Quad SPI EEPOT[™] Nonvolatile Digital Potentiometer #### **FEATURES** - Four EEPOTs in One Package - SPI Serial Interface - Hardware Write Protection, WP - Register Oriented Format - -Direct Read/Write Wiper Position - -Store as Many as Four Positions per Pot - Power Supplies - -VCC = 2.7V to 5.5V - -V+ = 2.7V to 5.5V - --V- = -2.7V to -5.5V - Low Power CMOS - -Standby Current < 1μA - High Reliability - —Endurance 100,000 Data Changes per Register - -Register Data Retention 100 years - 16 Bytes of EEPROM memory - 10K Ohm Resistor Arrays - · Resolution: 64 Taps each Pot - 24-Lead TSSOP, 24-Lead SOIC and 24-Pin Plastic DIP Packages #### DESCRIPTION The X9400 integrates four nonvolatile (EEPOTs), digitally controlled potentiometers, on a monolithic CMOS microcircuit. The X9400 contains four resistor arrays, each composed of 63 resistive elements. Between each element and at either end are tap points accessible to the wiper elements. The position of the wiper element on the array is controlled by the user through the SPI serial bus interface. Each resistor array has associated with it a Wiper Counter Register and four 6 bit data registers that can be directly written and read by the user. The contents of the Wiper Counter Register controls the position of the wiper on the resistor array. Power-up recalls the contents of data register R0 to the Wiper Counter Register. ### **FUNCTIONAL DIAGRAM** 1 7028 FM1 #### PIN DESCRIPTIONS #### Host Interface Pins #### Serial Output (SO) SO is a push/pull serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out by the falling edge of the serial clock. #### Serial Input SI is the serial data input pin. All opcodes, byte addresses and data to be written to the pots and pot registers are input on this pin. Data is latched by the rising edge of the serial clock. ## Serial Clock (SCK) The SCK input is used to clock data into and out of the X9400. ## Chip Select (CS) When \overline{CS} is HIGH, the X9400 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device will be in the standby state. \overline{CS} LOW enables the X9400, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on \overline{CS} is required prior to the start of any operation. #### Hold (HOLD) HOLD is used in conjunction with the $\overline{\text{CS}}$ pin to select the device. Once the part is selected and a serial sequence is underway, $\overline{\text{HOLD}}$ may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, $\overline{\text{HOLD}}$ must be brought LOW while SCK is LOW. To resume communication, $\overline{\text{HOLD}}$ is brought HIGH, again while SCK is LOW. If the pause feature is not used, $\overline{\text{HOLD}}$ should be held HIGH at all times. ## Device Address (A₀-A₁) The address inputs are used to set the least significant 2 bits of the 8-bit slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9400. A maximum of 4 devices may occupy the SPI serial bus. #### Potentiometer Pins ## $V_H (V_{H0} - V_{H3}), V_L (V_{L0} - V_{L3})$ The VH and VL inputs are equivalent to the terminal connections on either end of a mechanical potentiometer. ## $V_W (V_{W0} - V_{W3})$ The wiper outputs are equivalent to the wiper output of a mechanical potentiometer. #### Hardware Write Protect Input (WP) The \overline{WP} pin when LOW prevents nonvolatile writes to the Wiper Counter Registers. ## Analog Supplies (V+, V-) The analog Supplies V+, V- are the supply voltages for the EEPot analog section. #### PIN CONFIGURATION 7028 FM2 #### **PIN NAMES** | Symbol | Description | |--|---| | SCK | Serial Clock | | SI, SO | Serial Data | | A ₀ -A ₁ | Device Address | | V _{H0} _V _{H3} ,
V _{L0} _V _{L3} | Potentiometers
(terminal equivalent) | | $V_{W0-}V_{W1}$ | Potentiometers
(wiper equivalent) | | WP | Hardware Write Protection | | V+,V- | Analog and Voltage Follower
Supplies | | V _{CC} | System Supply Voltage | | Vss | System Ground | | NC | No Connection | 7028 FRM T01 #### **DEVICE DESCRIPTION** The X9400 is a highly integrated microcircuit incorporating four resistor arrays and their associated registers and counters and the serial interface logic providing direct communication between the host and the EEPOT potentiometers. ## Serial Interface The X9400 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked in on the rising SCK. $\overline{\text{CS}}$ must be LOW and the $\overline{\text{HOLD}}$ and $\overline{\text{WP}}$ pins must be HIGH during the entire operation. The SO and SI pins can be connected together, since they have three state outputs. This can help to reduce system pin count. #### **Array Description** The X9400 is comprised of four resistor arrays. Each array contains 63 discrete resistive segments that are connected in series. The physical ends of each array are equivalent to the fixed terminals of a mechanical potentiometer (V_H and V_L inputs). At both ends of each array and between each resistor segment is a CMOS switch connected to the wiper (V_W) output. Within each individual array only one switch may be turned on at a time. These switches are controlled by a Wiper Counter Register (WCR). The six bits of the WCR are decoded to select, and enable, one of sixty-four switches. ## Wiper Counter Register (WCR) The X9400 contains four Wiper Counter Registers, one for each EEPOT potentiometer. The WCR is equivalent to a serial-in, parallel-out register/counter with its outputs decoded to select one of sixty-four switches along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the Write Wiper Counter Register instruction (serial load); it may be written indirectly by transferring the contents of one of four associated data registers via the XFR Data Register or Global XFR Data Register instructions (parallel load); it can be modified one step at a time by the Increment/Decrement instruction. Finally, it is loaded with the contents of its data register zero (R0) upon power-up. The Wiper Counter Register is a volatile register; that is, its contents are lost when the X9400 is powered-down. Although the register is automatically loaded with the value in R0 upon power-up, this may be different from the value present at power-down. #### **Data Registers** Each potentiometer has four 6-bit nonvolatile data registers. These can be read or written directly by the host. Data can also be transferred between any of the four data registers and the associated Wiper Counter Register. All operations changing data in one of the data registers is a nonvolatile operation and will take a maximum of 10ms. If the application does not require storage of multiple settings for the potentiometer, the data registers can be used as regular memory locations for system parameters or user preference data. Table 1. Data Register Detail | (MSB) | | | | | (LSB) | |-------|----|----|----|----|-------| | D5 | D4 | D3 | D2 | D1 | D0 | | NV | NV | NV | NV | NV | NV | (One of Four Arrays) SERIAL DATA PATH SERIAL BUS FROM INTERFACE INPUT CIRCUITR Y C REGISTER 0 REGISTER 1 0 8 PARALLEL BUS E R INPLIT **WIPER** Ď REGISTER 2 REGISTER 3 COUNTER E REGISTER 0 (WCR) INC/DEC IF WCR = 00[H] THEN VW = VL LOGIC UP/DN UP/DN IF WCR = 3F(H) THEN VW = VH MODIFIED SCK CLK ٧_V FIGURE 1. Detailed Potentiometer Block Diagram ### Write in Process The contents of the Data Registers are saved to nonvolatile memory when the CS pin goes from LOW to HIGH after a complete write sequence is received by the device. The progress of this internal write operation can be monitored by a Write In Process bit (WIP). The WIP bit is read with a Read Status command. ## **INSTRUCTIONS** ## Identification (ID) Byte The first byte sent to the X9400 from the host, following a CS going HIGH to LOW, is called the Identification byte. The most significant four bits of the slave address are a device type identifier, for the X9400 this is fixed as 0101[B] (refer to Figure 2). The two least significant bits in the ID byte select one of four devices on the bus. The physical device address is defined by the state of the A₀-A₁ input pins. The X9400 compares the serial data stream with the address input state; a successful compare of both address bits is required for the X9400 to successfully continue the command sequence. The A₀-A₁ inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS}. The remaining two bits in the slave byte must be set to 0. ### FIGURE 2. Identification Byte Format 7028 FM3 7028 FM1 1 #### Instruction Byte The next byte sent to the X9400 contains the instruction and register pointer information. The four most significant bits are the instruction. The next four bits point to one of the four pots and, when applicable, they point to one of four associated registers. The format is shown below in Figure 3. ## FIGURE 3. Instruction Byte Format 7028 FM5 The four high order bits of the instruction byte specify the operation. The next two bits $(R_1 \text{ and } R_0)$ select one of the four registers that is to be acted upon when a register oriented instruction is issued. The last two bits $(P1 \text{ and } P_0)$ selects which one of the four potentiometers is to be affected by the instruction. Four of the ten instructions are two bytes in length and end with the transmission of the instruction byte. These instructions are: - XFR Data Register to Wiper Counter Register This transfers the contents of one specified Data Register to the associated Wiper Counter Register. - XFR Wiper Counter Register to Data Register This transfers the contents of the specified Wiper Counter Register to the specified associated Data Register. - Global XFR Data Register to Wiper Counter Register -This transfers the contents of all specified Data Registers to the associated Wiper Counter Registers. - Global XFR Wiper Counter Register to Data Register -This transfers the contents of all Wiper Counter Registers to the specified associated Data Registers. The basic sequence of the two byte instructions is illustrated in Figure 4. These two-byte instructions exchange data between the WCR and one of the data registers. A transfer from a data register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action will be delayed by two A transfer from the WCR (current wiper position), to a data register is a write to nonvolatile memory and takes a minimum of two complete. The transfer can occur between one of the four potentiometers and one of its associated registers; or it may occur globally, where the transfer occurs between all potentiometers and one associated register. Five instructions require a three-byte sequence to complete. These instructions transfer data between the host and the X9400; either between the host and one of the data registers or directly between the host and the Wiper Counter Register. These instructions are: - Read Wiper Counter Register read the current wiper position of the selected pot, - Write Wiper Counter Register change current wiper position of the selected pot, - <u>Read Data Register</u> read the contents of the selected data register; - Write Data Register write a new value to the selected data register. - Read Status This command returns the contents of the WIP bit which indicates if the internal write cycle is in progress. The sequence of these operations is shown in Figure 5 and Figure 6. The final command is Increment/Decrement. It is different from the other commands, because it's length is indeterminate. Once the command is issued, the master can clock the selected wiper up and/or down in one resistor segment steps; thereby, providing a fine tuning capability to the host. For each SCK clock pulse (t_{HIGH}) while SI is HIGH, the selected wiper will move one resistor segment towards the V_H terminal. Similarly, for each SCK clock pulse while SI is LOW, the selected wiper will move one resistor segment towards the V_L terminal. A detailed illustration of the sequence and timing for this operation are shown in Figure 7 and Figure 8. FIGURE 4. Two-Byte Command Sequence 7028 FM6 FIGURE 5. Three-Byte Command Sequence (Write) 7028 FM7 FIGURE 6. Three-Byte Command Sequence (Read) 7028 FM7 FIGURE 7. Increment/Decrement Command Squence 7028 FM8 Table 1. Instruction Set | | | | lı | nstru | ction | Set | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|--| | Instruction | l ₃ | l ₂ | I ₁ | I _O | R ₁ | R ₀ | P ₁ | Po | Operation | | Read Wiper Counter
Register | 1 | 0 | 0 | 1 | 0 | 0 | P ₁ | Po | Read the contents of the Wiper Counter
Register pointed to by P ₁ -P ₀ | | Write Wiper Counter
Register | 1 | 0 | 1 | 0 | 0 | 0 | P ₁ | Po | Write new value to the Wiper Counter
Register pointed to by P ₁ -P ₀ | | Read Data Register | 1 | 0 | 1 | 1 | R ₁ | R ₀ | P ₁ | Po | Read the contents of the Data Register pointed to by P_1 - P_0 and R_1 - R_0 | | Write Data Register | 1 | 1 | 0 | 0 | R ₁ | R ₀ | P ₁ | Po | Write new value to the Data Register pointed to by P ₁ -P ₀ and R ₁ -R ₀ | | XFR Data Register to
Wiper Counter Register | 1 | 1 | 0 | 1 | R ₁ | R ₀ | P ₁ | Po | Transfer the contents of the Data Register pointed to by R_1 – R_0 to the Wiper Counter Register pointed to by P_1 - P_0 | | XFR Wiper Counter
Register to Data Register | 1 | 1 | 1 | 0 | R ₁ | R ₀ | P ₁ | Po | Transfer the contents of the Wiper Counter Register pointed to by P_1 - P_0 to the Register pointed to by R_1 - R_0 | | Global XFR Data Register to Wiper Counter Register | 0 | 0 | 0 | 1 | R ₁ | Ro | 0 | 0 | Transfer the contents of all four Data
Registers pointed to by R ₁ -R ₀ to their
respective Wiper Counter Register | | Global XFR Wiper Counter
Register to Data Register | 1 | 0 | 0 | 0 | R ₁ | Ro | 0 | 0 | Transfer the contents of all Wiper Counter Registers to their respective data Registers pointed to by R ₁ –R ₀ | | Increment/Decrement
Wiper Counter Register | 0 | 0 | 1 | 0 | 0 | 0 | P ₁ | Po | Enable Increment/decrement of the Wiper Counter Register pointed to by P ₁ -P ₀ | | Read Status (WIP bit) | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | Read the status of the internal write cycle, by checking the WIP bit. | 7028 FM T02 ## **Instruction Format** Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master. - (2) WPx refers to wiper position data in the Counter Register - (2) "I": stands for the increment operation, SI held HIGH during active SCK phase (high). - (3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high). # Read Wiper Counter Register (WCR) | CS | | | e ty
itifie | • | | dev
ddre | | | | | ode | | a | W (| | es | (9 | | wip
; by | | | | |)) | _cs | |-----------------|---|---|----------------|---|---|-------------|--------|---------------|---|---|-----|---|---|------------|--------|-----|----|---|--------------------|--------------------|--------------------|--------------------|-------------|--------------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 0 | 1 | 0 | 0 | P
1 | P 0 | 0 | 0 | W
P
5 | W
P
4 | W
P
3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | 7028 FM T03 # Write Wiper Counter Register (WCR) | CS | | | e ty
tifie | | | | /ice
esse | | | str.
opc | | | a | W(
ddre | CR
esse | es | | (se | | | Byt
lost | | SI) | | CS | |-----------------|---|---|---------------|---|---|---|--------------|---------------|---|-------------|---|---|---|------------|------------|--------|---|-----|--------------------|--------------------|--------------------|--------------------|-------------|--------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 1 | 0 | 0 | 0 | P
1 | P
0 | 0 | 0 | W
P
5 | W
P
4 | W
Р
З | W
P
2 | W
P
1 | W P o | Rising
Edge | 7028 FM T04 # Read Data Register (DR) | CS | | | e ty
tifie | | | | rice
esse | | | str.
opc | | | | anı
ddre | | | | sen | | | By1 | | SC |)) | CS | |-----------------|---|---|---------------|---|---|---|--------------|---------------|---|-------------|---|---|--------|-------------|--------|-----|---|-----|--------------------|--------------------|--------------|--------------------|-------------|--------------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 1 | 1 | R
1 | R
0 | P
1 | P 0 | 0 | 0 | W
P
5 | W
P
4 | W P 3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | 7028 FM T05 ## Write Data Register (DR) | CS | | vice
den | • | | | dev
Idre | | | | str.
opc | | | | and
ddre | | | | (se | | | By
ost | | SI) | | <u>CS</u> | HIGH-VOLTAGE | |-----------------|---|-------------|---|---|---|-------------|--------|--------|---|-------------|---|---|--------|-------------|--------|-----|---|-----|--------------------|--------------------|--------------------|--------------------|-------------|--------------------|----------------|--------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 1 | 0 | 0 | R
1 | R
0 | P
1 | P 0 | 0 | 0 | W
P
5 | W
P
4 | W
P
3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | WRITE CYCLE | 7028 FM T06 # Transfer Data Register (DR) to Wiper Counter Register (WCR) | CS
Falling | | | e ty
tifie | | | | /ice | | | | ode | | | | d W | | CS
Rising | |---------------|---|---|---------------|---|---|---|--------|---------------|---|---|-----|---|--------|--------|--------|-----|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 1 | 0 | 1 | R
1 | R
0 | P
1 | P 0 | Edge | 7028 FM T07 # Transfer Wiper Counter Register (WCR) to Data Register (DR) | CS
Falling | | | e ty
tifie | | | | vice
esse | | | | ode | | | l and | | | CS
Risina | HIGH-VOLTAGE | |---------------|---|---|---------------|---|---|---|--------------|--------|---|---|-----|---|--------|--------|--------|--------|--------------|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 1 | 1 | 0 | R
1 | R
0 | P
1 | P
0 | Edge | WRITE CYCLE | 7028 FM T08 # Increment/Decrement Wiper Counter Register (WCR) | | de | vic | e ty | ре | | dev | rice | | in | stru | ictic | on | | W | CR | | i | incr | eme | ent/ | dec | rem | eni | | | |---------------|----|-----|-------|----|---|------|--------|--------|----|------|-------|----|---|------|--------|--------|---------|---------|-----|------|------|-----|---------|---------|--------------| | CS
Falling | j | den | tifie | r | a | ddre | esse | es | | opc | ode |) | a | ddre | esse | es | (s | ent | by | mas | ster | on | SD | A) | CS
Rising | | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 0 | 0 | 1 | 0 | Х | X | P
1 | P
0 | /
 D | I/
D | | | | | I/
D | I/
D | Edge | 7028 FM T09 # Global Transfer Data Register (DR) to Wiper Counter Register (WCR) | CS
Falling | | vic
den | , | 1 | a | | rice
esse | | | str.
opc | | | a | D
ddre | R
esse | es | CS
Rising | |---------------|---|------------|---|---|---|---|--------------|--------|---|-------------|---|---|--------|-----------|-----------|----|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 0 | 0 | 0 | 1 | R
1 | R
0 | 0 | 0 | Edge | 7028 FM T10 # Global Transfer Wiper Counter Register (WCR) to Data Register (DR) | CS
Falling | | | e ty
tifie | | | | rice
esse | | | | ode | | ac | D
ddre | | es | CS
Rising | HIGH-VOLTAGE | |---------------|---|---|---------------|---|---|---|--------------|--------|---|---|-----|---|--------|-----------|---|----|--------------|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 0 | 0 | R
1 | R
0 | 0 | 0 | Edge | WRITE CYCLE | 7028 FM T11 ## **Read Status** | <u>cs</u> | | | e ty
tifie | • | | | rice
esse | | | str.
opc | | | a | wip
ddre | | es | (5 | seni | | | By1 | | SC |)) | <u> cs</u> | |-----------------|---|---|---------------|---|---|---|--------------|---------------|---|-------------|---|---|---|-------------|---|----|----|------|---|---|-----|---|----|--------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | W – P | Rising
Edge | 7028 FM T05 ## **ABSOLUTE MAXIMUM RATINGS*** | Temperature under BiasStorage Temperature | | |--|----------------| | Voltage on SCK, SCL or any Address Inp | | | with Respect to V _{SS} | $-1V$ to $+7V$ | | Voltage on V+ (referenced to V _{SS}) | 10V | | Voltage on V- (referenced to V _{SS}) | | | (V+) - (V-) | 12V | | Any V _H | | | Any V ₁ | | | Lead Temperature (Soldering, 10 second | | ## *COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and the functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ## RECOMMENDED OPERATING CONDITIONS | Temp | Min. | Max. | |------------|-------|-------------| | Commercial | 0°C | +70°C | | Industrial | –40°C | +85°C | | | | 7028 FMT 12 | | Supply Voltage (V _{CC}) Limits | |--| | 5V ±10% | | 2.7V to 5.5V | | | 7028 FMT13 Table 2. ANALOG CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.) | | | | | Liı | mits | | | |--------------------|---|--------------------|------|------|-------------------|---|-----------------------| | Symbol | Parame | Min. | Тур. | Max. | Units | Test Conditions | | | R _{TOTAL} | DTAL End to End Resistance Power Rating | | -20 | | +20 | % | | | | | | | | 50 | m W | 25°C, each pot | | lw | Wiper Current | -3 | | +3 | mA | | | | Rw | Wiper Resistance | | | 150 | 250 | Ω | Wiper Current = ± 1mA | | Vv+ | Voltage on V+ Pin | X9400 | +4.5 | | +5.5 | V | | | V V+ | Vollage on V+ Fill | X9400-2.7 | +2.7 | | +5.5 |] ' | | | Vv- | Voltage on V- Pin | X9400 | -5.5 | | -4.5 | v | | | ٧٧- | Vollage on V- Fill | X9400-2.7 | -5.5 | | -2.7 |] ' | | | V _{TERM} | Voltage on any V _H or | V _L Pin | V- | | V+ | V | | | | Noise | | | -120 | | dBV | Ref: 1kHz | | | Resolution (4) | | | 1.6 | | % | | | | Absolute Linearity (1) | -1 | | +1 | MI ⁽³⁾ | V _{w(n)(actual)} - V _{w(n)(expected)} | | | | Relative Linearity (2) | -0.2 | | +0.2 | MI ⁽³⁾ | $V_{w(n+1)} - [V_{w(n)+MI}]$ | | | | Temperature Coeffici | | ±300 | | ppm/°C | | | 7028 FMT14 **Notes:** (1) Absolute Linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer. - (2) Relative Linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size. - (3) MI = RTOT/63 or $(V_H V_L)/63$, single pot - (4) lindividual array resolutions. ## D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.) | | | | Li | mits | | | |------------------|---|-----------------------|------|-----------------------|-------|---| | Symbol | Parameter | Min. | Тур. | Max. | Units | Test Conditions | | I _{CC1} | V _{CC} Supply Current (Active) | | | 400 | μΑ | f _{SCK} = 2MHz, SO = Open,
Other Inputs = V _{SS} | | I _{CC2} | V _{CC} Supply Current
(Nonvolatile W rite) | | | 1 | mA | f _{SCK} = 2MHz, SO = Open,
Other Inputs = V _{SS} | | I _{SB} | V _{CC} Current (Standby) | | | 1 | μΑ | $SCK = SI = V_{SS}$, Addr. = V_{SS} | | ILI | Input Leakage Current | | | 10 | μΑ | $V_{IN} = V_{SS}$ to V_{CC} | | I _{LO} | Output Leakage Current | | | 10 | μΑ | V _{OUT} = V _{SS} to V _{CC} | | V _{IH} | Input HIGH Voltage | V _{CC} x 0.7 | | V _{CC} + 0.5 | ٧ | | | V _{IL} | Input LOW Voltage | -0.5 | | V _{CC} x 0.1 | V | | | V _{OL} | Output LOW Voltage | | | 0.4 | V | $I_{OL} = 3mA$ | 7028 FMT15 #### **Table 3. ENDURANCE AND DATA RETENTION** | Parameter | Min. | Units | |-------------------|---------|---------------------------| | Minimum Endurance | 100,000 | Data Changes per Register | | Data Retention | 100 | Years | 7028 FMT16 ## **CAPACITANCE** | Symbol | Test | Max. | Units | Test Conditions | |---------------------------------|---|------|-------|-----------------------| | C _{OUT} ⁽⁵⁾ | Output Capacitance (SO) | 8 | pF | V _{OUT} = 0V | | C _{IN} ⁽⁵⁾ | Input Capacitance (A0, A1, SI, and SCK) | 6 | pF | $V_{IN} = 0V$ | 7028 FMT17 # **POWER-UP TIMING** | Symbol | Parameter | Max. | Units | |----------------------------------|---|------|-------| | t _{PUR} ⁽⁶⁾ | Power-up to Initiation of Read Operation | 1 | ms | | t _{PLIW} ⁽⁶⁾ | Power-up to Initiation of Write Operation | 5 | ms | 7028 FMT18 ## A.C. TEST CONDITIONS | Input Pulse Levels | V _{CC} x 0.1 to V _{CC} x 0.9 | |-------------------------------|--| | Input Rise and Fall Times | 10ns | | Input and Output Timing Level | V _{CC} x 0.5 | 7028 FMT19 Notes: (5) This parameter is periodically sampled and not 100% tested - (6) t_{PUR} and t_{PUW} are the delays required from the time the third (last) power supply (Vcc, V+ or V-) is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested. - (7) The bias order of power supply (Vcc, V+ and V-) don't care. ## **EQUIVALENT A.C. LOAD CIRCUIT** # **AC TIMING** | Symbol | Parameter | Min. | Max. | Units | |--------------------|--|------|------|-------| | f _{SCK} | SSI/SPI Clock Frequency | | 2.0 | MHz | | tcyc | SSI/SPI Clock Cycle Time | 500 | | ns | | t _{WH} | SSI/SPI Clock High Time | 200 | | ns | | t _{WL} | SSI/SPI Clock Low Time | 200 | | ns | | t _{LEAD} | Lead Time | 250 | | ns | | t _{LAG} | Lag Time | 250 | | ns | | t _{SU} | SI, SCK, HOLD and CS Input Setup Time | 50 | | ns | | t _H | SI, SCK, HOLD and CS Input Hold Time | 50 | | ns | | t _{RI} | SI, SCK, HOLD and CS Input Rise Time | | 2 | μs | | t _{FI} | SI, SCK, HOLD and CS Input Fall Time | | 2 | μs | | t _{DIS} | SO Output Disable Time | 0 | 500 | ns | | t _V | SO Output Valid Time | | 100 | ns | | t _{HO} | SO Output Hold Time | 0 | | ns | | t _{RO} | SO Output Rise Time | | 50 | ns | | t _{FO} | SO Output Fall Time | | 50 | ns | | ^t hold | HOLD Time | 400 | | ns | | t _{HSU} | HOLD Setup Time | 100 | | ns | | tнн | HOLD Hold Time | 100 | | ns | | ^t HZ | HOLD Low to Output in High Z | | 100 | ns | | t_{LZ} | HOLD High to Output in Low Z | | 100 | ns | | T _I | Noise Suppression Time Constant at SI, SCK, HOLD and CS inputs | | 20 | ns | | t _{CS} | CS Deselect Time | 2 | | μs | | ^t wpasu | WP, A0 and A1 Setup Time | 0 | | ns | | twpah | WP, A0 and A1 Hold Time | 0 | | ns | 7028 FMT20 # **HIGH-VOLTAGE WRITE CYCLE TIMING** | Symbol | Parameter | Тур. | Max. | Units | |-----------------|--|------|------|-------| | t _{WR} | High-voltage Write Cycle Time (Store Instructions) | 5 | 10 | ms | 7028 FMT21 # **EEPOT TIMING** | Symbol | Parameter | Min. | Max. | Units | |--------|---|------|------|-------| | twrpo | Wiper Response Time After The Third (Last) Power Supply Is Stable | | 10 | μs | | twrL | Wiper Response Time After Instruction Issued (All Load Instructions) | | 10 | μs | | twrid | Wiper Response Time From An Active SCL/SCK Edge (Increment/Decrement Instruction) | | 450 | ns | 7028 FMT22 ## **SYMBOL TABLE** 13 ## **TIMING DIAGRAMS** # **Input Timing** # **Output Timing** # **Hold Timing** # **EEPOT Timing (for All Load Instructions)** # **EEPOT Timing (for Increment/Decrement Instruction)** # Write Protect and Device Address Pins Timing ## **APPLICATIONS INFORMATION** # **Basic Configurations of Electronic Potentiometers** Three terminal Potentiometer; Variable voltage divider Two terminal Variable Resistor; Variable current # **Application Circuits** ## **Noninverting Amplifier** $V_0 = (1 + R_2/R_1)V_S$ # Voltage Regulator $V_O(REG) = 1.25V(1+R_2/R_1)+I_{adi}R_2$ # Offset Voltage Adjustment # **Comparator with Hysterisis** $$\begin{split} V_{UL} &= \{R_1/(R_1 + R_2)\} \ V_O(max) \\ V_{LL} &= \{R_1/(R_1 + R_2)\} \ V_O(min) \end{split}$$ # **Application Circuits (continued)** # **Attenuator** $V_0 = GV_S$ -1/2 \le G \le +1/2 # **Inverting Amplifier** # Filter # **Equivalent L-R Circuit** $Z_{IN} = R_2 + s R_2 (R_1 + R_3) C_1 = R_2 + s Leq (R_1 + R_3) >> R_2$ # **Function Generator** $\begin{array}{l} frequency \propto R_1,\,R_2,\,C \\ amplitude \propto R_A,\,R_B \end{array}$ ## **PACKAGING INFORMATION** ## 24-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P ### NOTE: - 1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS) - 2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH ## **PACKAGING INFORMATION** ## 24-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS) ## **PACKAGING INFORMATION** # 24-LEAD PLASTIC, TSSOP PACKAGE TYPE V NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS) #### ORDERING INFORMATION #### **LIMITED WARRANTY** Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and without notice. Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are implied. #### U.S. PATENTS Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976. Foreign patents and additional patents pending. #### LIFE RELATED POLICY In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence. Xicor's products are not authorized for use in critical components in life support devices or systems. - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **U.S. SALES OFFICES** #### **Corporate Office** Xicor Inc. 1511 Buckeve Drive Milpitas, CA 95035 Phone: 408/432-8888 Fax: 408/432-0640 E-mail: info@xicor.com #### Southeast Region Xicor Inc. 100 E. Sybelia Ave. Suite 355 Maitland, FL 32751 Phone: 407/740-8282 Fax: 407/740-8602 E-mail: xicor-se@xicor.com #### Northeast Region Xicor Inc. 50 North Street Danbury, CT 06810 Phone: 203/743-1701 Fax: 203/794-9501 E-mail: xicor-ma@xicor.com #### North Central Region Xicor Inc. 810 South Bartlett Road Suite 103 Streamwood, IL 60107 Phone: 630/372-3200 Fax: 630/372-3210 E-mail: xicor-nc@xicor.com #### South Central Region Xicor Inc. 11884 Greenville Ave. Suite 102 Dallas, TX 75243 Phone: 972/669-2022 Fax: 972/644-5835 E-mail: xicor-sc@xicor.com ## Southwest Region Xicor Inc. 4100 Newport Place Drive Suite 710 Newport Beach, CA 92660 Phone: 714/752-8700 Fax: 714/752-8634 E-mail: xicor-sw@xicor.com #### Xicor West Xicor Inc. 3333 Bowers Ave. Suite 238 Santa Clara, CA 95054 Phone: 408/492-1966 Fax: 408/980-9478 E-mail: xicor-nw@xicor.com #### INTERNATIONAL SALES OFFICES #### **EUROPE** #### Northern Europe Xicor Ltd Grant Thornton House Witan Way Witney Oxford OX8 6FE UK Phone: (44) 1933.700544 Fax: (44) 1933.700533 E-mail: xicor-uk@xicor.com #### Central Europe Xicor GmbH Technopark Neukeferloh Bretonischer Ring 15 85630 Grasbrunn bei Muenchen Germany Phone: (49) 8946.10080 Fax: (49) 8946.05472 E-mail: xicor-gm@xicor.com #### ASIA/PACIFIC #### Japan Xicor Japan K.K. Suzuki Building, 4th Floor 1-6-8 Shinjuku, Shinjuku-ku Tokyo 160, Japan Phone: (81) 3322.52004 Fax: (81) 3322.52319 E-mail: xicor-jp@xicor.com ## Mainland China, Hong Kong, Taiwan, Singapore, Malaysia Xicor Hong Kong, Ltd. Room 7. Business Centre B1, Grand Stanford Harbour View 70 Mody Road, Tsimshatsui East Kowloon, Hong Kong Phone: (852) 2313 7607 Fax: (852) 2313 7507 E-mail: xicor hongkong@xicor.com #### Australia, India, New Zealand Xicor Inc. 4100 Newport Place Drive Suite 710 Newport Beach, CA 92660 Phone: 714/752-8675 Fax: 714/752-8645 E-mail: xicor-ap@xicor.com #### Korea Xicor Korea, Ltd. 27th Fl., Korea World Trade Ctr. 159, Samsung-dong Kangnam Ku Seoul 135-729 Korea Phone: (82) 2.551.2750 Fax: (82) 2.551.2710 E-mail: xicor-ka@xicor.com () = Country Code Xicor product information is available at: www.xicor.com