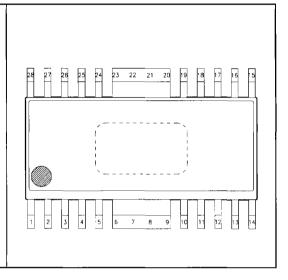
## **AWT0908**

TX POWER MMIC
Advanced Product Information
Rev 0


# 900 MHz Band GSM GaAs Power Amplifier IC

### DESCRIPTION

The AWT0908X is a monolithic Power Amplifier IC suited for GSM cellular telephone Applications

#### **FEATURES**

High Output Power
High Efficiency
Single Supply
Low Harmonics
Built in Pulse Shaping
Small Size
Surface Mount Package
50Ω Input Impedance
Low Cost



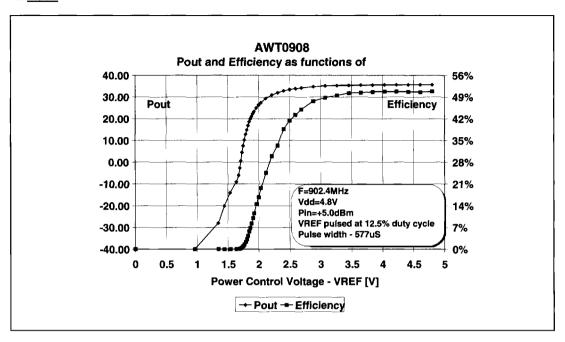
# 1. Maximum Ratings

Static sensitive electronic devices. Do not operate or store near strong electrostatic, fields. Take proper ESD precautions.

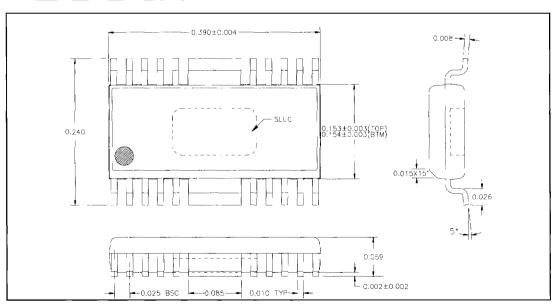
| Pin                       | Rating               | Notes                                                                                                                                        |
|---------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Pin 2 - RF <sub>IN</sub>  | + 12 dBm max.,       |                                                                                                                                              |
| Pin 3 - V <sub>REF</sub>  | + 5V max., 0 V min.  | If V <sub>REF</sub> is kept high and not pulsed, the amplifier may draw very high currents and permanent damage may occur.                   |
| Pin 4 - VdB               | +7.5V max., 0 V min. |                                                                                                                                              |
| Pin 5 - V <sub>SSIN</sub> | N/A                  | Do not apply voltage to this pin. If $V_{SSIN}$ is not between - 4V and - 4.5V (with $V_{GEN}$ = 4.8V), the amplifier may not work properly. |

## WIRELESS - Power Amplifier

# **AWT0908**


| Pin                        | Rating               | Notes                                                                |  |  |  |
|----------------------------|----------------------|----------------------------------------------------------------------|--|--|--|
| Pin 10 V <sub>SS</sub> OUT | N/A                  | Do not apply voltage to these pin                                    |  |  |  |
| Pin 11, Pin 12             | N/A                  | Do not apply voltage to these pins.                                  |  |  |  |
| Pin 13 - V <sub>GEN</sub>  | +7.5 V max. 0 V min. | V <sub>GEN</sub> must be turned on before any of the drain supplies. |  |  |  |
| Pin 16 - D2                | +7.5 V max.,0 V min, |                                                                      |  |  |  |
| Pin19 - D3B                | +7.5 V max.,0 V min. |                                                                      |  |  |  |
| Pin 24- D3A                | +7.5 V max.,0 V min. |                                                                      |  |  |  |
| Pin 27 - D1                | +7.5 V max.,0 V min. |                                                                      |  |  |  |

## 2. ELECTRICAL CHARACTERISTICS:


 $(Pin \le +7 \; dBm, \; \; V_{DS} = + \; 4.8 \, V_{DC}, \; V_{GEN} = + \; 4.8 \; V_{DC}, \; Pulsed @ 577 \; \mu S/12.5\% \; Duty \; Cycle, \; Tc= \; 25^{0}C, \; \; 50\Omega \; Input \; \& \; 1.0 \, M_{\odot} = 0.000 \, M_{\odot}$ 

| 50Ω external output match)                                                 |                    | 1    |      |      |                                                                                          |
|----------------------------------------------------------------------------|--------------------|------|------|------|------------------------------------------------------------------------------------------|
| PARAMETER                                                                  | SYMBOL             | MIN. | TYP. | MAX. | PARAMETER                                                                                |
| Frequency                                                                  | fo                 | 880  |      | 915  | MHz                                                                                      |
| Power Output $@V_{REF} < 3.7 \text{ V}$                                    | Pout               |      | 35   |      | dBm                                                                                      |
| Power Added Efficiency                                                     | PAE                |      | 50   |      | %                                                                                        |
| Harmonics (@ 35 dBm)                                                       | 2fo                | ļ    | - 38 |      | dBc                                                                                      |
|                                                                            | 3rd                |      | - 28 |      |                                                                                          |
| Stability: - 80 dBc,<br>all spurious outputs relative to<br>desired signal |                    |      | 6:1  |      | VSWR load, all phase angles, $(P_{OUT} \le 35 dBm)$ $V_{DS} = +4.8.0V,$ $Zs = 50 \Omega$ |
| Input Return Loss                                                          | R <sub>tnIN</sub>  |      | 12   |      | dB                                                                                       |
| Isolation                                                                  |                    |      | - 40 |      | dBm                                                                                      |
| DC/DC Converter Current                                                    | $\mathbf{I}_{GEN}$ |      | 5.5  |      | mA                                                                                       |
| Pulse Control                                                              | I <sub>REF</sub>   |      |      | 2    | mA                                                                                       |
| Operating Range                                                            | Tc                 | - 20 |      | + 70 | °С                                                                                       |

### 3. **DATA**



### 4. Case Outline and Pin Description



#### WIRELESS - Power Amplifier

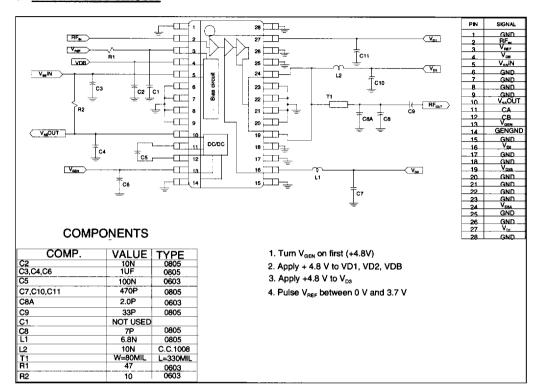
### **AWT0908**

| Pin         | Signal             | Description                                                                  |  |
|-------------|--------------------|------------------------------------------------------------------------------|--|
| 1           | GND                | RF and DC Ground                                                             |  |
| 2           | RF <sub>IN</sub>   | RF power input, DC blocked                                                   |  |
| 3           | $V_{REF}$          | Output Power control, Should be set to level that corresponds to             |  |
|             | ·                  | the desired output power Pulse control voltage (V <sub>REF</sub> , 0 to 4 V) |  |
| 44          | $V_{DB}$           | Bias circuit Supply (+ 4.8 V, 5 ma)                                          |  |
| 5           | V <sub>SS IN</sub> | Negative Supply (-4.5V) generated by the dc/dc converter                     |  |
| 6,7,8,9     | GND_               | RF and DC Ground (The "Batwing")                                             |  |
| 10          | $V_{SSOUT}$        | The output of the dc/dc converter providing the negative voltage             |  |
| 11,12       |                    | Pump capacitor (C5) which is part of the dc/dc converter circuit.            |  |
| 13          | $V_{GEN}$          | DC/DC converter positive supply                                              |  |
| [           |                    | AC and DC ground for the dc/dc converter .If possible should be              |  |
| 14          | GND                | grounded through a separate via hole.                                        |  |
| 15          | GND                | RF and DC ground.                                                            |  |
| 16          | $V_{D2}$           | The open drain of the second amplifier stage                                 |  |
| 17          | GND                | RF and DC Ground                                                             |  |
| 18          | N/C                | Not Connected                                                                |  |
| 19          | $V_{D3B}$          | 3rd stage drain supply (4.8V) and RF out                                     |  |
| 20,21,22,23 | GND                | RF and DC ground (the "BATWING")                                             |  |
| 24          | $V_{D3A}$          | 3rd stage drain supply (4.8V) and RF out                                     |  |
| 25          | N/C                | Not Connected                                                                |  |
| 26          | GND                | RF and DC ground                                                             |  |
| 27          | $V_{Di}$           | 1st stage drain supply (4.8V)                                                |  |
| 28          | GND                | RF and DC Ground                                                             |  |

### 5. Recommended Operating Procedure on the Evaluation Board

#### Power Up

- A. Begin by setting all power supplies to zero volts.
- B. Make sure that the input RF power is turned off.
- C. Turn on  $V_{GEN}$  (Pin 13) to + 4.8V
- D. Check the voltage @ V<sub>SS\_IN</sub> (pin 5) to see if it is between -4.5 V and 4.0V if voltage is not ,check the pin alignment.
- E. Turn on V<sub>D1</sub>(Pin 27), V<sub>D2</sub>(Pin 16), V<sub>D3</sub>(Pins 19 and 24) and V<sub>DB</sub> (Pin 4) which are tied together on the fixture, and set to + 4.8V. Little drain current should be flowing at this time (I<sub>DD</sub> < 5 mA).
- F. Turn RF on and adjust input power to 5 dBm.
- G. Turn  $V_{REF}$  on using the pulsed scheme of GSM. Adjust Pulse  $V_{REF}$  to desired output power (< = 35 dBm). No lower than 0 V and no higher than +3.7 V. Use an oscilloscope to measure  $V_{REF}$  on the  $V_{REF}$  package pin (3) rather than using the display of the pulse generator. The reason for that is that the pulse generator may have a 50 $\Omega$  output impedance while the impedance of  $V_{REF}$  pin is high. This causes the voltage on  $V_{REF}$  pin to be almost twice as high as the readout on the pulse generator.


### Power Down

To power down the device follow the above procedure in reverse order.

#### **WIRELESS - Power Amplifier**

## **AWT0908**

### 6. AWT0908 TEST CIRCUIT

