathrm{H}$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF

(M) The pin 3 (RGB signal) input when baseband is selected

$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	$0 / 3.3$	-	-	-	0	3.3	ON/OFF	OFF
$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF
$\mathrm{C}_{3} \mathrm{H}$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF

LA7137M
Continued from preceding page.
Continued from preceding page.

Symbol	Control voltage (unit: V)						Switching conditions	
	VDC1	VDC2	VDC4	VDC5	VDC11	VDC22	SW1	SW2

(N) The gain ratios between the different signals when baseband is selected								
$\Delta \mathrm{B} 1$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF
$\Delta \mathrm{B} 2$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF
$\Delta \mathrm{B} 3$	$0 / 3.3$	-	-	-	3.3	3.3	ON/OFF	OFF

(O) Gain frequency characteristics (Common to all modes and input signals other than Y/C mixed mode)

$\mathrm{F}_{\mathrm{Y} 6}$	$0 / 3.3$	0	-	-	3.3	3.3	ON/OFF	ON
$\mathrm{FY}_{\mathrm{Y}} 10$	$0 / 3.3$	0	-	-	3.3	3.3	ON/OFF	ON

$$
\begin{array}{|l|}
\hline \text { (P) DC voltage when output muting applied (Common to all modes) } \\
\hline
\end{array}
$$

V_{13}	0	-	-	-	$0 / 3.3$	$0 / 3.3$	ON	-
V_{15}	3.3	-	-	-	$0 / 3.3$	$0 / 3.3$	ON	
V_{17}	0	-	-	-	$0 / 3.3$	$0 / 3.3$	ON	
V_{19}	3.3	-	-	-	$0 / 3.3$	$0 / 3.3$	ON	
V_{21}	0	-	-	-	$0 / 3.3$	$0 / 3.3$	ON	-
V_{23}	3.3	-	-	-	$0 / 3.3$	$0 / 3.3$	ON	-

(Q) Output DC voltage characteristics

					-			
$V_{\text {DA }}$	-	-	-	-	$0 / 3.3$	$0 / 3.3$	-	-
V_{43}	-	-	0	0	$0 / 3.3$	$0 / 3.3$	-	-
$\mathrm{V}_{\text {LB }}$	-	-	0	3.3	$0 / 3.3$	$0 / 3.3$		-
$\mathrm{V}_{\text {SQ }}$	-	-	3.3	0	$0 / 3.3$	$0 / 3.3$	-	-

Control Pin Functions

Note : Never apply a voltage higher than the V_{C} voltage at pins 9 and 20 to pin 11 or pin 22.

* : Y/C mixed mode is illegal in modes other than composite/S mode.
* : In composite mode, use pin 6 to input the chrominance signal capacitor-coupled, pin 3 for the clamped composite signal, and pin 10 for the clamped Y signal. However, in S mode, pin 3 will have no input.
In component mode, pins 3 and 6 will be pedestal clamped B-Y and R-Y signals, respectively, while pin 10 will be the clamped Y signal input.
In baseband mode, pins 3, 6, and 10 are all clamped inputs, for the RGB signals, respectively.
Pins 11 and 22 must never be left open.

Design Guaranteed Items (at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
<Modes Other than Y/C Mixed Mode>						
Inter-channel crosstalk	CT	Input an $\mathrm{f}=4 \mathrm{MHz}$ signal to another channel such that the capacitor-coupled output becomes 1Vp-p. Measure the amplitude of the 4 MHz component on the monitored channel. This parameter is stipulated to be the ratio of that level with the amplitude of the 4 MHz component on that other channel.		-65	-60	dB
Video signal-to-noise ratio	SN	Input a white 100% signal and apply a 3.3 V level to pin 11. Measure the signal-to-noise ratio in the output signal.				dB
Differential gain	DG	Input a standard 1Vp-p staircase signal (color) and leave pin 11 open. Measure the differential gain in the output signal. Note that the components shown in the test circuit diagram for this parameter must be inserted at this time.				
Differential phase	DP	Input a standard 1Vp-p staircase signal (color) and leave pin 11 open. Measure the differential phase in the output signal. Note that the components shown in the test circuit diagram for this parameter must be inserted at this time.				
<Y/C Mixed Mode>						
Inter-channel crosstalk	CT	Input an $\mathrm{f}=4 \mathrm{MHz}$ signal to another channel such that the capacitor-coupled output becomes 1Vp-p. Measure the amplitude of the 4 MHz component on the monitored channel. This parameter is stipulated to be the ratio of that level with the amplitude of the 4 MHz component on that other channel.			-60	dB
Video signal-to-noise ratio	SN	Input a white 100% signal and apply a 3.3 V level to pin 11. Measure the signal-to-noise ratio in the output signal.		-74	-72	dB
Differential gain	DG	Input a standard 761mVp-p staircase signal (color) and apply a 3.3 V level to pin 11. Measure the differential gain in the output signal. Note that the components shown in the test circuit diagram for this parameter must be inserted at this time.		4	5.5	\%
Differential phase	DP	Input a standard 761 myp -p staircase signal (color) and apply a 3.3 V level to pin 11 . Measure the differential gain in the output signal. Note that the components shown in the test circuit diagram for this parameter must be inserted at this time.	-1	0.5	1.5	dB

Package Dimensions

unit : mm (typ)
3112B

Block Diagram

Pin Functions

For more information on the pin functions, see the I/O circuit diagrams, and for an operating description, see the block diagram.
Note that the data shown below consists of typical values and that detailed ratings are provided in the Electrical
Characteristics.

Continued from preceding page.

Continued from preceding page.

Continued on next page.

Continued from preceding page.

Sample Application Circuit

Single composite/S signal plus single component signal application using a single D/A converter

Application circuit diagram for end product that provides one output system each for composite/S and component outputs and the D / A converter output pin is shared between the S signal and the component signal systems. The muting control can be used to switch between the composite/S and component outputs.
The system microcontroller must be programmed to turn the Y/C mixer off when the component signal system is used.

DVD Video Player System Block Diagram

Test Circuit

Input Signal for Test

\square Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
\square SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2006. Specifications and information herein are subject to change without notice.

