

AKD4712-A

AK4712 Evaluation Board Rev.0

GENERAL DESCRIPTION

AKD4712 is an evaluation board for quickly evaluating the AK4712, a High Definition A/V cap-less line driver.

Evaluation requires audio/video analog analyzer/generator and a power supply.

■ Ordering guide

AKD4712-A --- AK4712 Evaluation Board

(Control software and USB cable are included in this package.)

FUNCTION

- RCA connectors for analog audio output
- XLR connectors for analog audio input
- RCA connectors for SD/HD video input/output
- USB connector for serial control interface

EVALUATION BOARD MANUAL

Operation sequence

1) Set up the power supply lines.

Name of Jack	Color of Jack	Voltage	Used for	Comments	Default of Jack	
+5V	Yellow	+5V	Power supply of AK4712	Should always be connected	+5V	
VD1	Red	+3.13~+3.47	VD1 of AK4712	Should be connected when JP9 (VD1) is OPEN. Should be open when JP9 (VD1) is SHORT.	SHORT	
VD2	Red	+3.13~+3.47V	VD2 of AK4712	Should be connected when JP11 (VD2) is OPEN. Should be open when R51 (VD2) is SHORT.	SHORT	
VVD	Red	+3.13~+3.47V	3.13~+3.47V VVD of AK4712 HDVVD of AK4712 Should be connected when JP12 (VVD) is OPEN. Should be open when JP12(VVD) is SHORT.		SHORT	
D3.3V	Red	+3.13 ~ 3.47V	Logic Power supply	Should be connected when JP10 (D3.3V) is OPEN. Should be open when JP10 (D3.3V) is SHORT.	SHORT	
VSS	Black	0V	Analog Ground	Should always be connected	0V	
VSS2	Black	0V	Analog Ground	Should always be connected when VD2 is connected.	open	
DGND	Black	0V	Digital Ground	Should be connected when JP8 (GND) is OPEN. Should be open when JP8(GND) is SHORT.	open	

Table 1.Power supply lines

Each supply line should be distributed from the power supply unit.

- 2) Set-up jumper pins. (See the following.)
- 3) Power on.

AK4712 should be reset once by bringing SW1 "L" upon power-up.

Jumper pin settings

- $[JP1] (AINL+_SEL): AINL+ pin input select \\ INPUT1: R=20k \Omega < Default> \\ INPUT2: R=0 \Omega$
- [JP2] (AINR+_SEL): AINR+ pin input select INPUT1: R=20k Ω <Default> INPUT2: R=0 Ω
- [JP3] (MUTEN/SCL_SEL): SDA/MUTEN pin input select SDA: SDA MUTEN: MUTEN <Default>

*When I2CSEL="L"(Hard Wired), SDA/MUTEN pin is used for audio mute.

[JP4] (UVP/SCL_SEL): SCL/UVP (Under Voltage Protection) SCL: SCL <Default> UVP: UVP

*When I2CSEL="L", UVP pin can be used for Under Voltage Protection.

[JP5] (GND): AINL- pin input select OPEN: J5 (AINL): 3pin <default> SHORT: GND (Not to use)</default>
[JP6] (GND): AINR- pin input select OPEN: J13 (AINR): 3pin <default> SHORT: GND (Not to use)</default>
[JP7] Not for use
 [JP8] (GND): Analog ground and Digital ground OPEN: Separated SHORT: Common. (The connector "DGND" can be open.) <default></default>
 [JP9] (VD1): Regulator (+3.3V) or VD1 connector OPEN: VD1 pin is supplied from VD1 connector. SHORT: VD1 pin is supplied from regulator (+3.3V). (The connector "VD1" can be open.) <default></default>
[JP10] (D3.3V): Regulator (+3.3V) or D3.3V connectorOPEN:Logic voltage is supplied from D3.3V connector.SHORT:Logic voltage is supplied form regulator (+3.3V). (The connector "VCC" can be open.) <default></default>
 [JP11] (VD2): Regulator (+3.3V) or VD2 connector OPEN: VD2 pin is supplied from VD2 connector. SHORT: VD2 pin is supplied from regulator (+3.3V). (The connector "VD1" can be open.) <default></default>
 [JP12] (VVD): Regulator (+3.3V) or VVD connector OPEN: VVD and HVVD pins are supplied from VVD connector. SHORT: VVD and HVVD pins are supplied from regulator (+3.3V) (The connector "VVD" can be open.) <default></default>
[JP13] (REG-SEL): Regulator (+3.3V) from T2 or T3

- T2: Regulator supplied from T2. < Default>
- T3: Regulator supplied from T3.

The T2 regulator can supply 3.3V to all circuits by shorting JP9, JP10, JP11 and JP12 and supplying 5V to +5V connector.

■ DIP SW Function

No.	Pin	OFF	ON	Default
1	MUTEN	Audio mute MUTEN bit L: Mute H: Unmute (default)		ON
2	I2CSEL	I2C Control Enable pin L: Disable (Hard Wired H: Enable (I2C)	l) (default)	OFF

When the I2CSEL pin = "L" (Hard Wired), the SDA/MUTEN pin is used for audio mute. MUTEN bit is ignored.

MUTEN pin	Audio Output Status
L	Mute
Н	Unmute

(1) Hard Wired Mode

When the I2CSEL pin= "H" (I2C), MUTEN bit is used for audio mute. The SDA/MUTEN pin is used for Control Data Input.

MUTEN bit	Audio Output Status	
0	Mute	
1	Unmute	(default)
		•

(2) I2C Mode

■ Toggle SW Function

[SW2] (PDN): Resets AK4712. Keep "H" during normal operation.

Board Control

The AK4712 can be controlled via USB PORT with a PC. Connect PORT1 with PC by USB cable included in AKD4712-A package. The control software is also included.

■ Analog Input/Output List

		Signal Name	Note
Audio	Input	J5(AINL+, AINL-), J12(AINR+, AINR-)	Typ. 2Vrms
	Output	J4 (TVOUTL), J8 (TVOUTR)	Typ. 2Vrms
Video	Input	J2 (ENCY), J9 (ENCPr), J6 (ENCPb), J13 (ENCRCA)	Max. 1.25Vpp
	Output	J3 (HDY), J7 (HDPb), J11(HDPr), J14(RCAVOUT)	Max. 2.5Vpp

Table 2. Analog Input/Output List

Control Software Manual

Evaluation Board and Control Software Settings

- 1. Set up the evaluation board as needed, according to the previous terms.
- Connect the evaluation board to a PC with USB cable. USB control is recognized as HID (Human Interface Device) on PC. When it is not recognized properly, please reconnect the evaluation board to PC.
- 3. Insert the CD-ROM labeled "AKD4712-A Evaluation Kit" into the CD-ROM drive.
- 4. Access the CD-ROM drive and double-click the icon "akd4712-A.exe" to open the control program.
- 5. Begin evaluation by following the procedure below.

[Supported OS]

Windows 2000 / XP 64bit OS is not supported. Windows 95 / 98 / Me / NT are not supported.

Operation Screen

- 1. Start up the control program following the above procedure.
- 2. After power is supplied to the evaluation board, AK4712 must be reset once by bringing SW2 (AK4712-PDN) from "L" to "H".
- 3. The control program operation screen is shown below

AKD4712 Ver 1.00 - AKM Device Control Soft	- • ×
<u>File</u> <u>H</u> elp	
Elle Help Address Example Indication // Button UP is "L" or "0" // Button DOWN is "H" or "1" // Blanks are invalid. 00H — — MOD MDT1 MDT0 MUTEN Write Read 01H FLT DETN CLAMPB CLAMP1 FL1 FL0 HDAPW SDAPW Write Read 02H — — — — — — Write Read	DEBUG Register
	Read
AK4712 Register Map No Port! Port Reset Write Default All Write All Read Save Load All Reg Write Data R/W Sequence Sequence(File)	Close

Figure 2. Control program window

Operation Overview

Register map and testing are controlled by this control software. These controls may be selected by the upper tabs.

Frequently used buttons, such as the register initializing button "Write Default", are located outside of the switching tab window. Refer to the "<u>Dialog Box</u>" section for details of each dialog box setting.

Button Functions

- 1. [Port Reset]: Reset connection to PC Click this button after the control software starts up and the evaluation board is connected to the PC via USB cable.
- 2. [Write Default]: Register Initialization

Asahi KASEI

Use this button to initialize the registers when the device is reset by a hardware reset.

- 3. [All Write]: Execute write command for all registers displayed.
- 4. [All Read]: Execute read command for all registers displayed.
- 5. [Save]: Save current register settings to a file.
- 6. [Load]: Execute data write from a saved file.
- 7. [All Reg Write]: [All Reg Write] dialog box pops up.
- 8. [Data R/W]: [Data R/W] dialog box pops up.
- 9. [Read]: Read current register settings and display to the Register area (on the right of the main window). This is different from [All Read] button as it does not reflect to the register map. It only displays the current register values in hexadecimal numbers.

Tab Functions

1. [REG]: Register Map

This tab is for register read and write.

Each bit on the register map is a push-button switch.

Button Down indicates "H" or "1" and the bit name is shown in red (when read-only the name is shown in dark red). Button Up indicates "L" or "0" and the bit name is shown in blue (when read-only the name is shown in gray)

Grayed out registers are Read-Only registers. They can not be controlled.

The registers which are not defined on the datasheet are indicated as "---".

AKD4712 Ver 1.00 - AKM Device Control Soft	- • ×
<u>File</u> <u>H</u> elp	
REG 0H-2H Tool	DEBUG
Address Example Indication // Button UP is "L" or "0" // Button DOWN is "H" or "1" // Blanks are invalid.	Register
OOH MOD MDT1 MUTEN Write Read	
01H FLT DETN CLAMPB CLAMP1 FL1 FL0 HDAPW SDAPW Write Read	
02HWrite Read	
	-
	Read
AK4712 Register Map No Port	
Port Reset Write Default All Write All Read Save Load All Reg Write Data R/W ASAHI KASEI MICRODEV	CES CORPORATION
Sequence Sequence(File)	Close

Figure 3. [REG] window

Asahi**KASEI**

1-1. [Write]: Data Write Dialog

Select the [Write] button located on the right of the each corresponding address when changing two or more bits on the same address simultaneously.

Click the [Write] button for the register pop-up dialog box shown below.

When the checkbox next to the register is checked, the data will become "H" or "1". When the checkbox is not checked, the data will become "L" or "0". Click [OK] to write the set values to the registers, or click [Cancel] to cancel this setting.

Register Set			32	- 30			X	
M	V	ସ	<u>v</u>		MDT1	MDT0	MUTEN	
		ОК		Cano	cel			

Figure 4. [Register Set] window

1-2. [Read]: Data Read

Click the [Read] button located on the right of the each corresponding address to execute a register read.

The current register value will be displayed in the register window as well as in the upper right hand DEBUG window.

Button Down indicates "H" or "1" and the bit name is shown in red (when read only the bit name is shown in dark red).

Button Up indicates "L" or "0" and the bit name is shown in blue (when read only the bit name is shown in gray)

Please be aware that button statuses will be changed by a Read command.

2. [Tool]: Testing Tools

Evaluation testing tools are available in this tab. Click the corresponding button for each testing tool.

AKD4712 Ver 1.00 - AKM Device Control Soft	X
<u>File</u> <u>H</u> elp	
REG 0H-2H Tool Repeat Test Loop Setting	Register
	Read
AK4712 Register Map No Port	ASEI
Sequence Sequence(File)	Close

Figure 5. [Tool] window

2-1. [Repeat Test]: Repeat Test Dialog

Click the [Repeat Test] button in the Tool tab to open the repeat test dialog shown below. A write repeat test can be executed by this dialog.

Repeat Test	X
Address 00 H Start Data 00 H End Data FF H Step 01 H	Start Close
Repeat Count 10	
Sampling Frequncy 48kHz	•
Count 0 Lch Level 0.00 dB	

Figure 6. [Repeat Test] window

[Start] Button	: Start repeat test. A dialog for saving a file of the test result will open when this button is clicked. Name the file. Test will start after inserting a filename.
[Close] Button	: Close dialog and finish process.
[Address] Box	: Input write data address in hexadecimal numbers.
[Start Data] Box	: Input start data in hexadecimal numbers.
[End Data] Box	: Input end data in hexadecimal numbers.
[Step] Box	: Input data write step interval.
[Repeat Count] Box	: Input number of repeat cycles for the test writing.
[Up and Down] Box	: Data write flow is changed as below.
 Checked: Wr 	ites in step interval from the start data to the end data and turns back at the end data to the
sta	rt data.
[Example]	Start Data = 00 , End Data = 05 , Step = 1 , []for 1 count.
Data flow:	$[00 \rightarrow 01 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow 05 \rightarrow 04 \rightarrow 03 \rightarrow 02 \rightarrow 01 \rightarrow 00]$ x Repeat Count Number
• Not checked	Writes in step interval from the start data to the end data and finishes writing.
[Example]	Start Data = 00 , End Data = 05 , Step = 1 , []for 1 count.
Data flow:	$[00 \rightarrow 01 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05]$ x Repeat Count Number
[Sampling Frequency [Count] Box : [Lch Level] Box :	y] Box: Select sampling frequency from 44.1kHz/48kHz Indicates the count number during a repeat test. Indicates the Lch Level during a repeat test.

2-2. [Loop Setting]: Loop Dialog

Click the [Loop Setting] button in the Tool tab to open the loop setting dialog shown below. A write test can be executed.

Loop			X
Loop			
Address	00	н	ОК
Start Data	00	н	Cancel
End Data	00	н	
Interval	0	ms	
Step	1		
⊡ Mo			

Figure 7. [Loop] window

[OK] Button	: Start loop test.
[Cancel] Button	: Close dialog and finish process.
[Address] Box	: Input data write address in hexadecimal numbers.
[Start Data] Box	: Input start data in hexadecimal numbers.
[End Data] Box	: Input end data in hexadecimal numbers.
[Interval] Box	: Input data write interval time.
[Step] Box	: Input data write step interval.
[Mode Select] Box	: Mode select check box.
• Checked W	rite in step interval from the start data to the end data and turn back at the end data to
st:	art data
[Example]	Start Data = 00 End Data = 05 Step = 1
Data flow:	$00 \rightarrow 01 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow 05 \rightarrow 04 \rightarrow 03 \rightarrow 02 \rightarrow 01 \rightarrow 00$
Not Checked:	Write in step interval from the start data to the end data and finish write.
[Example]	Start Data = 00 , End Data = 05 , Step = 1
Data flow:	$00 \rightarrow 01 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05$

Dialog Box

1. [All Req Write]: All Reg Write dialog box

Click [All Reg Write] button in the main window to open register setting file window shown below. Register setting files saved by [SAVE] button may be applied.

All Register Write	×
Register Settin	ng File Write ALL
Open	Write
Open	Write
Open	vVrite
Open	vVrite
Open	Write
Open	v\/rite
Open	Write Help
Open	Write Save
Open	
Open	✓vrite Close

Figure 8. [All Reg Write] window

[Open (left)]: Select a register setting file (*.akr). [Write]: Execute register write with selected setting file. [Write All]: Execute register write with all selected setting files. Selected files are executed in descending order.

[Help]: Open help window.

[Save]: Save register setting file assignment. File name is "*.mar". [Open (right)]: Open saved register setting file assignment "*. mar". [Close]: Close dialog box and finish process.

~ Operating Suggestions ~

- 1. Files saved by [Save] button and opened by [Open] button on the right of the dialog "*.mar" should be stored in the same folder.
- 2. When register settings are changed by [Save] button in the main window, re-read the file to reflect new register settings.

2. [Data R/W]: Data R/W Dialog Box

Click the [Data R/W] button in the main window for data read/write dialog box. Data is written to the specified address.

Data Read/Wri	te	×
Address	00 H	Write
Data	00 H	
Mask	FF H	
Read Data	Н	Read
		Close

Figure 9. [Data R/W] window

[Address] Box: Input data write address in hexadecimal numbers.

- [Data] Box : Input write data in hexadecimal numbers.
- [Mask] Box : Input mask data in hexadecimal numbers.

This value "ANDed" with the write data becomes the input data.

[Write]: Write data generated from Data and Mask value is written to the address specified in "Address" box.

- [Read]: Read data from the address specified in "Address" box. The result will be shown in the Read Data Box in hexadecimal numbers.
- [Close]: Close dialog box and finish process. Data write will not be executed unless [Write] is clicked.

*The register map will be updated after executing the [Write] or [Read] command.

MEASUREMENT RESULTS

Audio

[Measurement condition]

- Measurement unit : Audio Precision SYS-2722
- BW : 20Hz~20kHz
- Power Supply :+5V=5V, VD1=3.3V, VD2=3.3V, VVD=3.3V
- Interface : Input: Cannon, Output: BNC
- Temperature : Room
- Volume Gain : 0dB
- Measurement signal line path: AINL/AINR \rightarrow TVOUTL/TVOUTR

Parameter	Input signal	Measurement filter	Results Lch [dB]	Results Rch [dB]
S/(N+D) (At 2Vrms Output)	1kHz, 0dBFS	20kLPF	104.2	104.6
DR	1kHz, -60dBFS	22kLPF, A-weighted	109.2	109.1
S/N	No input	22kLPF, A-weighted	109.2	109.1

Plots

- Figure 1-1. FFT (1kHz, 0dBFS input) at 2Vrms output
- Figure 1-2. FFT (1kHz, -60dBFS input)
- Figure 1-3. FFT (Noise floor)
- Figure 1-4. THD+N vs. Input Level (fin=1kHz)
- Figure 1-5. THD+N vs. fin (Input Level=0dBFS)
- Figure 1-6. Linearity (fin=1kHz)
- Figure 1-7. Frequency Response (Input Level=0dBFS)
- Figure 1-8. Crosstalk (Input Level=0dBFS)

■ Video

[Measurement condition]

- Signal Generator : Sony Tectronix TG2000
- Measurement unit : Sony Tectronix VM700T
- Power Supply :+5V=5V, VD1=3.3V, VD2=3.3V, VVD=3.3V
- Interface : Input: BNC, Output: BNC
- Temperature : Room
- Measurement signal line path: S/N: ENCRCA \rightarrow RCAVOUT

DG, DP: ENCRCA \rightarrow RCAVOUT

Parameter	Input Signal	Measurement Filter	Results	Unit
S/N	0% Flat Field	BW=15kHz to 5MHz	75.2	dB
		Filter=Uni-Weighted		
DG	Modulated 5 step		Min: 0.00	%
	_		Max: 1.34	
DP	Modulated 5 step		Min: -0.04	deg.
			Max: 0.16	-

Plots

Figure 2-1. Noise spectrum SD/HD (Input=0% Flat Field, BW=15kHz to 5MHz, Filter=Uni-Weighted) Figure 2-2. DG, DP (Input= Modulated 5 step)

Asahi KASEI

Plots (Audio)

Figure 1 - 2. FFT (fin=1kHz Input Level=-60dB)

AK4712 AINL/AINR → TVOUTL/TVOUTR: FFT: No-input

AK4712 AINL/AINR \rightarrow TVOUTL/TVOUTR: THD+N Amplitude vs Input Amplitude: fin=1KHz

Figure 1 - 4. THD+N vs. Input level (fin=1kHz)

AK4712 AINL/AINR → TVOUTL/TVOUTR: THD+N Amplitude vs Input Frequency: Input Level=0dB

AK4712 AINL/AINR \rightarrow TVOUTL/TVOUTR: Linearity: fin=1KHz

Figure 1 - 6. Linearity (fin=1kHz)

AK4712 AINL/AINR \rightarrow TVOUTL/TVOUTR: Frequency Response: Input Level=0dBr

AK4712 AINL/AINR → TVOUTL/TVOUTR: Crosstalk: fin=1KHz, Input Level=0dBr / No-input

Figure 1 - 8. Crosstalk (Input level=0dB)

Plots(Video)

AK4712 ENCV → TVOUT: S/N: Input Signal=0% Flat Field, BW=15kHz to 5MHz, Filter=Uni-Weighted

Figure 2 - 1a. RCAVOUT Noise spectrum (Input=0% Flat Field, BW=15kHz to 5MHz, Filter=Uni-Weighted)

Figure 2 - 1c. HDPr Noise spectrum (Input=0% Flat Field, BW=15kHz to 5MHz, Filter=Uni-Weighted)

Figure 2 - 1d. HDPb Noise spectrum (Input=0% Flat Field, BW=15kHz to 5MHz, Filter=Uni-Weighted)

AK4712 ENCRCA → RCAVOUT: DG, DP: Input Signal=Modulated 5 step

VM700T Video Measurement Set

Figure 2 - 2. DG, DP (Input Signal= Modulated 5 step)

Revision History

Date (YY/MM/DD)	Manual Revision	Board Revision	Reason	Contents
12/06/19	KM111300	0	First Edition	

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.
 When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

• It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

4KD4712-A-MAIN Lay1 2012.4.24

 \bigoplus

 \odot

AKD4712-A-MAIN Silk1 Resist1 2012.4.24

AKD4712-A-MAIN 2012.4.24