

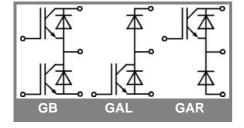

SEMITOP® 1

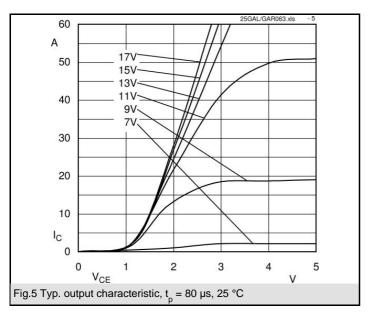
### **IGBT** Module

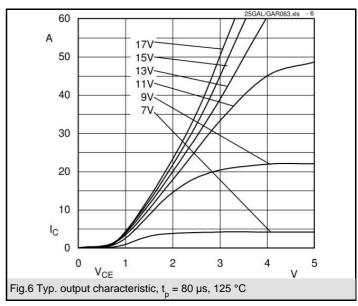
SK 25 GB 063 SK 25 GAL 063 SK 25 GAR 063

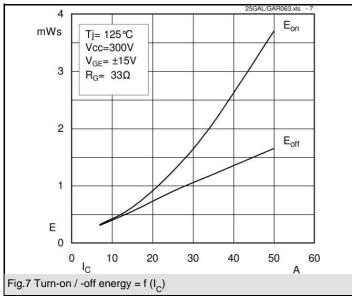
Preliminary Data

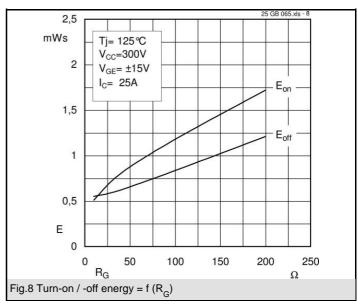
#### **Features**

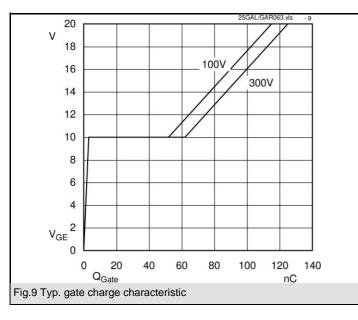

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E 63 532

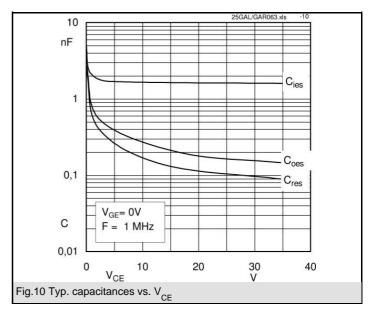

#### **Typical Applications**

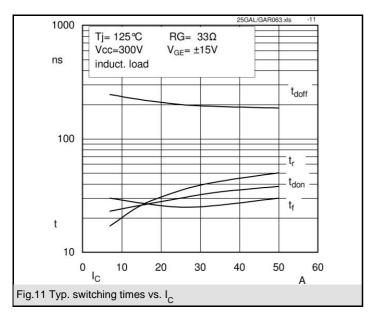

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

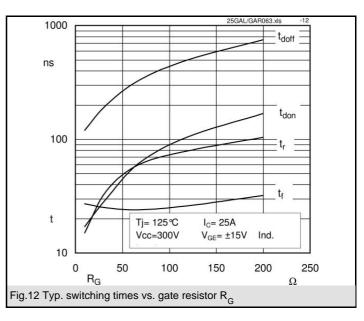

| Absolute Maximum Ratings         |                                                | T <sub>h</sub> = 25 °C, unless otherwise specified |       |  |  |  |  |  |
|----------------------------------|------------------------------------------------|----------------------------------------------------|-------|--|--|--|--|--|
| Symbol                           | Conditions                                     | Values                                             | Units |  |  |  |  |  |
| IGBT                             |                                                |                                                    |       |  |  |  |  |  |
| $V_{CES}$                        |                                                | 600                                                | V     |  |  |  |  |  |
| $V_{GES}$                        |                                                | ± 20                                               | V     |  |  |  |  |  |
| I <sub>C</sub>                   | T <sub>s</sub> = 25 (80) °C;                   | 30 (21)                                            | Α     |  |  |  |  |  |
| I <sub>CM</sub>                  | $t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$ | 60 (42)                                            | Α     |  |  |  |  |  |
| $T_j$                            |                                                | - 40 <b>+</b> 150                                  | °C    |  |  |  |  |  |
| Inverse / Freewheeling CAL diode |                                                |                                                    |       |  |  |  |  |  |
| I <sub>F</sub>                   | T <sub>s</sub> = 25 (80) °C;                   | 36 (24)                                            | Α     |  |  |  |  |  |
| $I_{FM} = -I_{CM}$               | $t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$ | 72 (48)                                            | Α     |  |  |  |  |  |
| T <sub>j</sub>                   |                                                | - 40 <b>+</b> 150                                  | °C    |  |  |  |  |  |
| T <sub>stg</sub>                 |                                                | - 40 <b>+</b> 125                                  | °C    |  |  |  |  |  |
| T <sub>sol</sub>                 | Terminals, 10 s                                | 260                                                | °C    |  |  |  |  |  |
| $V_{\rm isol}$                   | AC 50 Hz, r.m.s. 1 min. / 1 s                  | 2500 / 3000                                        | V     |  |  |  |  |  |

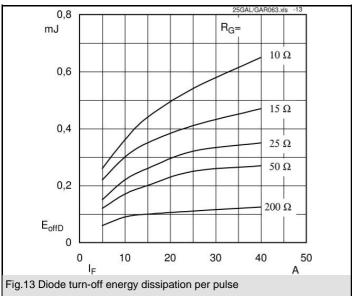

| Symbol  Cone                              |                                                               |      | Characteristics T <sub>h</sub> = 25 °C, unless otherwise speci |            |       |  |  |  |
|-------------------------------------------|---------------------------------------------------------------|------|----------------------------------------------------------------|------------|-------|--|--|--|
| Cyllibol Colli                            | ditions                                                       | min. | typ.                                                           | max.       | Units |  |  |  |
| IGBT                                      |                                                               |      |                                                                |            |       |  |  |  |
| $V_{CE(sat)}$ $I_C = 20$                  | 0 A, T <sub>i</sub> = 25 (125) °C                             |      | 1,8 (1,9)                                                      | 2,2 (2,4)  | V     |  |  |  |
| $V_{GE(th)}$ $V_{CE} =$                   | $V_{GE}$ ; $I_C = A$                                          | 4,5  | 5,5                                                            | 6,5        | V     |  |  |  |
| $ C_{ies} $ $ V_{CE} $                    | 25 V; V <sub>GE</sub> = 0 V; 1 MHz                            |      | 1,6                                                            |            | nF    |  |  |  |
| R <sub>th(j-s)</sub> per IG               | BBT                                                           |      |                                                                | 1,4        | K/W   |  |  |  |
| per me                                    | odule                                                         |      |                                                                |            | K/W   |  |  |  |
| under                                     | following conditions:                                         |      |                                                                |            |       |  |  |  |
| $t_{d(on)}$ $V_{CC} =$                    | $300 \text{ V}$ , $\text{V}_{\text{GE}}$ = $\pm 15 \text{ V}$ |      | 30                                                             |            | ns    |  |  |  |
| $ t_r $ $ I_C  = 2$                       | 5 A, T <sub>j</sub> = 125 °C                                  |      | 35                                                             |            | ns    |  |  |  |
| $t_{d(off)}$ $R_{Gon}$                    | $=R_{Goff}=33 \Omega$                                         |      | 200                                                            |            | ns    |  |  |  |
| t <sub>f</sub>                            |                                                               |      | 25                                                             |            | ns    |  |  |  |
| E <sub>on</sub> + E <sub>off</sub> Induct | tive load                                                     |      | 2,15                                                           |            | mJ    |  |  |  |
| Inverse / Freewheeling CAL diode          |                                                               |      |                                                                |            |       |  |  |  |
| $V_F = V_{EC}$ $I_F = 25$                 | 5 A; T <sub>i</sub> = 25 (125) °C                             |      | 1,45 (1,4)                                                     | 1,7 (1,75) | V     |  |  |  |
| $V_{(TO)}$ $T_j = 12$                     | 25 °C <sup>°</sup><br>25 () °C                                |      | 0,85                                                           | 0,9        | V     |  |  |  |
| $ \mathbf{r}_{T} ^{2} = 12$               | 25 () °C                                                      |      | 22                                                             | 32         | mΩ    |  |  |  |
| R <sub>th(j-s)</sub>                      |                                                               |      |                                                                | 1,7        | K/W   |  |  |  |
|                                           | following conditions:                                         |      |                                                                |            |       |  |  |  |
| $I_{RRM}$ $I_F = 25$                      | 5 A; V <sub>R</sub> = 300 V                                   |      | 16                                                             |            | Α     |  |  |  |
| $Q_{rr}$ $dI_F/dt$                        | = -500 A/μs                                                   |      | 2                                                              |            | μC    |  |  |  |
| $E_{off}$ $V_{GE} =$                      | 0 V; T <sub>j</sub> = 125 °C                                  |      | 0,25                                                           |            | mJ    |  |  |  |
| Mechanical dat                            | a                                                             | •    |                                                                |            |       |  |  |  |
| M1 mount                                  | ting torque                                                   |      |                                                                | 1,5        | Nm    |  |  |  |
| w                                         |                                                               |      | 13                                                             |            | g     |  |  |  |
| Case SEMI                                 | TOP® 1                                                        |      | Т3                                                             |            |       |  |  |  |

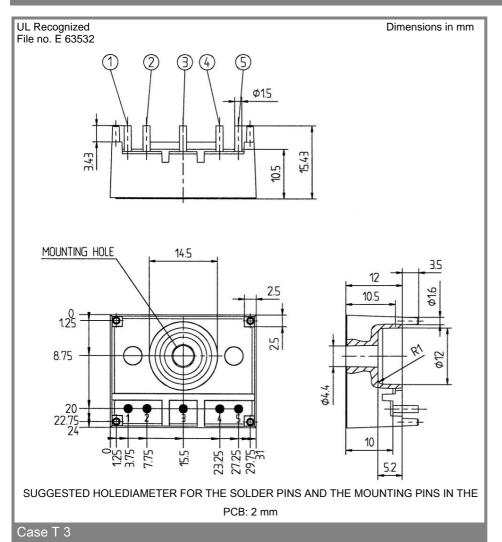


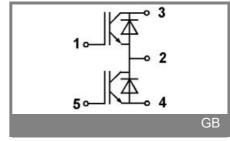














This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.